Multiple Discrete Logarithm Problems
with Auxiliary Inputs

Taechan Kim®)

NTT Secure Platform Laboratories, Tokyo, Japan
taechan.kim@lab.ntt.co. jp

Abstract. Let g be an element of prime order p in an abelian group
and let a1,...,ar € Z, for a positive integer L. First, we show that, if
g,9%%, and g"? (¢=1,...,L) are given for d | p— 1, all the discrete log-
arithms «;’s can be computed probabilistically in 6(\/L -p/d++VL-d)
group exponentiations with O(L) storage under the condition that L <
min{(p/d)"/, d'/1}.

Let f € Fp[z] be a polynomial of degree d and let ps be the number
of rational points over F,, on the curve determined by f(z) — f(y) = 0.
Second, if g, g, go‘%, e ,gag are given for any d > 1, then we propose an
algorithm that solves all a;’s in O(max{/L - p?/pys, L - d}) group expo-
nentiations with O(y/L - p?/py) storage. In particular, we have explicit
choices for a polynomial f when d | p &+ 1, that yield a running time of
O(y/L - p/d) whenever L < —£5 for some constant c.

Keywords: Discrete logarithm problem - Multiple discrete logarithm -
Birthday problem - Cryptanalysis

1 Introduction

Let G be a cyclic group of prime order p with a generator g. A discrete logarithm
problem (DLP) aims to find the element « of Z, when g and g* are given. The
DLP is a classical hard problem in computational number theory, and many
encryption schemes, signatures, and key exchange protocols rely on the hardness
of the DLP for their security.

In recent decades, many variants of the DLP have been introduced. These
include the Weak Diffie-Hellman Problem [13], Strong Diffie-Hellman Problem [2],
Bilinear Diffie-Hellman Inversion Problem [1], and Bilinear Diffie-Hellman Expo-
nent Problem [3], and are intended to guarantee the security of many cryptosys-
tems, such as traitor tracing [13], short signatures [2], ID-based encryption [1], and
broadcast encryption [3]. These problems incorporate additional information to
the original DLP problem. Although such additional information could weaken
the problems, and their hardness is not well understood, these variants are
widely used because they enable the construction of cryptosystems with various
functionalities.

© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASTACRYPT 2015, Part I, LNCS 9452, pp. 174-188, 2015.
DOI: 10.1007/978-3-662-48797-6_8

Multiple Discrete Logarithm Problems with Auxiliary Inputs 175

These variants can be considered as the problem of finding a when
g,9*", ..., g% are given for some eq,...,eq € Z. This problem is called the
discrete logarithm problem with auxiliary inputs (DLPwAI).

On the other hand, in the context of elliptic curve cryptography, because of
large computational expense of generating a secure elliptic curve, a fixed curve is
preferred to a random curve. One can choose a curve recommended by standards
such as NIST. Then this causes an issue with the multiple DLP/DLPwAI and
leads the following question. Can it be more efficient to solve them together than
to solve each of instances individually when needed, if an adversary collects many
instances of DLP/DLPwAI from one fixed curve?

In multiple discrete logarithm problem, an algorithm [11] computes L dis-
crete logarithms in time 6(\/L -p) for L <« p'/%. Recently, it is proven that
this algorithm is optimal in the sense that it requires at least 2(1/L - p) group
operations to solve the multiple DLP in the generic group model [19].

On the other hand, an efficient algorithm for solving the DLPwALI is proposed
by Cheon [5,6]. If g, g%, and ¢ €@ (resp. g, 9%, ... g € G) are given, then
one can solve the discrete logarithm a € Z,, in O(\/p/d-+V/d) (vesp. O(y/p/d+d))
group operations in the case of d | p—1 (resp. d | p+1). Since solving the DLPwAI
in the generic group model requires at least 2(y/p/d) group operations [2],
Cheon’s algorithm achieves the lower bound complexity in the generic group
model when d < p'/? (resp. d < p'/?). Brown and Gallant [4] independently
investigated an algorithm in the case of d | p — 1.

However, as far as we know, the DLPwAI algorithm in the multi-user setting
has not been investigated yet. This paper proposes an algorithm to solve the
multiple DLPwAIT better than O(L - \/p/d) group operations in the case of d |
p £ 1, where L denotes the number of the target discrete logarithms.

Our Contributions. We propose two algorithms for the multiple DLPwAIL
Our first algorithm is based on Cheon’s (p — 1)-algorithm [5,6]. If g, g*, and
go‘g (i=1,2,...,L) are given for d | p— 1, our algorithm solves L discrete loga-
rithms probabilistically in O(+/L - p/d + v/L - d) group operations with storages
for O(L) elements whenever L < min{c,,q4(p/d)'/*, cqd'/*} (for some constants
0 < ¢pja,ca < 1). We also show a deterministic variant of this algorithm which

applies for any L > 0 and has the running time of 5(\/[, ‘p/d+vVL-d+ L),
although it requires as large amount of the storage as the time complexity. How-
ever, an approach based on Cheon’s (p+ 1)-algorithm does not apply to improve
an algorithm in multi-user setting.

Our second algorithm is based on Kim and Cheon’s algorithm [10]. The
algorithm basically works for any d > 0. Let f(z) € Fp[z] be a polynomial
of degree d over F, and define py := |(z,y) € F, x Fp : f(z) = f(y)]. If
g, g"‘i,ga?, . ,go‘? (i=1,2,...,L) are given, the algorithm computes all ;’s in

6(max{+/L - p*/ps, L-d}) group operations with the storage for O(/L -p2%/ps)

elements.

176 T. Kim

In particular, if L -d < \/L-p*/py (le. L < %), the time complexity

is given by 6(\/L -p?/py). Since p < py < dp, this value is always between
6(L-p/d) and 6(\/L - p). Explicitly, if d | p — 1, one can choose the polyno-
mial by f(x) = 2¢ and in the case the complexity is given by the lower bound
6(L - p/d) whenever L < p/d3. Similarly, in the case of d | p+1, if one takes the
polynomial f(x) = Dy(z,a), where Dy(z,a) is the Dickson polynomial of degree
d for some nonzero a € F, then it also has the running time of O(/L - p/d) for
L < p/(2d).

As far as the authors know, these two algorithms extend all existing DLPwAI-
solving algorithms to the algorithms for multi-user setting.

Organization. This paper is organized as follows. In Sect. 2, we introduce sev-
eral variants of DLP including a problem called discrete logarithm problem in the
exponent (DLPX). We also show that several generic algorithms can be applied
to solve the DLPX. In Sect.3, we propose an algorithm solving the multiple
DLPwAI based on Cheon’s algorithm. In Sect. 4, we present another algorithm
to solve the multiple DLPwAI using Kim and Cheon’s algorithm. We conclude
with some related open questions in Sect. 5.

2 Discrete Logarithm Problem and Related Problems

In this section, we introduce several problems related to the discrete logarithm
problem. Throughout the paper, let G = (g) be a cyclic group of prime order p.
Let Iy be a finite field with ¢ elements for some prime power g = p”. Let Zy be
the set of the residue classes of integers modulo an integer N.

— The Discrete Logarithm Problem (DLP) in G is: Given g,¢* € G, to solve

o € L.
— The Multiple Discrete Logarithm Problem (MDLP) in G is: Given
g,9%", ..., g% € G, tosolve all vy, ...,ar € Zy.

— The (ey,...,eq) -Discrete Logarithm Problem with Auxiliary Inputs (DLP-
wAI) in G is: Given g,¢°™,¢%7,..., 9% € G, to solve a € Z,,.

— The (e1,...,eq) -Multiple Discrete Logarithm Problem with Auxiliary
Inputs (MDLPwAI) in G is: Given g,go‘z‘el,g‘”‘f2 Yo ,gajd € G for i =
1,2,...,L, tosolve ay,...,ar € Zy.

In the case of (e1,e2,...,eq) = (1,2,...,d), we simply denote (1,2,...,d)-
(M)DLPwAI by d-(M)DLPwAL

We also introduce the problem called F, -discrete logarithm problem in the
exponent (F,-DLPX).

— The F, -Discrete Logarithm Problem in the Exponent (F, -DLPX) in G is
defined as follows: Let x € I, be an element of multiplicative order N, i.e.
N |p— 1. Given g,¢gX" € G and x € F,, compute n € Zy.

— The F,, -Multiple Discrete Logarithm Problem in the Exponent (F,-MDLPX)
in G is: Given ¢,¢gX"',...,gX " € Gand x € F,, to solve ny,...,ny € Zy. In
both cases, the F,-(M)DLPX is said to be defined over Zy.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 177

Algorithm for DLPX. Observe that several DL-solving algorithms can be
applied to solve the DLPX with the same complexity. For example, the baby-
step-giant-step (BSGS) algorithm works as follows: Suppose that the DLPX is
defined over Zy. Set an integer K ~ /N and write n = noK + ni, where
0 <nyg <N/K=+Nand 0 < n; <K. For given g,gX" € G and x € F,,

i i—1)- K
compute and store the elements gX * = (gX(Y K)X foralli=0,1,...,N/K.

Then compute (gX")X ’ forall =0,1,..., K —1 and find a match between the
stored elements. Then the discrete logarithm is given by n = ¢ K47 for the indices
i and j corresponding to the match. It costs O(v/N) group exponentiations by
elements in F,, and O(V/N) storage.

In a similar fashion, it is easy to check that the Pollard’s lambda
algorithm [15] also applies to solve the DLPX. It takes O(v/N) group opera-
tions to solve the problem with small amount of storage. Also, check that the
other algorithms such as Pohlig-Hellman algorithm [14] or the distinguished
point method of Pollard’s lambda algorithm [17] apply to solve the DLPX. The
above observation was a main idea to solve the DLPwALI in [5,6].

3 Multiple DLPwAI: Cheon’s Algorithm

In this section, we present an algorithm of solving the (1,d)-MDLPwAI based
on Cheon’s algorithm [5,6] when d | p — 1.

Workflow of This Section. Description of our algorithm is presented as fol-
lows. First, we recall how Cheon’s algorithm solves the DLPwAI. In Sect. 3.1,
we observed that the DLPwALI actually reduces to the DLPX (defined in Sect. 2)
by Cheon’s algorithm. It is, then, easy to check that to solve the MDLPwAI
reduces to solve the MDLPX. So, we present an algorithm to solve the MDLPX
in Sect. 3.2. Combined with the above results, we present an algorithm to solve
the MDLPwAT in Sect. 3.3.

3.1 Reduction of DLPwAI to DLP in the Exponent Using Cheon’s
Algorithm

We briefly remind Cheon’s algorithm in the case of d | p — 1. The algorithm

solves (1,d)-DLPwAL Let g, g%, and g"‘d be given. Let ¢ be a primitive element
of Fp and H = (£) = (¢%) be a subgroup of F} of order %. Since ad € H,
we have a? = ¢* for some k € Z(p—1ya- Our first task is to find such k. This
is equivalent to solve the FF,-DLPX defined over Z,_1)/q, that is, to compute
k € Zp—1y/a for given g,ggk € G and £ € Fp. Note that ggk = go‘d is given
from an instance of the DLPwAI and we know the value of £, since a primitive
element in F, can be efficiently found. As mentioned before, solving the DLPX
over Zp—1)/q takes O(\/pW) group exponentiations using BSGS algorithm or
Pollard’s lambda algorithm.

178 T. Kim

Continuously, if we write o € F,, as a = (¥, then since o = ¢4 = (¥ = ¢
it satisfies £ = k (mod (p—1)/d),i.e. a{™% = (CPT_l)m for some m € Z4. Now we
know the value of &, it remains to recover m. This is equivalent to solve F,-DLPX
over Zg4, that is, to solve m € Zg given the elements g, g*" = (g"‘)cfk € G and
€y, where p = ¢ 27 is known. This step costs O(\/E) group exponentiations.
Overall, Cheon’s (p — 1) algorithm reduces of solving two instances of DLP in
the exponent with complexity O(\/m + \/&)

3.2 Algorithm for Multiple DLP in the Exponent

In this section, we describe an algorithm to solve L -multiple DLP in the expo-
nent: Let L be a positive integer. Let x be an element in F,, of multiplicative order
N. The problem is to solve all k; € Zy for given g,y; = ngl ey YL = ngL
and y.

We use Pollard’s lambda-like algorithm. Define pseudo-random walk f from
Y= ng (k € Zy) as follows. For an integer I, define a pseudo-random function
i {gX" ine€Zy} —{1,2,..., 1} and set S := {x**,...,x*} for some random
intkegers s;. For y = ng, a pseudo-random walk f is defined by f : y — yXS"(y) =

TEuy)
gx .

Notice that Pollard’s rho-like algorithm does not apply to solve the DLPX!.
For instance, it seems hard to compute gxzk from ng for unknown k if the
Diffie-Hellman assumption holds in the group G. This is why we take Pollard’s
lambda-like approach.

The proposed algorithm is basically the same with the method by Kuhn and
Struik [11]. It uses the distinguished point method of Pollard’s rho (lambda)
method [17]. Applying their method in the case of the DLPX, we describe the
algorithm as follows.

Step 1. For gy := ngO for kg = N — 1, compute the following chain until it
reaches to a distinguished point dg.

Co :yo = f(yo) = f(f(yo)) = -+ do.

Step 2. For y; = gxkl7 compute a chain until a distinguished point d; found.

Cr:yi = fly) = f(f(y1)) = - = dy.

If we have a collision dy = dj, then it reveals a discrete logarithm k. Oth-
erwise, set ¥} = 1 - gX~ for known z and use it as a new starting point to
compute a new chain to obtain a collision.

Step 3. Once we have found the discrete logarithm kq,...,k;, then one iter-
atively computes the next discrete logarithm k;;; as follows: Compute a
chain as Step 2 with a starting point y;1 until a distinguished point d;; is

! In the paper [16], they indeed consider Pollard’s lambda algorithm rather than rho
algorithm.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 179

found. Then try to find a collision d;11 = d; for some 1 < j < 7. It reveals
the discrete logarithm of ;1. If it fails, compute a chain again with a new

randomized starting point y;,; = yiy1 - gX~ for known 2’

By the analysis in [11], this algorithm has a running time of 6(\/L - N)
operations for L < ¢y N/4 (where 0 < ¢y < 1 is some constant depending on
N) with storage for O(L) elements of the distinguished points.

Remark 1. If we allow large amount of storage, then we have a determinis-
tic algorithm solving the DLPX based on the BSGS method?. It works for
any L > 0 as follows. First, choose an integer K = [1/N/L] and compute

t

. (t— K
gXK = (gXK(1))X for all t < v/L-N using O(v/L-N) group exponenti-
ations and store all of the elements. Then, for each ¢ = 1,2,...,L, compute
e (ngi)X for all s < \/N/L and find a collision with the stored ele-
ments. It takes O(L - v/N/L) operations for all. If one has a collision, then we
have k; = s +t - K for the indices s and ¢ corresponding to the collision.

Remark 2. There is a recent paper by [7] that claims that the MDLP can be
solved in 6(\/L - N) for any L with small amount of storage. However, their
analysis (Sect. 2, [7]) seems somewhat questionable.

In their analysis, they essentially assumed that a collision occurs indepen-
dently from each different chains. The pseudo-random function, however, once it
has been fixed, it becomes deterministic and not random. For example, assume
that we have a collision between two chains, say Cy and Cs. If a new chain Cj
also collides with C, then it deterministically collides with Cs, too. This contra-
dicts with independency assumption. The event that the chain C5 connects to
the chain C5 should be independent whether C3 is connected to Cy or not. This
kind of heuristic might be of no problem when L is much smaller than compared
to N. However, this is not the case for large L.

Several literatures focus on this rigour of pseudo-random function used in
Pollard’s algorithm. For further details on this, refer to [9].

3.3 Solving Multiple DLPwAI Using Cheon’s Algorithm

Combined with the results from Sects. 3.1 and 3.2, we propose an algorithm solv-
ing the (1,d)-MDLPwALI in the case of d | p— 1. In Appendix A, we explain that
Cheon’s (p + 1)-algorithm does not help to solve the MDLPwALI in the case of
dlp+1.

Theorem 1 (Algorithm for (1,d)-MDLPwAI, d | p — 1). Let the nota-
tions as above. Let aq,...,ar be randomly chosen elements from Z,. Assume
that d | p— 1. For L < min{cp/d(p/d)1/4,cdd1/4} (where 0 < ¢p/q,cq < 1 are

some constants on p/d and d respectively), given the elements g, g* and ga? for

2 The proof is contributed by Mehdi Tibouchi.

180 T. Kim

1=1,2,..., L, we have an algorithm that computes a;’s in 5(\/L -p/d++VL-d)
group exponentiations with storage for O(L) elements in the set of the distin-
guished points.

Proof. Similarly as in Sect. 3.1, let H = (¢) = (¢%) C G for a primitive element
¢ € F,. Since af € H, we have af = ¥ for some ky, ..., kr, where k; € Lip—1y)ds
and if we write o; = Cli, then we have a;(~% = u™ for m; € Zg. Thus the
problem reduces of solving two multiple DLP in the exponent with instances
g5 08" =g, gt = goh and gt gt = (7)< g = (g0
where ¢ and p are known. We compute «;’s as follows:

1. Given gf,g"f = gfkl,...7ga% = gka for k; € Z(,—1y/4, compute k;’s using
the algorithm in Sect.3.2. It takes time O(y/L - p/d) with storage for O(L)
elements.

2. Given g*,..., g% and ky, ..., kr, compute (¥ ... ¢~*2 in O(L) exponen-
tiations in IF,, and compute

mi

— (g™ gt = (g

in O(L) exponentiations in G.
3. Compute my,...,my € Zgq from g™t ., g*"" using the algorithm in
Sect. 3.2. It takes time O(v/' L - d) with storage for O(L) elements.

gM

The overall complexity is given by 6(\/L~p/d +VL-d+ L). Since L <
min{p/d,d} by the assumption, i.e. L < min{\/L-p/d,VL-d}, it is equiva-
lent to O(y/L - p/d+ VL -d). O

Remark 3. Note that we can replace the algorithm to solve the MDLPX used
in Step 1 and Step 3 with any algorithm solving the MDLPX. In that case,
the complexity solving the MDLPwAI totally depends on that of the algorithm
solving the MDLPX. For example, if we use the BSGS method described in
Remark 1, then the proposed algorithm solves the MDLPwALI for any L in time
complexity O(y/L -p/d+ VL -d+ L) with the same amount of storage.

4 Multiple DLPwAI: Kim and Cheon’s Algorithm

In this section, we propose an approach to solve the d-MDLPwAI. The idea is
basically based on Kim and Cheon’s algorithm [10]. To analyze the complexity,
we also need some discussion on non-uniform birthday problem.

4.1 Description of Algorithm
Let G = (g) be a group of prime order p. For i = 1,2,..., L, let g, g™, ... ,go‘? be

given. We choose a polynomial f(z) € F,[z] of degree d and fix a positive integer
£ which will be defined later. The proposed algorithm is described as follows:

Multiple Discrete Logarithm Problems with Auxiliary Inputs 181

Step 1. For each i, given g,go‘i,...,gaf and f(x), we compute and store a
constant number of sets each of which is of form

S; = {gf(Ti,lOéi), o ’gf(ri,gai)}’

where 7; ;’s are randomly chosen from IF),.
Step 2. We also compute and store a constant number of sets each of which
consists of

So = {g7V), ..., g0,

where s;’s are known random values from Fy,.

Step 3. We construct a random graph with L vertices: we add an edge between
vertices ¢ and j, if S; and S; collide.

Step 4. If f(r; ;i) = f(sk) for some 4, j and k, then «; is one of d roots of the
equation of degree d in variable «;:

f(rijou) — f(sk) = 0.

Step 5. If f(r;;0i) = f(ryv joaur), for some 4, j,7" and j', where o is known,
then ¢, is one of d roots of the following equation of degree d in variable «;/:

Flair) o= f(rijoq) = f(roe jrow) = 0.

We recover all «;’s when they are connected into a component with known
discrete logs. In the next subsection, we analyze the complexity of the proposed
algorithm more precisely.

4.2 Complexity Analysis
We analyze the complexity of the proposed algorithm.

Theorem 2 (Algorithm for d-MDLPwAI). Let the notations as above. Let
f(x) be a polynomial of degree d over F,. Define py := |{(z,y) € Fp x F, :
f@) = fy)}. Given g,go‘i,...,gaf fori=1,2,..., L, we have an algorithm

that computes all a;’s in O(max{\/L - p?/ps,L-d}) group exponentiations with
storage for O(\/L - p?/py) elements in G.

Proof. Consider the complexity of each step in the proposed algorithm. Through-
out the paper, we denote M (d) by the time complexity multiplying two poly-
nomials of degree d over F,, (typically, we will take M (d) = O(dlogdloglog d)
using the Schonhage-Strassen method).

In Step 2, we compute f(s1),...,f(s¢) using fast multipoint evaluation
method. Tt takes O(f/d - M(d)logd) = O(¢log® dloglogd) operations in F,, if
¢ > d. Otherwise, the cost is bounded by O(M (d)logd) = O(dlog? dloglog d)
operations in F,. Then compute 71 . gf50) in O(¢) exponentiations in G.

In Step 1, we use fast multipoint evaluation method in the exponent as
described in [10, Theorem 2.1], which is the following: given g%0, ... g¥¢ where

182 T. Kim

F; is the coefficient of z’ of a polynomial F(z) € F,[z], and given random ele-
ments 7y,...,7rq € Fp, it computes g¥' (") ... gF("a) in O(M(d)log d) operations
in G.

In our case, for given g, g%, ... ,go‘? and f(z) = ag+- - -+aqz?, we set fi(x) :=
flaiw) = ag+ (a1a)z + - - + (agad)x? and compute g2, (g%)%, ..., (g’lg)ad in
O(d) exponentiations in G for each i. It totally costs O(L - d) exponentiations
for all ¢ = 1,..., L. Applying Theorem 2.1 in [10] to each polynomial f;(z), if
£ > d, we compute

S; = {gfi(Ti,l)7 o ,gfi(ri,l’.)} — {gf(Ti,lOéi)7 o ,gf(n:,eai)}

in O(¢/d - M(d)logd) operations in G for each i. It costs O(L - £log? dloglog d)
operations overall for all ¢ = 1,..., L. Otherwise, if £ < d, then this step costs
O(L- dlog?loglog d) operations.

In Step 4 and Step 5, the cost takes O(M (d) log dlog(dp)) field operations on
average [18] to compute roots of equation of degree d over F,. For each equation,
we need to find «; among at most d possible candidates. It takes O(d) operations.
These steps need to be done L times since we have L equations to be solved.

Consequently, to recover all a;’s, it takes overall O(max{L-¢, L-d}) operations
with O(L - ¢) storage. Now it remains to determine the value of ¢. To this end,
we need to clarify the probability of a collision between S; and S; (for ¢ # j) in
Step 3. It leads us to consider non-uniform birthday problem of two types. We
will discuss on details for this in Appendix B.

We heuristically assume that the probability of a collision between S; and
S; in Step 3 is equiprobable for any ¢ # j and we denote this probability by wi.
By Corollary 1 in Appendix B, the probability is given by w = ©(¢% - py/p?)
for large p. Then the expected number of edges in the graph in Step 3 will be
(L) won Loy L22 Z—é. We require this value to be larger than 2L1In L to

2 ~ o2 T2
connect all connected components in the graph (see [7]), i.e.

2
(> /P 0L
ps L

If we take £ = 2 % L " the overall time complexity becomes (without log

terms) O(max{L - £,L - d}) = O (max{«/L -p%/py, L - d}) with storage for
O(L-t) = 6(\/L -p?/py) elements in G. O
Remark 4. In general, the computation of p; seems relatively not so obvious.

However, for some functions f which are useful for our purpose, it can be effi-
ciently computable. See Sect. 4.3.

3 The assumption is reasonable, since every exponents of the elements in S;’s are
randomly chosen from Fp, i.e. the sets S;’s are independent from each other. Observe
that this does not conflict with Remark 2.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 183

If L < %, then the time complexity of the algorithm is given

b~y 5(\/L-p2/pf). Note that this value is always between 6(L-T) and

O(VL -p). In the next subsection, we observe that one can find polynomials
f with py =~ C - dp for some constant C' in the case of d | p £ 1. In such cases,
the proposed algorithm has a running time of O(y/L - p/d) whenever L < o

It should be compared that application of Cheon’s (p + 1)-algorithm failed

to achieve the lower bound complexity O(1/L - p/d) in the case of d | p+ 1 (see
Appendix A).

4.3 Explicit Choices of Polynomials for Efficient Algorithms in the
Case Ofd | P+ 1

For efficiency of the algorithm, we require a polynomial f(z) with large ps. In
particular, p; becomes larger as the map x — f(x), restricted on I, or a large
subset of F,, has a smaller value set. See the examples below. For details on
choices of these polynomials, refer to [10].

d | p—1Case. Let f(z) = x¢. Then the map by f is d-to-1 except at & = 0. Then
we have py = 1+ d(p — 1) ~ dp. In this case, the complexity of our algorithm

becomes O (/L - p/d) for L < p/d°.

d | p+ 1Case. Let f(z) = Dy(z,a) be the Dickson polynomial for a nonzero
element a € IF,,, where

Ld/2]
d (d-k _
Dy(x,a) = Z d—k‘(i)(—a)kxd 2k,

k=0

If d | p+ 1, then by [8,12], we have py = (d’JrTl)p +0(d?) ~ . In this case, our
algorithm has the complexity of O(y/L - p/d) for L < p/(2d3).

5 Conclusion

In this paper, we proposed algorithms for the MDLPwAI based on two different
approaches. These algorithms cover all extensions of existing DLPwAI-solving
algorithms, since, up to our knowledge, there are only two (efficient) approaches
solving the DLPwAI: Cheon’s algorithm and Kim and Cheon’s algorithm.

_ Our analysis shows that our algorithms have the best running time of either
O(max{\/L-p/d,vL-d}) when d | p — 1, or O(max{\/L-p/d,L - d}) when
d | p+ 1. It shows that the choice of the prime p should be chosen carefully so
that both of p+ 1 and p — 1 have no small divisors. Readers might refer to [5,6]
for careful choices of such prime p.

However, our second algorithm is based on some heuristics and requires rel-
atively large amount of memory. Thus, it would be a challenging question either
to reduce the storage requirement in the algorithm, or to make the algorithm
more rigorous.

184 T. Kim

It would be also interesting to determine the lower bound complexity in the
generic group model for solving the multiple DLPwAI. A very recent result [19]
showed that at least £2(v/L -p) group operations are required to solve the L
multiple DLP in the generic group model. Recall that the generic lower bound
for the DLPwAI is §2(1/p/d). Then it is natural to ask the following questions.
What is the lower bound complexity in the generic group model to solve the
multiple DLPwAI? Do we need at least £2(1/L - p/d) operations for solving the
multiple DLPwAI?

Acknowledgement. The author would like to thank Pierre-Alain Fouque, Soojin
Roh, Mehdi Tibouchi, and Aaram Yun for their valuable discussion. He also would like
to extend his appreciation to anonymous reviewers who further improved this paper.

A A Failed Approach for MDLPwAI When d | P + 1

F,2-Discrete Logarithm Problem in the Exponent. To define F.-
(M)DLPX, we introduce the following definition®.

Definition 1. Let G = (g) be a group of prime order p. Let F,» = F,[0] =
Fp(z]/(2® — k) for some quadratic non-residue r € F,. For v =g+ 710 € F2,
we define g7 = (g7°, g7*) with abuse of notations. For g := (go,g1) € G x G, we
define

g’Y — g’YoJr’YlG — (ggogf’v1,gg1g’lyo)’ where 92 - k.

One can readily check that (g7)° = (g7, g7)% = (g70%0+r7101 grodity1d) = g7,
where § = 09 + 616. Now we define F,2-(M)DLPX.

— The F2 -Discrete Logarithm Problem in the Exponent (F,2-DLPX) in G is
defined as follows: Let x € [F,» be an element of multiplicative order N, i.e.
N |p?>—1. Given g € G and gX" € G x G and x € F,2, compute n € Zy.

— The Fp2 -Multiple Discrete Logarithm Problem in the Exponent —(Fp2-
MDLPX) in G is: Given g € G, gX"',...,g¥"" € G x G and x € Fp2, to
solve ny,...,ng € Zy. In both cases, the F,2-(M)DLPX is said to be defined
over Zy.

Observe that generic approaches to solve the (M)DLPX described in Sects. 2 and
3.2 also apply to solve the Fj2-(M)DLPX.

A Failed Approach when d | p + 1. We consider the MDLPwAI in the case
of d | p+ 1. Recall Cheon’s (p + 1) algorithm [5,6] which solves 2d-DLPwALI.
Let g,go‘i,...,g“?d, for ¢« = 1,2,...,L, be given. We try to solve the prob-
lem as follows: For each i = 1,2,...,L, let 3; := (1 + a;0)P~" € Fp2 = F,[0]
and let £ € Fp2 an element of multiplicative order (p + 1)/d. We compute

- d
gi = g(l_m?)d and gfkl = gf = (glol@i) gfo(@i)y for the given elements

* This notion can be found in [5,6] when he solves DLPwAI using Pollard’s lambda
algorithm. We simply formalize them.

Multiple Discrete Logarithm Problems with Auxiliary Inputs 185

9,9%,...,g%" where B = m{fo(ai) + f1(a;)0}. The remaining task is to
solve k1, ..., kr € Zpy1)/4- This translates to solve L instances of the F)2-DLPX,
say (ghgfkl), (g2, g§k2)yees (9L, gEkL). Note that, however, these L instances

cannot be solved efficiently in a batch computation based on our MDLPX algo-
rithms, since all the bases of the instances are not the same.

B Non-uniform Birthday Problem: Girls and Boys

In this section, we consider the probability of a collision in Step 3, Sect.4.1.
More generally, we consider non-uniform birthday problem of two types. The
main goal in this section is to prove the following theorem.

Theorem 3. For a positive integer N and i € {1,2,..., N}, assume that the
probability of a randomly chosen element from the set {1,2,..., N} to be i is w;.
Let Ty (respectively, Ty) be a set consisting of 1 (reps. £s) elements randomly
chosen from {1,2,..., N}. Then the probability w that Ty and Ty have an element
in common satisfies

51622w32w261€22w3—(€1(;)-ﬁ-fg(;))zwf
i=1 i=1 i=1
N
+ b (2 Zuﬁl— Z wiw? |. (1)
2 2 | ’ v

1<i<j<N

Proof. For each i € {1,2,...,N}, let B,L-(el’b) be the event that two sets 77 and
T5 have the element ¢ in common. Then the probability w that T} and T, have
at least one element in common is given by

w="Pr[B" y...uB{).

From now on, we shall omit superscript in Bi(zl’b) and simply denote it by B;.

To bound the value w, we use Bonferroni inequality,

N N

> Pr[Bi- > PrBiNB]<w<) Pr[B]°.

i=1 1<i<j<N i=1
® It is easy to check the lower bound inequality. Assume that Pr[B; U By] >
Pr[B;] + Pr[B2] — Pr[B; N By] (indeed the equality holds in this case). Then to
see that

Pr[(B1 UB2)U Bg} = Pr[B1 @] Bz] + Pr[Bg} — Pr[(Bl UB2)N Bg}
> PI‘[Bl] + PI‘[BQ] + Pr[Bg} — Pr[B1 n BQ] — PI‘[Bl N Bg] — Pr[Bz n B3]7

it is enough to check that

PI‘[(Bl U Bg) N Bg] = PI‘[(Bl n B3)] (BQ N B3)} S PI‘[Bl n B3] + PI'[BQ N B3]

186 T. Kim

Now apply the induction on N.
We shall investigate bounds on Pr[B;] and Pr[B; N B,] in the followings.
For each i, the set T7 with ¢; elements has the element ¢ with probability
1 — (1 —w;)"* and similarly for 75. Thus both of T} and T have the element i
with probability Pr[B;] = (1 — (1 —w;)*) - (1 — (1 —w;)*). Using the inequality
l—-nz<(1-2)"< 1—nm+(g)$2 for 0 <z <1andn>1, we have

(ﬁlwi — (2)(.{)3) . <£2wi — (622) wf) S PY[B,L] S 6162 s W

Furthermore, we have Pr[B; N B,] < (g) (%)wfwf, since 77 has the element
1 and j with probability at most ()wle and similarly for T5.
Then the upper bound for w directly comes from the upper bound for Pr[B;]

and the lower bound comes from

wZZN:Pr[Bi}— > PrBinB

1<i<j<N
a ¢ ¢ 0\ (¢
1 2 2 2 1 2 2 2
23 (= (5)4) (- (5)) -2 (5) (5) 44
=1 1<J
This concludes the proof. a

Corollary 1. Let W := vazl w? in Theorem 3. If ¢ = {1 = {5 = O (%) and

W — 0, we have

(€2W)2
8

1
VW

Proof. Evaluating ¢ = {1 = {5 in the right most side of Eq. (1), we have

2 2 a 3 6 671 4
w > W — é(é—l)zl+ Z =
=1

CW - +0(—=) <w < PW.

N
1
> W —1° P — (W)
In the first inequality, we used that °, ;wiw? = i {(Zl wf)z -3, w?]. To
see that 3, w? < O (\/—W), it is enough to check that >, wf = Y, w?w; =

Siw > wi — Dot wiw; <3, w? =W (recall that Y, w; = 1). O

Return to our interest. Intrinsically, in our application (Sect.4), we consider the
intersection between two sets Ty := {t1,...,te} = {f(r1),..., f(r¢)} and Ty :=
{t,..., .} ={f(r}),..., f(ry)} for a degree d polynomial f(z) € Fp[z]. This can
be regarded as non-uniform birthday problem described in Theorem 3 similarly

Multiple Discrete Logarithm Problems with Auxiliary Inputs 187

as in [10]: An element ¢ € Ty (or ¢’ € T5) is randomly chosen from F, with
the probability W. Let R; := [{t € F, : |f~1(t)] = i}| for a non-negative
integer i. We have R; = 0 for ¢ > d since deg(f) = d. Then we might say that
an element in 77 (or T») is drown by following the probability distribution (with
proper rearrange)

(W1y.enywp) = (0,

d 2p)
Then W = 7 w? = Zim TR 5, where py = [{(z,y) € Fy x F, :

g p

f(@) = f(y)}]- In our case, we usually take ¢ = 2,/% L — O(\/1/W) (see

the proof of Theorem 3), where L is the constant given by the number of the

target discrete logarithms. Then, by Corollary 1, we roughly have £2TV — @ewy <

w < W for large enough p, i.e. w = O(F2W) (using z — 2?/8 > (7/8)x for
0 <z <1). Consequently, this gives what we want for the analysis.

References

1. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223-238. Springer, Heidelberg (2004)

2. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56-73. Springer,
Heidelberg (2004)

3. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 258-275. Springer, Heidelberg (2005)

4. Brown, D.R.L., Gallant, R.P.: The static Diffie-Hellman problem. TACR Cryptol-
ogy ePrint Archive (2004). http://eprint.iacr.org/2004/306

5. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1-11. Springer, Heidelberg
(2006)

6. Cheon, J.H.: Discrete logarithm problems with auxiliary inputs. J. Cryptol. 23(3),
457-476 (2010)

7. Fouque, P.-A., Joux, A., Mavromati, C.: Multi-user collisions: applications to dis-
crete logarithm, even-mansour and PRINCE. In: Sarkar, P., Iwata, T. (eds.) ASI-
ACRYPT 2014. LNCS, vol. 8873, pp. 420-438. Springer, Heidelberg (2014)

8. Gomez-Calderon, J., Madden, D.J.: Polynomials with small value set over finite
fields. J. Number Theory 28, 167188 (1988)

9. Kijima, S., Montenegro, R.: Collision of random walks and a refined analysis of
attacks on the discrete logarithm problem. In: Katz, J. (ed.) PKC 2015. LNCS,
vol. 9020, pp. 127-149. Springer, Heidelberg (2015)

10. Kim, T., Cheon, J.H.: A new approach to discrete logarithm problem with auxiliary
inputs. IACR Cryptology ePrint Archive (2012). http://eprint.iacr.org/2012/609

http://eprint.iacr.org/2004/306
http://eprint.iacr.org/2012/609

188

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. Kim

Kuhn, F.; Struik, R.: Random walks revisited: extensions of Pollard’s Rho algo-
rithm for computing multiple discrete logarithms. In: Vaudenay, S., Youssef, A.M.
(eds.) SAC 2001. LNCS, vol. 2259, pp. 212-229. Springer, Heidelberg (2001)
Mit’kin, D.A.: Polynomials with minimal set of values and the equation f(z) = f(y)
in a finite prime field. Matematicheskie Zametki 38(1), 3—-14 (1985)

Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85(2), 481-484 (2002)

Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory
24(1), 106-110 (1978)

Pollard, J.M.: Kangaroos, monopoly and discrete logarithms. J. Cryptol. 13(4),
437-447 (2000)

Sakemi, Y., Izu, T., Takenaka, M., Yasuda, M.: Solving a DLP with auxiliary input
with the p-algorithm. In: Jung, S., Yung, M. (eds.) WISA 2011. LNCS, vol. 7115,
pp. 98-108. Springer, Heidelberg (2012)

van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic appli-
cations. J. Cryptol. 12(1), 1-28 (1999)

von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (2003)

Yun, A.: Generic hardness of the multiple discrete logarithm problem. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 817-836. Springer,
Heidelberg (2015)

	Multiple Discrete Logarithm Problems with Auxiliary Inputs
	1 Introduction
	2 Discrete Logarithm Problem and Related Problems
	3 Multiple DLPwAI: Cheon's Algorithm
	3.1 Reduction of DLPwAI to DLP in the Exponent Using Cheon's Algorithm
	3.2 Algorithm for Multiple DLP in the Exponent
	3.3 Solving Multiple DLPwAI Using Cheon's Algorithm

	4 Multiple DLPwAI: Kim and Cheon's Algorithm
	4.1 Description of Algorithm
	4.2 Complexity Analysis
	4.3 Explicit Choices of Polynomials for Efficient Algorithms in the Case Of d P 1

	5 Conclusion
	A A Failed Approach for MDLPwAI When d P+1
	B Non-uniform Birthday Problem: Girls and Boys
	References

