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Abstract. We show a framework for constructing identity-based
encryption (IBE) schemes that are (almost) tightly secure in the multi-
challenge and multi-instance setting. In particular, we formalize a new
notion called broadcast encoding, analogously to encoding notions by
Attrapadung (Eurocrypt 2014) and Wee (TCC 2014). We then show
that it can be converted into such an IBE. By instantiating the frame-
work using several encoding schemes (new or known ones), we obtain the
following:
– We obtain (almost) tightly secure IBE in the multi-challenge, multi-

instance setting, both in composite and prime-order groups. The latter
resolves the open problem posed by Hofheinz et al. (PKC 2015).

– We obtain the first (almost) tightly secure IBE with sub-linear size
public parameters (master public keys). In particular, we can set the
size of the public parameters to constant at the cost of longer cipher-
texts and private keys. This gives a partial solution to the open prob-
lem posed by Chen and Wee (Crypto 2013).

By applying (a variant of) the Canetti-Halevi-Katz transformation to our
schemes, we obtain several CCA-secure PKE schemes with tight secu-
rity in the multi-challenge, multi-instance setting. One of our schemes
achieves very small ciphertext overhead, consisting of less than 12 group
elements. This significantly improves the state-of-the-art construction by
Libert et al. (in ePrint Archive) which requires 47 group elements. Fur-
thermore, by modifying one of our IBE schemes obtained above, we can
make it anonymous. This gives the first anonymous IBE whose security
is almost tightly shown in the multi-challenge setting.

Keywords: Tight security reduction · Identity-based encryption ·
Multi-challenge security · Chosen ciphertext security

1 Introduction

1.1 Backgrounds

In the context of provable security, we reduce the security of a given scheme to the
hardness of a computational problem, in order to gain confidence in the security
of the scheme. Namely, we assume an adversary A who breaks the scheme and
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then show another adversary B who solves the (assumed) hard problem using
A. Such a reduction should be as tight as possible, in the sense that B’s success
probability is as large as A. In this paper, we mostly focus on the tight security
reduction in identity-based encryption (IBE) [47].

IBE is an advanced form of public key encryption in which one can encrypt
a message for a user identity, rather than a public key. The first fully secure (or
often called, adaptively secure) construction in the standard model was given
in [11]. Later, further developments were made [8,29,48,49]. All the above men-
tioned papers only deal with the single-challenge, single-instance case. Since
it is known that the security in the (much more realistic) multi-challenge and
multi-instance setting can be reduced to the security in the single-challenge
and single-instance setting [7], these schemes are secure in the former setting in
asymptotic sense. However, this reduction incurs O(μQc) security loss, where Qc

is the number of challenge queries made by the adversary and μ is the number
of instances. Since all the above schemes already loose at least O(Qk) security
in the reductions, where Qk is the number of key extraction queries made by A,
theses schemes loose at least O(μQcQk) security in total.

Recently and somewhat surprisingly, Chen and Wee [17,19] showed the first
IBE scheme (CW scheme) whose reduction cost is independent of Qk, resolving
an important open question posed in [48]. Subsequently, Blazy et al. [9] were
able to obtain anonymous IBE and hierarchical IBE with the same security
guarantee. The drawback of these schemes is its large public parameters (master
public keys): It is proportional to the security parameter and thus rather large.
Note that they only consider the single-challenge and single-instance setting.
Very recently, further important development was made by Hofheinz, Koch, and
Striecks [31] who extended the proof technique of Chen and Wee in a novel
way and proposed the first IBE scheme (HKS scheme) whose reduction cost is
independent from all of μ, Qc, and Qk. However, they only give a construc-
tion in composite-order groups and explicitly mention that the construction in
prime-order groups remains open. We focus on the following two important open
problems in this paper:

– Can we construct a fully, (almost) tightly secure IBE scheme in the
multi-challenge and multi-instance setting from a static assumption in
the prime-order groups?

– Can we construct a fully, (almost) tightly secure IBE scheme from
a static assumption with constant-size public parameters even in the
single-challenge and single-instance setting?

1.2 Our Results

New Tightly-Secure IBE Schemes. In this paper, to tackle the above prob-
lems, we revisit the proof technique in [17,31] and propose a framework for con-
structing almost tightly secure IBE. The almost tight security means that the
reduction cost is independent from μ, Qc, and Qk, and is a small polynomial in
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the security parameter. In particular, we formalize the notion of broadcast encod-
ing analogously to Attrapadung [4] and Wee [50]. Then we show that it can be
converted into fully, (almost) tightly secure IBE scheme, in the multi-challenge
and multi-instance setting. We propose such conversions both in prime-order
and composite-order groups. Furthermore, we propose two broadcast encoding
schemes satisfying our requirement. By instantiating our generic conversion with
these schemes, we obtain several new IBE schemes. In particular,

– We obtain the first IBE scheme in prime-order groups with almost tight secu-
rity in the multi-challenge and multi-instance setting. The security of our
scheme can be shown under the decisional linear (DLIN) assumption. This
resolves the first question above.

– We obtain the first IBE scheme with almost tight security in the multi-
challenge and multi-instance setting and with sub-linear public parameter-size
(but at the cost of larger private key and ciphertext size). An IBE scheme with
almost tight security and sub-linear public parameter size is not known, even
in the single-challenge setting. This partially answers the second question
above.

Application to Chosen-Ciphertext Secure Public Key Encryption.
By applying a variant of Canetti-Halevi-Katz transformation to the new IBE
schemes, we obtain several new chosen-ciphertext (CCA) secure public key
encryption (PKE) schemes. The conversion is tightness-preserving, namely, if
the original IBE is tightly secure in the multi-challenge and multi-instance set-
ting, the resulting PKE scheme is also tightly secure in the same setting. One
of our schemes achieves very compact ciphertext size. The ciphertext overhead
of the scheme only consists of 10 group elements and 2 elements in Zp. This
is much shorter than the state-of-the-art construction of PKE scheme with the
same security guarantee [34]: their scheme requires 47 group elements.

Extension to Anonymous IBE. Furthermore, by modifying one of the new
IBE schemes obtained above, we obtain the first anonymous IBE scheme with
(almost) tight security reduction in the multi-challenge settings for the first
time. The security proof is done by carefully combining information-theoretic
argument due to Chen et al. [16] and a computational argument.

See Table 1 for overview of our schemes.

1.3 Our Techniques

Difficulties. To solve the first question above, a natural starting point would be
trying to apply the frameworks for composite-order-to-prime-order-conversion
dedicated to identity/attribute-based encryption [2,3,16,18,35] to the HKS
scheme [31]. However, security proofs for CW and HKS schemes significantly
deviate from the most standard form of dual system encryption methodology
[4,37,39,50], only for which the above mentioned frameworks can be applied.
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Table 1. Comparison of almost tight IBE from static assumptions

Schemes |pp| + |mpk| |CT| |skID| Anon? Multi-

challenge?

Underlying group Security assumption

CW13 [17] O(κ) O(1) O(1) No No Composite SGD, CW

HKS15 [31] O(κ) O(1) O(1) No Yes Composite SGD, HKS

Ours: Φcomp
cc O(κ) O(1) O(1) No Yes Composite SGD, Problem 5

Ours: Φ
comp
slp

O(κ1−c) O(κc) O(κc) No Yes Composite SGD, DLIN

CW13 [17]† O(κ) O(1) O(1) No No Prime DLIN

BKP14 [9]∗† O(κ) O(1) O(1) Yes No Prime DLIN

Ours: Φprime
cc O(κ) O(1) O(1) No Yes Prime DLIN

Ours: Φ
prime
slp

O(κ1−c) O(κc) O(κc) No Yes Prime DLIN

Ours: Φanon O(κ) O(1) O(1) Yes Yes Prime DLIN

We compare IBE schemes focusing tight security reduction from static assumptions in the standard

model. |pp| + |mpk|, |CT|, and |skID| show the size of the master public keys and public parameters,

ciphertexts, and private keys, respectively. To measure the efficiency, we count the number of group

elements. In the table, κ denotes the security parameter. “Anon” shows whether the scheme is anony-

mous. “Multi-Challenge?” asks whether (almost) tight security reduction in the multi-challenge setting is

shown. “SGD” stands for sub-group decision assumptions. “CW” and “HKS” denote specific assumptions

used in the corresponding papers. For Φ
comp
slp

and Φ
prime
slp

, we can assign any 0 ≤ c ≤ 1.

∗ This is the only scheme that can be generalized to HIBE.

† These schemes can be generalized to be secure under the k-linear assumption (k-LIN) [28,46] for any

k ∈ N. In such a case, |pp|+|mpk|, |CT|, and |skID| are changed to be O(k2κ), O(k), and O(k), respectively.

Note that the DLIN assumption corresponds to the 2-LIN assumption.

Another approach is to try to convert specific assumptions they use into prime-
order. In fact, Chen and Wee [17] were able to accomplish such a conversion for
their scheme. However, their technique is non-generic and therefore it is highly
unclear whether the same argument is possible for the assumptions that HKS
use.

Next, we explain the difficulty of the second question. The reason why all IBE
schemes featuring (almost) tight security reduction in previous works [9,17,31]
require large public parameters is that they use (randomized version of) Naor-
Reingold PRF [40] in their construction. Note that the Naor-Reingold PRF
requires seed length which is linear in the input size, which in turn implies rather
long public parameters in the IBE schemes. A natural approach to improve the
efficiency would be, as noted by Chen and Wee [17,19], to reduce the seed length
of the Naor-Reingold PRF. However, this is a long-standing open problem and
turns out to be quite difficult.

Our Strategy. In this paper, we introduce new proof techniques for IBE schemes
(with almost tight security) that rely only on the subgroup decision assumptions1

This allows us to use frameworks for composite-order-to-prime-order conversions
in the literature [2,3,16,22,23,26,35,42] (to name only a few) which converts
subgroup decision assumption into a static assumption in prime-order groups,
1 In fact, we also require the decisional bilinear Diffie-Hellman (DBDH) assumption

on the composite-order groups (Problem 5) in addition to the subgroup decision
assumptions. However, the assumption does not use the power of composite-order
groups. In other words, it does not imply the factoring assumption. Therefore, it is
ready to be converted into prime-order.
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such as the DLIN assumption. Therefore, using these techniques, we are able
to convert a variant of HKS scheme into prime-order. This answers the first
question above. Note that in the security proof of HKS (and CW), they rely
on some specific assumptions in composite-order groups in addition to subgroup
decision assumptions. Because of these, it is unclear how to convert HKS scheme
into prime-order.

As for the second question, we view Chen and Wee’s scheme as being con-
structed from, somewhat surprisingly, broadcast encryption mechanism, instead
of (Naor-Reingold) PRF, and hence can avoid the above difficulty regarding
PRF. More precisely, we show that the task of constructing almost tightly secure
IBE scheme is essentially reduced to a construction of broadcast encryption, and
based on this idea, we are able to obtain the first IBE scheme with sub-linear
size public parameters and almost tight security. In the following, we explain our
technique.

Detailed Overview of Our Technique. Let us start from the following variant
of the Chen and Wee’s IBE scheme. Let the identity space of the scheme be
{0, 1}�. For i ∈ {1, 2, 3}, let gi be the generator of a subgroup of order pi of
G, which is bilinear groups of composite order N = p1p2p3. Let also h be a
generator of G. The master public key, a ciphertext, and a private key for an
identity ID are in the following form:

mpk =
(
g1, g

w1,0
1 , g

w1,1
1 , . . . , g

w�,0
1 , g

w�,1
1 , e(g1, h)α

)
,

CTID =
(

gs
1, g

s
∑

i∈[1,�] wi,IDi

1 , e(g1, h)sα · M
)

, skID =
(
hα · g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)

where IDi is the i-th bit of ID and M is the message.2 Now we are going to show
the security. We only consider the single-challenge and single-instance case here
for simplicity. In the security proof, at first, the challenge ciphertext is changed
to the following form using a subgroup decision assumption:

(
gs
1 · gŝ

2, g
s
∑

i∈[1,�] wi,IDi

1 · g
ŝ
∑

i∈[1,�] wi,IDi

2 , e(gs
1 · gŝ

2, h
α) · M

)
.

Then, we consider � hybrid games. In Gamei, all private keys are in the following
form:

(
hα · g

R̂i(ID|i)
2 · g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)

where ID|i is the length i prefix of the identity ID and R̂i : {0, 1}i → N is a
random function. Intuitively, through these hybrid games, the randomizing part
of the key (highlighted in the box) are gradually randomized and made dependent
on more and more bits of each identity. Finally, in Game�, we can argue that
2 In the actual scheme, skID is randomized by elements of Gp3 , but we do not care

about this point in this overview.
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any adversary cannot obtain the information on the message M, because these
randomizing parts prevent it.

A crucial part of the security proof is to establish the indistinguishability
between Gamei�−1 and Gamei� for all i� ∈ [1, �]. For the target identity ID�

(recall that we are considering the single-challenge and single-instance case for
now), we assume that b� := ID�

i� is known to the reduction algorithm in advance,
since it can be guessed with probability 1/2. At the core of the proof for this is
an indistinguishability of the following distributions:

Given
(

gs
1 · gŝ

2, g
s
∑

i∈[1,�] wi,ID�
i

1 · g
ŝ
∑

i∈[1,�] wi,ID�
i

2

)
,

(
g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)
c≈

(
gα̂
2 · g

r
∑

i∈[1,�] wi,IDi

1 , g−r
1

)
(1)

for all ID such that IDi� �= b�, where α̂
$← ZN . Indistinguishability of Gamei�−1

and Gamei� is reduced to Eq. (1). The reduction algorithm can create the chal-
lenge ciphertext using the first term in Eq. (1). It can also set private key as

⎧
⎨

⎩
hα · g

R̂i�−1(ID|i�−1)
2 · g

r
∑

i∈S wi,IDi
1 , g−r

1 if IDi� = b�

hα · g
R̂i�−1(ID|i�−1)
2 · gα̂

2 · g
r
∑

i∈S wi,IDi
1 , g−r

1 if IDi� �= b�

where α̂ = 0 or α̂
$← ZN . It is clear that the game corresponds to Gamei�−1 if

α̂ = 0. On the other hand, if α̂
$← ZN , it corresponds to Gamei� with

R̂i�(ID|i�) =

{
R̂i�−1(ID|i�−1) if IDi� = b�

R̂i�−1(ID|i�−1) + α̂ if IDi� �= b�
.

If α̂ is freshly chosen for every distinct ID|i� , the simulation is perfect. Therefore,
our task of the security proof is reduced to establish Eq. (1). To understand
better, we decompose the private key in Eq. (1) and restate it again in a slightly
stronger form:

Given
(

gs
1 · gŝ

2, g
s
∑

i∈[1,�] wi,ID�
i

1 · g
ŝ
∑

i∈[1,�] wi,ID�
i

2

)
,

(
g

rwi�,1−b�

1 , g−r
1 , {g

rwj,b

1 }(j,b) �=(i�,1−b�)

)

c≈
(

gα̂
2 · g

rwi�,1−b�

1 , g−r
1 , {g

rwj,b

1 }(j,b) �=(i�,1−b�)

)
.

Let us consider a bijection map f : {(i, b)}i∈[1,�],b∈{0,1} → [1, 2�] and replace
(i, b) with f((i, b)). We can further restate the requirement as:

Given
(
gs
1 · gŝ

2, g
s
∑

j∈S� wj

1 · g
ŝ
∑

j∈S� wj

2

)
,

(
grwτ�

1 , g−r
1 , {g

rwj

1 }j �=τ�

) c≈
(

gα̂
2 · grwτ�

1 , g−r
1 , {g

rwj

1 }j �=τ�

)
(2)

where S� = {f(i, ID�
i )}i∈[�], τ� = f((i�, 1 − b�)), and thus τ� �∈ S�. We call the

terms in the second line above as the challenge terms. (It should not be confused
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with challenge ciphertext.) At this point, we can now see a similarity to broadcast
encryption. We consider the following broadcast encryption which captures the
essence of the above requirement. Let the set of user index be [1, 2�].

mpk = (g1, gw1
1 , . . . , gw2�

1 , e(g1, h)α),

CTS = (gs
1, g

s
∑

j∈S wj

1 , e(g1, h)sα · M), skτ = (hαgrwτ
1 , g−r

1 , {g
rwj

1 }j∈[2�]\{τ})

where CTS is a ciphertext for a set S ⊆ [2�] and skτ is a private key for a user
index τ ∈ [2�]. This is in fact a variant of the broadcast encryption by Gentry
and Waters [25]! Indeed, Eq. (2) can be interpreted as a security condition for
this broadcast encryption scheme (in the sense of encoding analogous to [4,50]).
It says that given semi-functional ciphertext for a set S�, a normal private key
for τ� �∈ S� is indistinguishable from a semi-functional private key for τ�. At this
point, we are able to understand the core technique in Chen and Wee in terms
of broadcast encryption scheme.

However, we have not finished yet. In order to make the proof go through,
we argue that an adversary cannot distinguish challenge terms in Eq. (2), even
if these are given to the adversary unbounded many times with freshly chosen
randomness α̂, r. Such an indistinguishability can be shown by a standard tech-
nique [4,36,50] if the challenge term is given to the adversary only once. This
can be accomplished by the combination of subgroup decision assumption and
the parameter-hiding argument. In parameter-hiding argument, a value which
is information-theoretically hidden is used to make normal private key semi-
functional [4,36,37,50]. At the first glance, this argument does not seem to be
extended to the case where many challenge terms are given to the adversary,
since entropy of hidden parameters (in this case, w1, . . . , w2� mod p2) is lim-
ited. However, we have to simulate unbounded number of challenge terms. Chen
and Wee [17] resolve this problem by using computational argument instead of
information-theoretic argument as above. Namely, they assume a variant of the
DDH assumption on Gp2

3 and embed the problem instance into the above chal-
lenge terms. Indistinguishability of multiple challenge terms are tightly reduced
to the assumption, using the random self-reducibility of the assumption. On the
other hand, our technique for boosting to multi-challenge is much simpler. Our
key observation is that the challenge term in Eq. (2) can be easily randomized
by picking a

$← ZN and computing

((
gα̂
2 · grwτ�

1

)a
,
(
g−r
1

)a
, {(

g
rwj

1

)a}j �=τ�

)
=

(
gα̂′
2 · gr′wτ�

1 , g−r′
1 , {g

r′wj

1 }j �=τ�

)
(3)

where r′ = ar and α̂′ = aα̂. It is easy to see that r′ mod p1 is uniformly random
and independent from anything. We can also see that α̂′ mod p2 = 0 if α̂ = 0
and α̂′ mod p2 is uniformly random if α̂ �= 0 mod p2. By this argument, we can
see that indistinguishability of the single-challenge-term case implies that for the
3 Of course, in symmetric bilinear groups, the DDH assumption does not hold. They

considered a DDH assumption on Gp2 where each term is perturbed by a random
element in Gp3 , which prevents trivial attack against the assumption.
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multi-challenge-term case. Based on all the above discussion, we are able to show
the security for the above scheme only using the subgroup decision assumption.

Overview of Our Framework. We refine the idea above and combine it with
the technique by HKS to propose our framework for constructing IBE schemes
that are (almost) tightly secure in the multi-challenge and multi-instance setting,
in both composite and prime-order groups. We first define a broadcast encoding,
which is an abstraction of broadcast encryption. The syntax of it is a special case
of “pair encoding” in [4] (also similar to “predicate encoding” in [50]). Then, we
define perfect master-key hiding (PMH) security and computational-master-key
hiding (CMH) security for it. These security notions are also similar to those
of [4,50]. The former is statistical requirement for the encoding, and the lat-
ter is computational requirement. We can easily show that the former implies
the latter. Then, we also introduce intermediate notion multi-master-key hid-
ing (MMH) security for the encoding. This is more complex notion compared
to the PMH and CMH-security, but implied by these, thanks to our boosting
technique above. Then, we show that broadcast encoding satisfying the MMH
security requirement can be converted into IBE scheme. All these reductions
are (almost) tightness-preserving, namely, if the original broadcast encoding is
tightly PMH/CMH secure, the resulting IBE scheme is also tightly secure in
the multi-challenge and multi-instance setting. Finally, we provide broadcast
encoding schemes that satisfy our requirement. One is implicit in Gentry-Waters
broadcast encryption scheme [25] and the other is completely new. By instanti-
ating our general framework with the latter construction, we obtain IBE scheme
with almost tight security and with sub-linear master public key size.

1.4 Related Works

Related Works on IBE. The first realizations of IBE in the random oracle
model were given in [13,20,45]. Later, realization in the standard model [10,14]
were given. In the random oracle model, it is possible to obtain efficient and
tightly secure IBE scheme [5]. Gentry [24] proposed a tightly secure anony-
mous IBE scheme under a non-static, parametrized assumption. Chen and Wee
proposed the first almost tightly secure IBE scheme under static and simple
assumptions [17,19]. Attrapadung [4] proposed an IBE scheme whose security
loss only depends on the number of key queries before the challenge phase. Jutla
and Roy [32] constructed very efficient IBE scheme from the SXDH assumption,
based on a technique related to NIZK. Blazy, Kiltz, and Pan [9] further general-
ized the idea and show that a message authentication code with a certain specific
algebraic structure implies (H)IBE. They further obtained almost tightly secure
anonymous IBE and (non-anonymous) HIBE via the framework. Note that all
above mentioned schemes only focus on the single-challenge setting.

Related Works on the Multi-Challenge CCA-Secure PKE. Bellare,
Boldyreva, and Micali [7] gave a tight reduction for the Cramer-Shoup
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encryption [21] in the multi-instance (multi-user) and the single-challenge set-
ting. They posed an important open question of whether it is possible to con-
struct tightly CCA-secure PKE scheme in the multi-instance and the multi-
challenge setting. The first PKE scheme satisfying the requirement was proposed
by Hofheinz and Jager [30]. Their scheme requires hundreds of group elements
in the ciphertexts. Subsequently, Abe et al. [1] reduced the size by improving the
efficiency of the underlying one-time signature. Libert et al. [33] greatly reduced
the ciphertext and made it constant-size for the first time. The ciphertext over-
head of their scheme consist of 68 group elements. Very recently, Libert et al.
[34] further reduced it to 47 group elements. Concurrently and independently to
us, Hofheinz [27] proposes the first PKE scheme with the same security guaran-
tee and fully compact parameters, which means all parameters are constant-size.
While the ciphertext-size (which consists of 60 group elements) is longer than
construction in [34], it achieves much shorter public parameters. We note that
while the technique is very powerful, it is unclear how to extend it to the IBE
setting.

Due to space limitations, many definitions and proofs are omitted from this
version. These can be found in the full version of the paper [6].

2 Preliminaries

Notation. Vectors will be treated as either row or column vector matrices.
When unspecified, we shall let it be a row vector. We denote by ei the i-th unit
(row) vector: its i-th component is one, all others are zero. 0 denotes the zero
vector or zero matrix. For an integer n ∈ N and a field F, GLn(F) denotes the
set of all invertible matrix in F

n×n. For a multiplicative group G, we denote by
G

∗ a set of all generators in G. We also denote by [a, b] a set {a, . . . , b} for any
integer a and b and [n] = [1, n] for any n ∈ N. We denote by u

$← U the fact
that u is picked uniformly at random from a finite set U .

2.1 Identity-Based Encryption

In this section, we define the syntax and security of IBE (in the multi-challenge,
multi-instance setting).

Syntax. An IBE scheme with identity space ID and message space M consists
of the following algorithms:

Par(1κ) → (pp, sp): The parameter sampling algorithm takes as input a security
parameter 1κ and outputs a public parameter pp and a secret parameter sp.

Gen(pp, sp) → (mpk,msk): The key generation algorithm takes pp and sp as
input and outputs a master public key mpk and master secret key msk.

Ext(msk,mpk, ID) → skID: The user private key extraction algorithm takes as
input the master secret key msk, the master public key mpk, and an identity
ID ∈ ID. It outputs a private key skID.
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Enc(mpk, ID,M) → CT: The encryption algorithm takes as input a master public
key mpk, an identity ID, and a message M ∈ M. It will output a ciphertext
CT.

Dec(skID,CT) → M: The decryption algorithm takes as input a private key skID

and a ciphertext CT. It outputs a message M or ⊥ which indicates that the
ciphertext is not in a valid form.

We refer (standard) notion of correctness of IBE to [6].
In our constructions, we will set identity space ID = {0, 1}� for some � ∈ N.

Note that the restriction on the identity space can be easily removed by apply-
ing a collision resistant hash function CRH : {0, 1}∗ → {0, 1}� to an identity.
Typically, we would set � = Θ(κ) to avoid the birthday attack.

Security Model. We now define (μ,Qc, Qk)-security for an IBE Φ =
(Par,Gen,Ext,Enc,Dec). This security notion is defined by the following game
between a challenger and an attacker A.

Setup. The challenger runs (pp, sp) $← Par(1κ) and (mpk(j),msk(j)) $← Gen

(pp, sp) for j ∈ [μ]. The challenger also picks random coin coin
$← {0, 1} whose

value is fixed throughout the game. Then, (pp, {mpk(j)}j∈[μ]) is given to A.

In the following, A adaptively makes the following two types of queries in an
arbitrary order.

–Key Extraction Query. The adversary A submits (Extraction, j ∈ [μ],
ID ∈ ID) to the challenger. Then, the challenge runs sk

(j)
ID

$← Ext(msk(j),

mpk(j), ID) and returns sk
(j)
ID to A.

–Challenge Query. The adversary A submits (Challenge, j ∈ [μ], ID ∈
ID,M0,M1 ∈ M) to the challenger. Then, the challenger runs CT

$←
Enc(mpk(j), ID,Mcoin) and returns CT to A.

Guess. At last, A outputs a guess coin′ for coin. The advantage of an attacker
A in the game is defined as AdvIBE

A,Φ,(μ,Qc,Qk)
(κ) = |Pr[coin′ = coin] − 1

2 |.
We say that the adversary A is valid if and only if A never queries

(Extraction, j, ID) such that it has already queried (Challenge, j, ID,M0,M1)
for the same (j, ID) (and vice versa); A has made at most Qc challenge queries;
and A has made at most Qk key extraction queries.

Definition 1. We say that IBE Φ is secure if AdvIBE
A,Φ,(μ,Qc,Qk)

(κ) is negligible
for any polynomially bounded μ, Qc, Qk, and any valid PPT adversary A.

Anonymity. We also consider anonymity for the IBE scheme. To define
(μ,Qc, Qk)-anonymity for an IBE scheme, we change the form of challenge
queries in the above game as follows.
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–−Challenge Query. The adversary A submits (Challenge, j ∈ [μ], ID0, ID1 ∈
ID,M0,M1 ∈ M) to the challenger. Then, the challenger runs CT

$←
Enc(mpk(j), IDcoin,Mcoin) and returns CT to A.

We say that the adversary A is valid if A never queries (Extraction, j, ID) such
that it has already queried (Challenge, j, ID0, ID1,M0,M1) for the same j and
ID ∈ {ID0, ID1} (and vice versa); A has made at most Qc challenge queries; and
A has made at most Qk key extraction queries. We define the advantage of A
in this modified game as AdvAIBE

A,Φ,(μ,Qc,Qk)
(κ) := |Pr[coin′ = coin] − 1

2 |.

Definition 2. We say that IBE Φ is anonymous if AdvAIBE
A,Φ,(μ,Qc,Qk)

(κ) is negli-
gible for any polynomially bounded μ, Qc, Qk, and any valid PPT adversary A.

2.2 Composite-Order Bilinear Groups

We will use bilinear group (G,GT ) of composite order N = p1p2p3p4, where p1,
p2, p3, p4 are four distinct prime numbers, with efficiently computable and non-
degenerate bilinear map e(·) : G×G → GT . For each d|N , G has unique subgroup
of order d denoted by Gd. We let gi be a generator of Gpi

. For our purpose, we
define a (composite order) bilinear group generator Gcomp that takes as input a
security parameter 1κ and outputs (N,G,GT , g1, g2, g3, g4, e(·)). Any h ∈ G can
be expressed as h = ga1

1 ga2
2 ga3

3 ga4
4 , where ai is uniquely determined modulo pi.

We call gai
i the Gpi

component of h. We have that e(ga, hb) = e(g, h)ab for any
g, h ∈ G, a, b ∈ Z and e(g, g) = 1GT

for g ∈ Gpi
and h ∈ Gpj

with i �= j.
Let (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and g

$← G
∗. We define advan-

tage function AdvPxx
A (κ) for Problem xx for any adversary A as

AdvPxx
A (κ) = |Pr[A(g1, g4, g,D, T0) → 1] − Pr[A(g1, g4, g,D, T1) → 1]|.

In each problem, D, T0, and T1 are defined as follows. In the following, for
i, j ∈ [1, 4], gij is chosen as gij

$← G
∗
pipj

.

Problem 1. D = ∅, T0
$← G

∗
p1
, and T1

$← G
∗
p1p2

.

Problem 2. D = (g12, g3, g24), T0
$← G

∗
p1p4

, and T1
$← G

∗
p1p2p4

.

Problem 3. D = (g13, g2, g34), T0
$← G

∗
p1p4

, and T1
$← G

∗
p1p3p4

.

Problem 4. D = (g12, g23), T0
$← G

∗
p1p2

, and T1
$← G

∗
p1p3

.

Problem 5. D = (g2, g3, gx
2 , gy

2 , gz
2), T0 = e(g2, g2)xyz, and T1 = e(g2, g2)xyz+γ ,

where x, y, z
$← ZN and γ

$← Z
∗
N .

Problems 1, 2, 3, and 4 are called sub-group decision problems. Problem 5 is
called the decisional bilinear Diffie-Hellman problem.
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Matrix-in-the-Exponent. Given any vector w = (w1, . . . , wn) ∈ Z
n
N and a

group element g, we write gw ∈ G
n to denote (gw1 , . . . , gwn) ∈ G

n: we define
gA for a matrix A in a similar way. gA · gB denotes componentwise product:
gA · gB = gA+B. Note that given gA and a matrix B of “exponents”, one
can efficiently compute gBA and gAB = (gA)B. Furthermore, if there is an
efficiently computable map e : G × G → GT , then given gA and gB, one can
efficiently compute e(g, g)A

�B via (e(g, g)A
�B)i,j =

∏
k e(gAk,i , gBk,j ) where

Ai,j and Bi,j denote the (i, j)-th coefficient of A and B respectively. We will use
e(gA, gB) = e(g, g)A

�B to denote this operation.

3 Broadcast Encoding: Definitions and Reductions

In this section, we define the syntax and the security notions for broadcast
encoding. The syntax of our definition corresponds to a special case of “pair
encoding” defined in [4] and is also similar to “predicate encoding” in [50]. As
for the security requirement for the encoding, ours are slightly different from
both. We define several flavours of the security requirement: perfect master-key
hiding security (PMH), computational-master-key hiding (CMH) security, and
the multi-master-key hiding (MMH) security. The last one is useful, since we
can obtain IBE scheme from broadcast encoding scheme satisfying the security
notion, as we will explain in Sect. 4. However, MMH security is defined by rela-
tively complex game and may not be easy to show. Later in this section, we will
see that MMH security can be tightly reduced to much simpler CMH and PMH
security.

3.1 Broadcast Encoding: Syntax

The broadcast encoding Π consists of the following four deterministic algorithms.

Param(n,N) → d1 : It takes as input an integer n and N and outputs d1 ∈ N

which specifies the number of common variables in CEnc and KEnc. For the
default notation, w = (w1, . . . , wd1) denotes the list of common variables.

KEnc(τ,N) → (k, d′
2) : It takes as input τ ∈ [n], N ∈ N, and outputs a vector of

polynomials k = (k1, . . . , kd2) with coefficients in ZN , and d′
2 ∈ N that spec-

ifies the number of its own variables. We assume that d2 and d′
2 only depend

on n and do not depend on τ without loss of generality. We require that
each polynomials k is a linear combination of monomials α, rj , wkrj where
α, r1, . . . , rd′

2
, w1, . . . , wd1 are variables. More precisely, it outputs {bι}ι∈[d2],

{bι,j}(ι,j)∈[d2]×[d′
2]

, and {bι,j,k}(ι,j,k)∈[d2]×[d′
2]×[d1] in ZN such that

kι

(
α, r1, . . . , rd′

2
, w1, . . . , wd1

)

= bια +
( ∑

j∈[d′
2]

bι,jrj

)
+

( ∑

(j,k)∈[d′
2]×[d1]

bι,j,kwkrj

)
(4)

for ι ∈ [d2].
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CEnc(S,N) → (c, d′
3) : It takes as input S ⊆ [n], N ∈ N, and outputs a vector

of polynomials c = (c1, . . . , cd3) with coefficients in ZN , and d′
3 ∈ N that

specifies the number of its own variables. We require that polynomials c in
variables s0, s1, . . . , sd′

3
, w1, . . . , wd1 have the following form:

There exist (efficiently computable) set of coefficients {aι,j}(ι,j)∈[d3]×[0,d′
3]

and {aι,j,k}(ι,j,k)∈[d3]×[0,d′
3]×[d1] in ZN such that

cι

(
s0, s1, . . . , sd′

3
, w1, . . . , wd1

)

=
( ∑

j∈[0,d′
3]

aι,jsj

)
+

( ∑

(j,k)∈[0,d′
3]×[d1]

aι,j,kwksj

)
(5)

for ι ∈ [d3]. We also require that c1 = s0.
Pair(τ, S,N) → E : It takes as input τ ∈ [n], S ⊆ [n], and N ∈ N and outputs a

matrix E = (Ei,j)i∈[d2],j∈[d3] ∈ Z
d2×d3
N .

Correctness. The correctness requirement is as follows.

– We require that for any n, N , d1 ← Param(n,N), k ← KEnc(τ,N), c ←
CEnc(S,N), and E ← Pair(τ, S,N), we have that

kEc� = αs0 whenever τ ∈ S.

The equation holds symbolically, or equivalently, as polynomials in variables
α, r1, . . . , rd′

2
, s0, s1, · · · , sd′

3
, w1, . . . , wd1 .

– For p that divides N , if we let KEnc(τ,N) → (k, d′
2) and KEnc(τ, p) → (k′, d′′

2),
then it holds that d′

2 = d′′
2 and k mod p = k′. The requirement for CEnc is

similar.

Note that since kEc� =
∑

(i,j)∈[d2]×[d3]
Ei,jkicj , the first requirement

amounts to check if there is a linear combination of kicj terms summed up to
αs0. In the descriptions of proposed broadcast encoding schemes, which will
appear later in this paper, we will not explicitly write down E. Instead, we will
check this condition.

3.2 Broadcast Encoding: Security

Here, we define two flavours of security notions for broadcast encoding: per-
fect security and computational security. As we will see, the former implies the
latter. In what follows, we denote w = (w1, . . . , wd1), r = (r1, . . . , rd′

2
), and

s = (s0, s1, . . . , sd′
3
).

(Perfect Security). The pair encoding scheme Π = (Param,KEnc,CEnc,Pair)
is Q-perfectly master-key hiding (Q-PMH) if the following holds. For any n ∈ N,
prime p ∈ N, τ ∈ [n], and S1, . . . , SQ ⊂ [n] such that τ �∈ Sj for all j ∈ [Q],
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let Param(n, p) → d1, (kτ , d′
2) ← KEnc(τ, p), and (cSj

, d′
3,j) ← CEnc(Sj , p) for

j ∈ [Q], then the following two distributions are identical:
{ { cSj

(sj ,w)}j∈[Q], kτ (0, r,w)
}

and
{ { cSj

(sj ,w)}j∈[Q], kτ (α, r,w)
}

where w $← Z
d1
p , α

$← Zp, r $← (Z∗
p)

d′
2 , sj

$← Z
d′
3+1

p for j ∈ [Q].

(Computational Security on Gp2). We define Q-computational-master-
key hiding (Q-CMH4 ) security on Gp2 for a broadcast encoding Π =
(Param,KEnc,CEnc,Pair) by the following game. At the beginning of the game,
an (stateful) adversary A is given (1κ, n) and chooses τ� ∈ [n]. Then, parameters
are chosen as (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ), Param(n,N) → d1, and
ŵ $← Z

d1
N . The advantage of A is defined as

AdvCMH
A,Π,Q,Gp2

(κ) = |Pr[A(1κ, n) → τ�, A(g1, g2, g3, g4)
OCMH,C

τ�,ŵ
(·),OCMH,K

τ�,ŵ,0(·) → 1] −
Pr[A(1κ, n) → τ�, A(g1, g2, g3, g4)

OCMH,C
τ�,ŵ

(·),OCMH,K
τ�,ŵ,1(·) → 1]|.

In the above, OCMH,K
τ�,ŵ,b (·) for b ∈ {0, 1} are called only once while OCMH,C

τ�,ŵ (·) can
be called at most Q times. These oracles can be called in any order.

– OCMH,C
τ�,ŵ (·) takes S ⊂ [n] such that τ� �∈ S as input. It then runs CEnc(S,N) →

(c, d′
3), picks ŝ = (ŝ0, ŝ1, . . . , ŝd′

3
) $← Z

d′
3+1

N , and returns g
c(ŝ,ŵ)
2 . We note that

ŝ is freshly chosen every time the oracle is called.
– OCMH,K

τ�,ŵ,b (·) ignores its input. When it is called, it first runs KEnc(τ�, N) →
(k, d′

2) and picks r̂ = (r̂1, . . . , r̂d′
2
) $← Z

d′
2

N and α̂
$← ZN . Then it returns

g
k(b·α̂,r̂,ŵ)
2 =

{
g
k(0,r̂,ŵ)
2 if b = 0

g
k(α̂,r̂,ŵ)
2 if b = 1.

We say that the broadcast encoding is Q-CMH secure on Gp2 if AdvCMH
A,Π,Q,Gp2

(κ)
is negligible for all PPT adversary A.

(Computational Security on Gp3). We define AdvCMH
A,Π,Q,Gp3

(κ) and Q-CMH
security on Gp3 via similar game, by swapping g2 and g3 in the above.
Comparison with Definition in [4]. By setting Q = 1, the Q-PMH and the
Q-CMH security defined as above almost correspond to the perfect security and
the co-selective security defined in [4] respectively. We need to deal with the case
of Q � 1 in order to handle the multi-challenge setting. Another difference is
4 Here, we use CMH to stand for “computational-master-key hiding” (for broadcast

encoding), while in [4], CMH refers to “co-selective master-key hiding” (for pair
encoding). We hope that this should not be confusing, since our notion of 1-CMH
security is in fact almost the same as the notion of co-selective master-key hiding
security (for broadcast predicate) anyway.
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that we use groups with the order being a product of four primes, while they
deal with a product of three primes.

We have the following lemma which indicates that Q-PMH security uncon-
ditionally implies Q-CMH security on both of Gp2 and Gp3 .

Lemma 1. Assume that a broadcast encoding Π satisfies Q-PMH security for
some Q ∈ N. Then it follows that AdvCMH

A,Π,Q,Gpi
(κ) ≤ d′

2/pi for i ∈ {2, 3}.

3.3 Multi-master-key Hiding Security in Composite Order Groups

Here, we define multi-master-key hiding security for a broadcast encoding, which
is more complex security notion compared to the CMH security. A broadcast
encoding scheme that satisfies the security notion can be converted into an IBE
scheme as we will see in Sect. 4.

Multi-master-key Hiding Security (on Gp2). We define (Qc, Qk)-multi-
master-key hiding ((Qc, Qk)-MMH) security on Gp2 for a broadcast encoding
Π = (Param,KEnc,CEnc,Pair). The security is defined by the following game. At
the beginning of the game, A is given (1κ, n) and chooses τ� ∈ [n]. Then, para-
meters are chosen as (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ), g24

$← G
∗
p2p4

,
d1 ← Param(n,N), and w $← Z

d1
N . The advantage of A is defined as

AdvMMH
A,Π,(Qc,Qk),Gp2

(κ) =

|Pr[A(1κ, n) → τ�, A(g1, gw1 , gw3 , g24, g3, g4)
OMMH,C

τ�,w
(·),OMMH,K

τ�,w,0(·) → 1] −
Pr[A(1κ, n) → τ�, A(g1, gw1 , gw3 , g24, g3, g4)

OMMH,C
τ�,w

(·),OMMH,K
τ�,w,1(·) → 1]|.

In the above, OMMH,C
τ�,w (·) and OMMH,K

τ�,w,b (·) for b ∈ {0, 1} can be called at most
Qc times and Qk times, respectively. They can be called in any order.

– OMMH,C
τ�,w (·) takes S ⊂ [n] such that τ� �∈ S as input. It then runs CEnc(S,N) →

(c, d′
3), picks s $← Z

d′
3+1

N and ŝ $← Z
d′
3+1

N and returns g
c(s,w)
1 · g

c(ŝ,w)
2 .

– OMMH,K
τ�,w,b (·) ignores its input. When it is called, it first runs KEnc(τ�, N) →

(k, d′
2), picks α̂

$← ZN , r $← Z
d′
2

N , δ
$← Z

d2
N . Then it returns

g
k(0,r,w)
1 · g

k(b·α̂,0,0)
2 · gδ

4 =

{
g
k(0,r,w)
1 · gδ

4 if b = 0
g
k(0,r,w)
1 · g

k(α̂,0,0)
2 · gδ

4 if b = 1.

In the above, r, α̂, and δ as well as s and ŝ are all freshly chosen every
time the corresponding oracle is called. We say that the broadcast encoding is
(Qc, Qk)-MMH secure on Gp2 if AdvMMH

A,Π,(Qc,Qk),Gp2
(κ) is negligible for all PPT

adversary A.

Multi-master-key Hiding Security (on Gp3). We define (Qc, Qk)-MMH
security on Gp3 and AdvMMH

A,Π,(Qc,Qk),Gp3
(κ) similarly to the above. The difference

is the following.
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– The input to A is replaced with (g1, gw1 , gw2 , g34, g2, g4).
– g

c(s,w)
1 · g

c(ŝ,w)
2 in the above is replaced with g

c(s,w)
1 · g

c(ŝ,w)
3 .

– g
k(0,r,w)
1 · g

k(b·α̂,0,0)
2 · gδ

4 is replaced with g
k(0,r,w)
1 · g

k(b·α̂,0,0)
3 · gδ

4 .

3.4 Reduction from MMH Security to CMH Security

We can prove the following theorem that indicates that the (Qc, Qk)-MMH secu-
rity for a broadcast encoding on Gp2 (resp. Gp3) can be tightly reduced to its
Qc-CMH security on Gp2(resp. Gp3) and the hardness of the Problem 2 (resp. 3).

Theorem 1. For any i ∈ {2, 3}, broadcast encoding Π, and adversary A, there
exist adversaries B1 and B2 such that

AdvMMH
A,Π,(Qc,Qk),Gpi

(κ) ≤ AdvCMH
B1,Π,Qc,Gpi

(κ) + 2AdvPxx
B2

+
1
pi

and max{Time(B1),Time(B2)} ≈ Time(A)+(Qk+Qc)·poly(κ, n) where poly(κ, n)
is independent of Time(A). In the above, Pxx = P2 if i = 2 and Pxx = P3 if i = 3.

4 Almost Tight IBE from Broadcast Encoding in
Composite-Order Groups

In this section, we show a generic conversion from a broadcast encoding scheme
to an IBE scheme. An important property of the resulting IBE scheme is that
(μ,Qc, Qk)-security of the scheme can be almost tightly reduced to the Qc-CMH
security of the underlying broadcast encoding scheme (and Problems 1, 2, 3, 4,
and 5). In particular, the reduction only incurs small polynomial security loss,
which is independent of μ and Qk. Therefore, if the underlying broadcast encod-
ing scheme is tightly Qc-CMH secure, which is the case for all of our construc-
tions, the resulting IBE scheme obtained by the conversion is almost tightly
secure. Note that in the following construction, we have sp = ⊥. This mean
that the key generation algorithm Par does not output any secret parameter.
This property will be needed to convert our IBE scheme into CCA secure PKE
scheme in Sect. 8.

Construction. Here, we construct an IBE scheme Φcomp from a broadcast
encoding Π = (Param,KEnc,CEnc,Pair). Let the identity space of the scheme
be ID = {0, 1}� and the message space be M = {0, 1}m. We also let H be a
family of pairwise independent hash functions H : GT → M. We assume that√

2m

p2
= 2−Ω(κ) so that the left-over hash lemma can be applied in the security

proof.

Par(1κ) : It first runs (N,G,GT , g1, g2, g3, g4, e(·)) $← Gcomp(1κ) and
Param(2�,N) → d1. Then it picks w $← Z

d1
N , a

$← Z
∗
N , H

$← H and sets
h := (g1g2g3g4)a. Finally, it outputs pp = (g1, gw1 , g4, h,H) and sp = ⊥.
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Gen(pp, sp) : It picks α
$← ZN and outputs mpk = (pp, e(g1, h)α) and msk = α.

Ext(msk,mpk, ID) : It first sets S = {2i−IDi|i ∈ [�]} where IDi ∈ {0, 1} is the i-th
bit of ID ∈ {0, 1}�. Then it runs KEnc(j,N) → (

kj , d
′
2

)
and picks rj

$← Z
d′
2

N

and δj
$← Z

d2
N for all j ∈ S. It also picks random {αj ∈ ZN}j∈S subject to

constraint that α =
∑

j∈S αj . Then, it computes g
kj(0,rj ,w)
1 , Pair(j, S,N) →

Ej , and

skj = hkj(αj ,0,0) · g
kj(0,rj ,w)
1 · g

δj

4

for all j ∈ S. Note that g
kj(0,rj ,w)
1 can be computed from gw1 and rj =

(rj,1, . . . , rj,d′
2
) efficiently because kj(0, rj ,w) contains only linear combi-

nations of monomials rj,i, rj,iwj′ . Finally, it outputs private key skID =∏
j∈S(skj)Ej .

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [�]}. Then it runs CEnc(S,N) →
(c, d′

3), picks s = (s0, s1, . . . , sd′
3
) $← Z

d′
3+1

N , and computes g
c(s,w)
1 . Note that

g
c(s,w)
1 can be computed from gw1 and s efficiently because c(s,w) contains

only linear combinations of monomials si, siwj . Finally, it outputs

CT =
(

C1 = g
c(s,w)
1 , C2 = H

(
e(g1, h)s0α

) ⊕ M
)
.

Here, ⊕ denotes bitwise exclusive OR of two bit strings.
Dec(skID,CT) : It parses CT → (C1, C2) and computes e(sk�

ID, C�
1 ) = e(g1, h)s0α.

Then, it recovers the message by M = C2 ⊕ H(e(g1, h)s0α).

Correctness. We show the correctness of the scheme. It suffices to show the
following.

e(sk�
ID, C�

1 ) = e
(
(
∏

j∈S

(skj)Ej )�, g
c(s,w)�

1

)
=

∏

j∈S

e(g1, g1)kj(aαj ,rj ,w)Ejc(s,w)�

=
∏

j∈S

e(g1, g1)s0aαj =
∏

j∈S

e(g1, h)s0αj = e(g1, h)s0α.

The third equation above follows from the correctness of the broadcast encoding.

Security. The following theorem indicates that the security of the IBE is
(almost) tightly reduced to the MMH security of the underlying broadcast encod-
ing on Gp2 and Gp3 and Problems 1, 4, and 5. Combining the theorem with
Theorem 1, the security of the scheme can be almost tightly reduced to the Qc-
CMH security of the underlying encoding (and Problems 1, 2, 3, 4, and 5). The
reduction only incurs O(�) security loss.

Theorem 2. For any adversary A, there exist adversaries Bi for i ∈ [1, 5] such
that

AdvIBE
A,Φcomp,(μ,Qc,Qk)

(κ) ≤ AdvP1
B1

(κ) + AdvP5
B2

(κ) + Qc · 2−Ω(κ)

+�
(
2AdvP4

B3
(κ) + AdvMMH

B4,Π,(Qc,Qk),Gp2
(κ) + AdvMMH

B5,Π,(Qc,Qk),Gp3
(κ)

)
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and max{Time(Bi)|i ∈ [1, 5]} ≈ Time(A) + (μ + Qc + Qk) · poly(κ, �) where
poly(κ, �) is independent of Time(A).

5 Framework for Constructions in Prime-Order Groups

In Sects. 3 and 4, we show our framework to construct almost tightly secure IBE
in composite-order groups. Since we carefully constructed the framework so that
we only use the subgroup decision assumptions and the DBDH assumption in
the security proof, we can apply recent composite-order-to-prime-order conver-
sion techniques in the literature [2,3,16,18] to the framework. We choose to use
[3], but other choices might be possible. In this section, we show our framework
for constructing almost tightly secure IBE in prime-order groups. Our frame-
work is almost parallel to that in composite-order groups. Namely, we define
CMH security and MMH security in prime-order groups. Then, we show reduc-
tion between them. Finally, we show a generic construction of IBE scheme from
broadcast encoding and show that the scheme is (almost) tightly secure if the
underlying encoding is tightly CMH secure.

In the following, we will use asymmetric bilinear group (G1,G2,GT ) of
prime order p with efficiently computable and non-degenerate bilinear map
e(·) : G1 × G2 → GT . For our purpose, we define a prime-order bilinear
group generator Gprime that takes as input a security parameter 1κ and outputs
(p,G1,G2,GT , g, h, e(·)) where g and h are random generator of G1 and G2,
respectively. Let π1 : Z4×4

p → Z
4×2
p , π2 : Z4×4

p → Z
4×1
p , and π3 : Z4×4

p → Z
4×1
p

be the projection maps that map a 4 × 4 matrix to the leftmost 2 columns, the
third column, and the fourth column, respectively.

Intuition. In prime-order groups, we work with 4 × 4 matrix. The first two
dimensions serve as “normal space” (corresponding to Gp1), while the third and
the fourth dimension serve as double “semi-functional spaces” (corresponding to
Gp2 and Gp3). There is no corresponding dimension to Gp4 . While the use of
4× 4 matrices is similar to Chen and Wee [17,19]5, conceptually, our techniques
are quite different from theirs. They use the first two dimensions as a normal
space and the last two dimensions as single semi-functional space. In contrast,
we introduce additional semi-functional space to be able to prove the multi-
challenge security rather than single-challenge security. Furthermore, due to our
new proof technique, these semi-functional spaces are smaller compared to those
of [17,19].

5.1 Preparation

Here, we introduce definitions and notations needed to describe our result. Let
p be a prime number and k and c be vectors output by KEnc() and CEnc() on
5 They showed a construction that is secure under the k-LIN assumption for any
k, using 2k × 2k matrices. When k = 2, the scheme is secure under the DLIN
assumption.
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some input respectively. Here, we assign each variable wi in the vector a matrix
Wi ∈ Z

4×4
p for i ∈ [d1] (rather than assigning a scalar value), variable α a

column vector α ∈ Z
4×1
p , variable ri a vector xi ∈ Z

4×1
p for i ∈ [d′

2], and variable
si a vector yi ∈ Z

4×1
p for i ∈ [0, d′

3]. The evaluation of polynomials kZ and cB,
which are indexed by an invertible matrix B ∈ Z

4×4
p and Z ∈ Z

4×4
p , are defined

as follows. In the following, we denote

W = (W1, . . . ,Wd1) ∈ (Z4×4
p )d1 , X =

(
x1, . . . ,xd′

2

) ∈ Z
4×d′

2
p

Y =
(
y0,y1, . . . ,yd′

3

) ∈ Z
4×(d′

3+1)
p , Z = (B−1)� · D.

where D ∈ Z
4×4
p is a full-rank diagonal matrix with the entries (3, 3) and (4, 4)

being 1.
Let k = (k1, . . . , kd2) be a vector of polynomials in variables
α, r1, . . . , rd′

2
, w1, . . . , wd1 with coefficients in Zp defined as Eq. (4). We define

kZ(α,X,W) ∈ Z
4×d2
p as kZ(α,X,W) = {kZ,ι(α,X,W)}ι∈[d2] =

⎧
⎨

⎩
bια +

( ∑

j∈[d′
2]

bι,jZxj

)
+

( ∑

(j,k)∈[d′
2]×[d1]

bι,j,kW�
k Zxj

)
∈ Z

4×1
p

⎫
⎬

⎭
ι∈[d2]

.

Let c = (c1, . . . , cd3) be a vector of polynomials in variables s0, s1, . . . , sd′
3
,

w1, . . . , wd1 with coefficients in Zp defined as Eq. (5). We define cB(Y,W) ∈
Z
4×d3
p as

cB(Y,W) = {cB,ι(Y,W)}ι∈[d3] =
⎧
⎨

⎩

( ∑

j∈[0,d′
3]

aι,jByj

)
+

( ∑

(j,k)∈[0,d′
3]×[d1]

aι,j,kWkByj

)
∈ Z

4×1
p

⎫
⎬

⎭
ι∈[d3]

.

Restriction on the Encoding. In our framework for prime-order construc-
tions, we define and require regularity of encoding similarly to [3], which is
needed to prove the security of our IBE obtained from the broadcast encoding.
We omit the definition and defer to the full version for the details [6].

Correctness of Encoding. Let τ ∈ [n] and S ⊆ [n] be an index and a set
such that τ ∈ S. Let also KEnc(τ, p) → (

k, d′
2

)
, CEnc(S, p) → (c, d′

3), and
Pair(τ, S, p) → E = (Eη,ι)(η,ι)∈[d2]×[d3] ∈ Z

d2×d3
p . Then, by the correctness of

the broadcast encoding, we have
∑

(η,ι)∈[d2]×[d3]
Eη,ιkηcι = αs0 (the equation

holds symbolically). From this, we have the following. (Note that the claim is
shown similarly to Claim 15 in [3].)

Lemma 2. We have
∑

(η,ι)∈[d2]×[d3]
Eη,ι ·kZ,η(α,X,W)�cB,ι(Y,W) = α�By0.

CMH and MMH Security. In the full version [6], we define the Q-CMH
security for broadcast encoding on prime-order groups, analogously to the corre-
sponding notion on composite-order groups. We also define the (Qc, Qk)-MMH
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security for broadcast encoding on prime-order groups. The former is (uncon-
ditionally) implied by the Q-PMH security. Furthermore, we can show that the
latter is tightly reduced to the former, similarly to the case in composite-order
groups.

5.2 Almost Tightly Secure IBE from Broadcast Encoding in Prime
Order Groups

Here, we construct an IBE scheme Φprime from broadcast encoding scheme Π =
(Param,KEnc,CEnc,Pair). Let the identity space of Φprime be ID = {0, 1}� and
the message space M be M = GT . We will not use pairwise independent hash
function differently from our construction in composite-order groups. We note
that similarly to our construction in composite-order groups, we have sp = ⊥ in
the following.

Par(1κ, �) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1κ) and
Param(2�, p) → d1. Then it picks B $← GL4(Zp), W = (W1, . . . ,Wd1)

$←
(Z4×4

p )d1 and a random full-rank diagonal matrix D ∈ Z
4×4
p with the entries

(3, 3) and (4, 4) being 1. Finally, it sets Z = B−�D and outputs

pp =

(
g, gπ1(B), gπ1(W1B), . . . , gπ1(Wd1B)

h, hπ1(Z), hπ1(W
�
1 Z), . . . , hπ1(W

�
d1

Z)

)

and sp = ⊥.

In the following, we will omit subscript B and Z from cB(S,W) and
kZ(α,R,W) and just denote c(S,W) and k(α,R,W) for ease of notation. B
and Z are fixed in the following and clear from the context.

Gen(pp) : It picks α
$← Z

4×1
p and outputs mpk = (pp, e(g, h)α�π1(B)) and msk =

α.
Ext(msk,mpk, ID) : It first sets S = {2i−IDi|i ∈ [�]} where IDi ∈ {0, 1} is the i-th

bit of ID ∈ {0, 1}�. Then it runs KEnc(j, p) → (
kj , d

′
2

)
, picks rj,1, . . . , rj,d′

2

$←
Z
2×1
p , and sets Rj =

(( rj,1
0
0

)
, · · · ,

( rj,d′
2

0
0

))
∈ Z

4×d′
2

p for all j ∈ S. It also

picks random {αj ∈ Z
4×1
p }j∈S subject to constraint that α =

∑
j∈S αj .

Then, it computes Pair(j, S, p) → Ej = (Ej,η,ι)(η,ι)∈[d2]×[d3] and

skj = hkj(αj ,Rj ,W) = {skj,η = hkj,η(αj ,Rj ,W)}η∈[d2]

for all j ∈ S. Note that hkj(αj ,Rj ,W) can be computed from αj , hπ1(Z), and
{gπ1(W

�
i Z)}i∈[d1] efficiently because kj(αj ,Rj ,W) = {kj,ι(αj ,Rj ,W)}ι∈[d2]

contains only linear combination of αj , Z
(

ri
0
0

)
= π1(Z)ri, and W�

i Z
( rj′

0
0

)
=

π1(W�
i Z)rj′ . Finally, it outputs private key skID =

{∏
j∈S,η∈[d2]

sk
Ej,η,ι

j,η

}

ι∈[d3]
.
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Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [�]}. Then it runs
CEnc(S, p) → (c, d′

3), picks s0, s1, . . . , sd′
3

$← Z
2×1
p , and sets S =

((
s0
0
0

)
,
(

s1
0
0

)
, · · · ,

( sd′
3
0
0

))
∈ Z

4×(d′
3+1)

p . Then it returns

CT =
(

C1 = gc(S,W), C2 = e(g, h)α�π1(B)s0 · M
)

.

Note that gc(S,W) can be computed from gπ1(B) and {gπ1(WiB)}i∈[d1] effi-

ciently because c(S,W) contains only linear combinations of B
(

si
0
0

)
=

π1(B)si and WiB
( sj

0
0

)
= π1(WiB)sj . C2 can be computed from

e(g, h)α�π1(B).
Dec(skID,CT) : Let CT be CT = (C1, C2). From C1 = gc(S,W) = {gcι(S,W)}ι∈[d3],

it computes

∏

ι∈[d3]

e

⎛

⎝gcι(S,W),
∏

j∈S,η∈[d2]

sk
Eη,ι

j,η

⎞

⎠ = e(g, h)α�π1(B)s0 (6)

and recovers the message by C2/e(g, h)α�π1(B)s0 = M.

Correctness. To see correctness of the scheme, it suffices to show Eq. (6).

∏

ι∈[d3]

e

⎛

⎝gcι(S,W),
∏

j∈S,η∈[d2]

sk
Eη,ι

j,η

⎞

⎠

=
∏

j∈S

e(g, h)
∑

(ι,η)∈[d3,d2] Eη,ιkj,η(αj ,Rj ,W)�cι(S,W)

=
∏

j∈S

e(g, h)
α�

j B

( s0
0
0

)

= e(g, h)α�π1(B)s0

The second equation above follows from the correctness of the underlying broad-
cast encoding.

Security. Assume that the broadcast encoding satisfies regularity requirement.
Then, we can show that the security of the above IBE is reduced to the hardness
of the (standard) decisional linear assumption and the (Qc, Qk)-MMH security
of the underlying broadcast encoding on prime-order groups. The reduction only
incurs O(�) security loss. Since the Qc-CMH security tightly implies (Qc, Qk)-
MMH security, the above IBE scheme is (almost) tightly secure if the underlying
broadcast encoding is tightly Qc-CMH. The details will appear in the full ver-
sion [6].
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6 Construction of Broadcast Encoding Schemes

In this section, we show two broadcast encoding schemes Πcc and Πslp. For these
schemes, we can tightly prove the Qc-CMH security for any Qc. Therefore, by
applying the conversion in Sects. 4 and 5, we obtain IBE schemes with almost
tight security in the multi-challenge and multi-instance setting both in prime
and composite-order groups. An IBE obtained from Πcc achieves constant-size
ciphertexts, but at the cost of requiring public parameters with the number of
group elements being linear in the security parameter. Our second broadcast
encoding scheme Πslp partially compensate for this. By appropriately setting
parameters, we can realize trade-off between size of ciphertexts and public para-
meters. For example, from the encoding, we obtain the first almost tightly secure
IBE with all communication cost (the size of pp and CT) being O(

√
κ). Such a

scheme is not known even in the single-challenge setting [9,17]. While the struc-
ture of Πcc is implicit in [25], Πslp is new. The construction of Πslp is inspired
by recent works on unbounded attribute-based encryption schemes [38,43,44].
However, the security proof for the encoding is completely different.

6.1 Broadcast Encoding with Constant-Size Ciphertexts

At first, we show the following broadcast encoding scheme that we call Πcc. The
scheme has the same structure as the broadcast encryption scheme proposed by
Gentry and Waters [25]. For Πcc, we can prove Q-PMH security for any Q. By
Lemma 1, we have that Q-CMH security of Πcc on Gp2 and Gp3 can be tightly
proven unconditionally. Similar implication holds in prime-order groups.

Param(n,N) → d1 : It outputs d1 = n.
KEnc(τ,N) → (k, d′

2) : It outputs k = (α + rwτ , rw1, . . . , rwτ−1, r, rwτ+1, . . . ,
rwn) and d′

2 = 1 where r = r.
CEnc(S,N) → (c, d′

3) : Let S ⊆ [n]. It outputs c = (s,
∑

j∈S swj) and d′
3 = 0

where s = s.

Correctness. Let τ ∈ S. Then, we have

s ·
(
(α + rwτ ) +

( ∑

j∈S\{τ}
rwj

)) − (∑

j∈S

swj

) · r = sα.

Lemma 3. Πcc defined above is Q-PMH secure for any Q ∈ N.

Proof. Let τ �∈ ∪j∈[Q]Sj . It is clear that information on wτ is not leaked given
{cSj

(sj ,w)}j∈[Q]. Thus, α is information-theoretically hidden from kτ (α, r,w),
because α is masked by rwτ which is uniformly random over Zp. Thus, the lemma
follows.
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6.2 Encoding with Sub-linear Parameters

We propose the following broadcast encoding scheme that we call Πslp. We can
realize trade-off between sizes of parameters by setting n1. For the encoding
scheme, we are not able to show the Q-PMH security. Instead, we show the
Q-CMH security.

Param(n,N) → d1 : It outputs d1 = 2n1 + 3. We let n2 = �n/n1�. For ease
of the notation, we will denote w = (u1, . . . , un1 , v, u′

1, . . . , u
′
n1

, v′, w) in the
following.

KEnc(τ,N) → (k, d′
2) : It computes unique τ1 ∈ [n1] and τ2 ∈ [n2] such that

τ = τ1 + (τ2 − 1) · n1. Then it sets d′
2 = 1 and r = r and outputs

k =
(

α + rw, r, r(v + τ2uτ1), {rui}i∈[n1]\{τ1}, r(v′ + τ2u
′
τ1), {ru′

i}i∈[n1]\{τ1}
)
.

CEnc(S,N) → (c, d′
3) : It first defines S̃j and Sj for j ∈ [n2] as

S̃j = S ∩ [(j − 1)n1 + 1, jn1], Sj = {j′ − (j − 1)n1 | j′ ∈ S̃j},

sets s = (s0, t1, . . . , tn2 , t
′
1, . . . , t

′
n2

) and d′
3 = 2n2 + 1, and outputs

c =
(
s0, { s0w + ti

(
v + i

∑

j∈Si

uj

)
+ t′i

(
v′ + i

∑

j∈Si

u′
j

)
, ti, t′i }i∈[n2]

)
.

Correctness. Let τ ∈ S and τ1, τ2 be defined as above. Then, we have τ1 ∈ Sτ2

and

s0 · (α + rw)−
(
s0w + tτ2

(
v + τ2

∑
j∈Sτ2

uj

)
+ t′τ2

(
v′ + τ2

∑
j∈Sτ2

u′
j

)) · r

+ tτ2

(
r(v + τ2uτ1 ) + τ2 · (

∑
j∈Sτ2\{τ1}

ruj

))
+ t′τ2

(
r(v′ + τ2u′

τ1
) + τ2 · (

∑
j∈Sτ2\{τ1}

ru′
j

))

= s0α.

We can tightly prove the Q-CMH security of Πslp on composite-order (resp.
prime-order) groups assuming the DLIN assumption on the composite-order
(resp. prime-order) group. The details can be found in the full version [6].

6.3 Implications

For Πxx, we call an IBE scheme obtained by applying the conversion in Sect. 4
to Πxx Φcomp

xx . Similarly, we call a scheme obtained by the conversion in Sect. 5.2
Φprime

xx . Φprime
cc and Φprime

slp are the first IBE schemes that are (almost) tightly secure
in the multi-challenge and multi-instance setting, from a static assumption in
prime-order groups (the DLIN assumption). Φcomp

cc and Φprime
cc achieve constant-

size ciphertext, meaning the number of group elements in ciphertexts is constant.
The drawback of the schemes is their long public parameters. In Φcomp

slp and Φprime
slp ,

we can trade-off the size of ciphertexts and public parameters. For example, by
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setting n1 =
√

n, we obtain the first almost tightly secure IBE scheme such that
all communication cost (the size of the public parameters, the master public
keys, and the ciphertexts) is sub-linear in the security parameter. Such a scheme
is not known in the literature, even in the single-challenge and single-instance
setting. Also see Table 1 in Sect. 1 for the overview of the obtained schemes.

7 Anonymous IBE with Tight Security Reduction

All our IBE schemes obtained so far is not anonymous. In these schemes, one
can efficiently check that a ciphertext is in a specific form using pairing compu-
tation, which leads to an attack against anonymity. In this section, we show that
Φprime

cc can be modified to be anonymous, by removing all group elements in G2

from the public parameter pp and put these in sp instead. We call the resulting
scheme Φanon. This is the first IBE scheme whose anonymity is (almost) tightly
proven in the multi-challenge setting. While our technique for making the scheme
anonymous is similar to that in [16], the security proof for our scheme requires
some new ideas. This is because [16] only deals with the single-challenge setting
whereas we prove tight security in the multi-challenge setting. In the security
proof, we introduce new combination of information-theoretic argument (as in
[16]) and computational argument.

Construction. Let the identity space of the scheme be {0, 1}� and the message
space be GT . We note that we have sp �= ⊥ in the following, differently from
other constructions in this paper.

Par(1κ, �) : It first runs (p,G1,G2,GT , g, h, e(·)) $← Gprime(1κ). Then it picks
B $← GL4(Zp), W1, . . . ,W2�

$← Z
4×4
p and a random full-rank diagonal

matrix D ∈ Z
4×4
p with the entries (3, 3) and (4, 4) being 1. Finally, it

sets Z = B−�D and returns pp = (g, gπ1(B), gπ1(W1B), . . . , gπ1(W2�B)) and
sp = (h, hπ1(Z), hπ1(W

�
1 Z), . . . , gπ1(W

�
2�Z)).

Gen(pp, sp) : It picks α
$← Z

4×1
p and outputs mpk = (pp, e(g, h)α�π1(B)) and

msk = (α, sp).
Ext(msk,mpk, ID) : It first sets S = {2i − IDi|i ∈ [�]} where IDi ∈ {0, 1} is

the i-th bit of ID ∈ {0, 1}�. Then it picks random r $← Z
2×1
p and returns

skID = (K1 = hα+
∑

i∈S π1(W
�
i Z)r, K2 = h−π1(Z)r).

Enc(mpk, ID,M) : It first sets S = {2i − IDi|i ∈ [�]}. Then it picks random
s $← Z

2×1
p and returns CT = (C1 = gπ1(B)s, C2 = g

∑
i∈S π1(WiB)s, C3 =

e(g, h)α�π1(B)s · M).
Dec(skID,CT) : It parses the ciphertext CT as CT → (C1, C2, C3), and com-

putes e(C1,K1)e(C2,K2) = e(g, h)α�π1(B)s. Then, it recovers the message
by C3/e(g, h)α�π1(B)s = M.
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Remark. We have to ensure that the key extraction algorithm Ext always use the
same randomness r for the same identity, in order to (tightly) prove the security
of the scheme. This can be easily accomplished, for example, using PRF [24].
For the sake of simplicity, we do not incorporate this change into the description
of our scheme.

Security. We can prove (1, Qc, Qk)-anonymity of Φanon under the DLIN assump-
tion (single instance case). The reduction cost is O(�), which is independent from
Qc and Qk. While we think that it is not difficult to extend the result to the
multi-instance setting, we do not treat it in this paper.

8 Application to CCA Secure Public Key Encryption

Here, we discuss that our IBE schemes with almost tight security reduction in the
multi-instance and multi-challenge setting yield almost tightly CCA secure PKE
in the same setting via simple modification of Canetti-Halevi-Katz (CHK) trans-
formation [15]. The difference from the ordinary CHK transformation is that we
use (tightly secure) Q-fold one-time signature introduced and constructed in
[30]. Another difference is that we need a restriction on the original IBE scheme.
That is, we require that the key generation algorithm Gen of the IBE scheme
does not output any secret parameter. Namely, sp = ⊥. Roughly speaking, this
is needed since the syntax of the PKE does not allow key generation algorithm
to take any secret parameter. Note that this condition is satisfied by all of our
constructions except for that in Sect. 7.

By applying the above conversion to Φprime
slp and Φprime

cc , we obtain new PKE
schemes that we call Ψprime

slp and Ψprime
cc . The former allows flexible trade-off

between the size of public parameters and ciphertexts. The latter achieves very
short ciphertext-size: The ciphertext overhead of our scheme only consists of 10
group elements and 2 elements in Zp. This significantly improves previous results
[1,27,30,33,34] on PKE scheme with the same security guarantee in terms of the
ciphertext-size. Note that state-of-the-art construction by [27,34] require 47 and
59 group elements of ciphertext overhead, respectively. Namely, ciphertext over-
head of our scheme is (at least) 74% shorter, compared to theirs. On the other
hand, the size of public parameter of the scheme in [27] is much shorter than
ours (and those of [33,34]). The former only requires 17 group elements, but the
latter requires many more.

The reason why we can achieve very short ciphertext size is that our strat-
egy to obtain PKE scheme is quite different from other works. Roughly speaking,
all of the previous constructions [1,27,30,33,34] follow the template established
by Hofheinz and Jager [30]. They first construct (almost) tightly-secure signa-
ture. Then, they use the signature to construct (almost) tightly-secure unbounded
simulation sound (quasi-adaptive) NIZK. Finally, they follow the Naor-Yung par-
adigm [41] and convert the CPA-secure PKE with tight security reduction [12]
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into CCA-secure one using the NIZK. On the other hand, our construction is much
more direct and simpler. Our conversion only requires very small amount of over-
head in public parameters and ciphertexts.

Acknowledgement. We thank the members of Shin-Akarui-Ango-Benkyo-Kai for
valuable comments.We also thank anonymous reviewers for their constructive comments.
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