
An Inverse-Free Single-Keyed Tweakable
Enciphering Scheme

Ritam Bhaumik(B) and Mridul Nandi

Indian Statistical Institute, Kolkata, India
{bhaumik.ritam,mridul.nandi}@gmail.com

Abstract. In CRYPTO 2003, Halevi and Rogaway proposed CMC, a
tweakable enciphering scheme (TES) based on a blockcipher. It requires
two blockcipher keys and it is not inverse-free (i.e., the decryption algo-
rithm uses the inverse (decryption) of the underlying blockcipher). We
present here a new inverse-free, single-keyed TES. Our construction
is a tweakable strong pseudorandom permutation (TSPRP), i.e., it is
secure against chosen-plaintext-ciphertext adversaries assuming that the
underlying blockcipher is a pseudorandom permutation (PRP), i.e., secure
against chosen-plaintext adversaries. In comparison, SPRP assumption
of the blockcipher is required for the TSPRP security of CMC. Our
scheme can be viewed as a mixture of type-1 and type-3 Feistel cipher
and so we call it FMix or mixed-type Feistel cipher.

Keywords: (Tweakable strong) pseudorandom permutation · Coeffi-
cient H Technique · Encipher · CMC · Fiestel cipher

1 Introduction

A tweakable enciphering scheme (TES) is a length-preserving encryption
scheme that takes a tweak as an additional input. In other words, for each tweak,
TES computes a ciphertext preserving length of the plaintext. Preserving length
can be very useful in applications such as disk-sector encryption (as addressed
by the IEEE SISWG P1619), where a length-preserving encryption preserves
the file size after encryption. When a tweakable enciphering scheme is used,
the disk sectors can serve as tweaks. Other applications of enciphering schemes
could include bandwidth-efficient network protocols and security-retrofitting of
old communication protocols.
Examples based on Paradigms. There are four major paradigms of tweakable
enciphering schemes. Almost all enciphering schemes fall in one of the following
categories.

– Feistel Structure: 2-block Feistel design was used in early block ciphers
like Lucifer [4,22] and DES [23]. Luby and Rackoff gave a security proof of
Feistel ciphers [12], and later the design was generalised to obtain inverse-free
enciphering of longer messages [17]. Examples: Naor-Reingold Hash [16], GFN
[10], matrix representations [1].

c© International Association for Cryptologic Research 2015
T. Iwata and J.H. Cheon (Eds.): ASIACRYPT 2015, Part II, LNCS 9453, pp. 159–180, 2015.
DOI: 10.1007/978-3-662-48800-3 7

160 R. Bhaumik and M. Nandi

– Hash-Counter-Hash: Two layers of universal hash with a counter mode of
encryption in between. Examples: XCB [13], HCTR [25], HCH [2].

– Hash-Encrypt-Hash: Two layers of universal hash with an ECB mode of
encryption in between. Examples: PEP [3], TET [6], HEH [21].

– Encrypt-Mix-Encrypt: Two encryption layers with a mixing layer in
between. Examples: EME [8], EME* [5] (with ECB encryption layer), CMC
[7] (with CBC encryption layer).

Among all these constructions, the examples from Feistel cipher and Encrypt-
mix-encrypt paradigms are based on blockciphers alone (i.e., no field multiplica-
tion or other primitive is used). Now we take a closer look at CMC encryption.

CMC. In CRYPTO 2003, Halevi and Rogaway proposed CMC, a tweakable
enciphering scheme (TES) based on a blockcipher (Fig. 1). It accepts only plain-
texts of size a multiple of n, the size of the underlying blockcipher. We call each
n-bit segment of the plaintext a block. The CMC construction has the following
problems:

– For an encryption using eK , the decryption needs e−1
K . In a combined hard-

ware implementation, the footprint size (e.g., the number of gates or slices)
goes up;

– The security proof of CMC relied on the stronger assumption SPRP (Strong
Pseudo-Random Permutation) on the underlying blockcipher;

– Tweak is processed using an independent key, and the proposed single-key
variant uses an extra call to the blockcipher.

P1 P2 P3 P4

C4 C3 C2 C1

eK eK eK eK

eK eK eK eK

e
˜K

T

M M M M

T

X Y

Fig. 1. CMC for four blocks, with tweak T and M = 2(X ⊕ Y). Here 2 represents a
primitive element of a finite field over {0, 1}n.

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 161

x1 x2 x3 x4

y1 y2 y3 y4

f

Feistel type-1

x1 x2 x3 x4

y1 y2 y3 y4

f f f

Feistel type-3

Fig. 2. The round function of two types of generalised Feistel networks for four block
inputs. Similar definition can be applied for any number of blocks.

Feistel Cipher: An Inverse-Free Cipher. To resolve the first issue mentioned
above, one can fall back on a Feistel network. For inverse-free constructions, the
main approach so far has been to generalise the classical 2-block Feistel network
to work for longer messages. Two of the interesting approaches were the type-
1 Feistel network and the type-3 Feistel network (Fig. 2). In [10], it is shown
that to encrypt � block plaintext, type-1 and type-3 need 4� − 2 and 2� + 2
rounds respectively for achieving birthday security, which translates to 4� − 2
and 2�2 − 2 invocations of the underlying blockcipher. However, their result is
meant for providing a security performance trade-off and there is a provision for
having beyond-birthday security.
One recent inverse-free construction based on Feistel networks is the AEZ-core,
which forms part of the implementation of AEZ [9]. It belongs to the Encrypt-
Mix-Encrypt paradigm, where the encryption uses a Feistel structure. It requires
five blockcipher calls for every two plaintext blocks, but is highly parallelizable.

1.1 Our Contribution

In this paper, we address all the issues present in CMC in our construction. We
use a mixture of type-1 and type-3 for our construction (hence the name FMix)
to have an inverse-free construction which minimizes the number of blockcipher
calls. FMix applies a simple balanced regular function b. Except for this, it looks
exactly like the composition of � + 1 rounds of type-1 and one round of type-3
Feistel cipher. The features of FMix can be summarized as follows (see Table 1
for a comparison study):

1. FMix is inverse-free, i.e., it needs the same f for both encryption and decryp-
tion, having low footprint in the combined hardware implementation.

2. Because it is inverse-free, an important improvement is on the security
requirement of eK . CMC relies upon an SPRP-secure eK , while our con-
struction just needs a PRF-secure eK . This can have significant practical
implications in reducing the cost of implementation.

162 R. Bhaumik and M. Nandi

3. The tweak is processed through the same f , removing the requirement of an
extra independent blockcipher key.

4. To encrypt a message with � blocks and a tweak (a single block), CMC needs
2�+1 calls to the blockcipher e. Its variant (which eliminates the independent
key), however uses 2� + 2 calls to e. Our construction requires 2� + 1 calls,
without needing the independent key.

Table 1. A Comparison of some blockcipher based TES. The description of the columns
are as follows: (1) Number of blockcipher calls, (2) Number of keys, (3) How many
sequential layers with full parallelization, (4) Security assumption of the underlying
blockcipher, (5) Whether it is inverse-free. (CMC’ is a “natively tweakable” variant of
CMC, as described in [7]).

Schemes #BC #Key #Layers BC-security Inverse-free?

CMC 2� + 1 2 � + 2 SPRP NO

CMC’ 2� + 2 2 � + 2 SPRP NO

EME 2� + 3 1 4 SPRP NO

GFN-1 4� − 2 4� − 2 4� − 2 PRP YES

GFN-3 2�2 − 2 2�2 − 2 2� − 2 PRP YES

AEZ-core ∼ 5
2
� 1 5 PRP YES

FMix (this paper) 2� + 1 1 � + 3 PRP YES

2 Preliminaries

2.1 Tweakable Encryption Schemes

This paper proposes a new tweakable encryption scheme, so we begin by
describing what we mean by that. Formally, with a tweakable (deterministic)
encryption scheme we associate four finite sets of binary strings: the message
space M, the tweak space T , the ciphertext space C, and the key space K. The
encryption function e : K × T × M −→ C and the corresponding decryption
function d : K × T × C −→ M are required to satisfy the following (known as
the correctness requirement):

∀(K,T, P) ∈ K × T × M, d(K,T, e(K,T, P)) = P.

We also write e(K,T, P) by eK(T, P) and d(K,T, C) by e−1
K (T, C). We call a

tweakable encryption scheme tweakable enciphering scheme (TES) if for all
plaintext P , key K ∈ K and tweak T ∈ T , |e(K,T, P)| = |P | (i.e., it preserves
length).

Random Function. In the heart of most encryption schemes lies the notion of
a random function. Given a domain D and a range R, a random function

f : D ∗−→ R

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 163

is a function chosen uniformly from the class of all functions from D to R
(denoted RD). Some elementary calculations show that for distinct x1, ..., xn ∈
D, f(x1), ..., f(xn) are independent and uniformly distributed over R. More gen-
erally, we define the following:

Definition 1. Let C ⊆ RD be a class of functions from D to R. A random
C -function

f : D C−→ R
is a function chosen uniformly from C .

Note that choosing a function uniformly from a class {fα}α∈I indexed by some
finite set I can be achieved by choosing α0 uniformly from I and then picking
fα0 as the chosen function.

Tweakable Random Permutation. When R = D, a popular choice of C
is ΠD, the class of all permutations on D (i.e., bijections from D to itself).
A random permutation over D is a ΠD-random function. It is an ideal choice
corresponding to an encryption scheme over D. The ideal choice corresponding
to a tweakable enciphering scheme over D with tweak space T is called tweakable
random permutation π̃ which is chosen uniformly from the class ΠT

D . For each
tweak T ∈ T , we choose a random permutation πT independently, and π̃ is a
stochastically independent collection of random permutations {πT;T ∈ T }.

2.2 Pseudorandomness and Distinguishing Games

It should be noted that a random function or a random permutation is an ideal
concept, since in practice the sizes of RD or ΠD are so huge that the cost of
simulating a uniform random sampling on them is prohibitive. What is used
instead of a truly random function is a pseudorandom function (PRF), a
function whose behaviour is so close to that of a truly random function that
no algorithm can effectively distinguish between the two. An adversary for a
pseudorandom function f1 is a deterministic algorithm A that tries to distinguish
f1 from a truly random f0.

Security Notions. To test the pseudorandomness of f1, A plays the PRF
distinguishing game with an oracle O simulating (unknown to A) either f1 or
f0. For this, A makes q queries, in a deterministic but possibly adaptive manner.
It is well known that there is no loss in assuming a distinguisher deterministic
as unbounded time deterministic distinguisher is as powerful as a probabilistic
distinguisher. Thus, the first query x1 = q1() is fixed, and given the responses
yj = O(xj), j ∈ {1, ..., i − 1}, the i-th query becomes xi = qi(y1, ..., yi−1), where
qi is a deterministic function for choosing the i-th query for i ∈ {1, ..., q}. Finally,
a deterministic decision function examines y1, ..., yq and chooses the output b ∈
{0, 1} of A. A wins if O was simulating fb. An equivalent way to measure this
winning event is called prf-advantage defined as

ΔA(f0 ; f1) := Advprf
f1

(A) = |Prf0 [Af0 → 1] − Prf1 [Af1 → 1]|,

164 R. Bhaumik and M. Nandi

where Prf [.] denotes the probability of some event when O imitates f . The above
definition can be extended for more than one oracles. We can analogously define
pseudorandom permutation (PRP) advantage Advprp

f1
(A) of f1 in which

case f0 is the random permutation. When f1 is an enciphering scheme and A
is interacting with both f1 and its inverse f−1

1 (or with f0 and f−1
0) we have

strong pseudorandom permutation (SPRP) advantage

Advsprp
f1

(A) = |Prf0 [Af0,f−1
0 → 1] − Prf1 [Af1,f−1

1 → 1]|.

Finally, for a tweakable enciphering schemes with the strong pseudorandom prop-
erty as above, we analogously define the tweakable strong pseudorandom
permutation (TSPRP) advantage Advtsprp

f1
(A).

Pointless Adversaries. In addition to the adversary being deterministic, we
also assume that it does not make any pointless queries. An adversary A making
queries to a tweakable encryption scheme f and f−1 is called pointless if either
it makes a duplicate query or it makes an f -query (T, P) and obtains response C
and f−1-query (T, C) and obtains response P (the order of these two queries can
be reversed). We can assume that adversary is not pointless since the responses
are uniquely determined for these types of queries.

Theorem 1. [11] Let f1 be a TES over a message space M ⊆ {0, 1}∗ and f0
and f ′

0 be two independently chosen random functions. Then for any adversary
non-pointless distinguisher A making at most q queries, we have,

Advtsprp
f1

(A) ≤ ΔA((f1, f−1
1) ; (f0, f ′

0)) +
q(q − 1)
2m+1

where m = min{� : M ∩ {0, 1}� �= ∅}.

The above result says that an uniform length-preserving random permutation is
very close to an uniform length-preserving random function.

2.3 Domain Extensions and Coefficient H Technique

The notion of pseudorandomness, while giving us an approximate implementa-
tion of random functions, introduces a new problem. In general, it is very hard to
decide whether or not there is an adversary that breaks the pseudorandomness
of a particular function, since there is no easy way of exhaustively covering all
possible adversaries in an analysis, and since there is no true randomness in a
practically implemented function, probabilistic arguments cannot be used.

The common get-around is to assume we have PRFs f1, ..., fn each with
domain D and use them to obtain an F with domain D′ ⊃ D, such that a PRF-
attack on F leads to a PRF-attack on one of f1, ..., fn. Now, there are known func-
tions on small domains (like AES, for instance) which have withstood decades of
attempted PRF-attacks and are believed to be reasonably secure against PRF-
attacks. Choosing D suitably to begin with and using the known PRFs in our

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 165

construction, we can find a PRF F with domain D′ that is secure as long as the
smaller functions are secure. This technique is known as a domain extension.

Here, the central step in a proving the security of F is the reduction of an
adversary of F to an adversary of one of f1, ..., fn. This reduction is achieved
by assuming f1, ..., fn to be truly random, and giving an information-theoretic
proof that the distinguishing advantage of any adversary at F is small. Thus, if
an adversary thus distinguish F from random with a reasonable advantage, we
must conclude that f1, ..., fn are not truly random. Thus, all we need to show
is that when the underlying functions are truly random, F behaves like a truly
random function.

f

T

b′

P1

C4

U1

f

V1

P2

U2

f

V2

P3

U3

f

V3

b

P4

C1

U4

f
V4

U ′
4

f
V ′
4

MM

C3 C2

b
T

U ′
1

f

V ′
1

U ′
2

f

V ′
2

U ′
3

f

V ′
3

Fig. 3. The FMix construction for four blocks, with M = V4 + V ′
4

Patarin’s Coefficient H Technique. There are several techniques for showing
this. The one we use is based on the Coefficient H Technique, due to Jacques
Patarin, which we briefly describe here. We look at the queries x1, ..., xq and
the outputs y1, ..., yq, and note that the adversary’s decision will be based solely
on the 2q-tuple (x1, ..., xq, y1, ..., yq). Now, if F0 is the truly random function
F is trying to emulate, then F

(q)
0 is also truly random, so on input (x1, ..., xq),

166 R. Bhaumik and M. Nandi

F
(q)
0 (x1, ..., xq) will be uniform over R′, R being the range of F . Thus when

D′ = R′ = {0, 1}m,

Pr[F (q)
0 (x1, ..., xq) = (y1, ..., yq)] =

1
2mq

.

If we can now show that Pr[F (q)(x1, ..., xq) = (y1, ..., yq)] (which we call its
interpolation probability after Bernstein) is “very close” to 1

2mq for most 2q-
tuples (x1, ..., xq, y1, ..., yq), we can conclude that no adversary can distinguish
F from F0 with a reasonable advantage. One way to formalize “very close” is
that the interpolation probability is at least (1−ε)2−mq. Moreover, this may not
happen for all possible views. (A view consists of all input and output blocks
taken together. Informally, it is the portion of the computations visible to the
adversary after completing all the queries.) So we may need to restrict the inter-
polation calculation on so called good views. This is the central idea of Patarin’s
technique.
Let view(AO) denote the the view obtained by the adversary A interacting
with O.

Theorem 2 (Coefficient H Technique[19]). Suppose the interpolation prob-
abilities follow the inequality

IPf
FMix(V) ≥ (1 − ε) · 2−nL

for all views V ∈ Vgood (set of good views). Then for an SPRP-adversary A, we
have

AdvA
SPRP(F) ≤ ε + ε′

where ε′ denotes the probability Pr[view(AF0,F) �∈ Vgood].

This technique was first introduced by Patarin’s PhD thesis [18] (as mentioned
in [24]). Later it has been formalized in [19].

3 The FMix Construction

We are now in a position to describe our encryption scheme FMix. We use
one underlying block function, chosen from a keyed family of PRFs {fK :
{0, 1}n −→ {0, 1}n}K∈K. The extended domain, which serves as both M and
C, is ∪l≥2{0, 1}ln, all strings consisting of two or more n-bit blocks. In addi-
tion to a key and a plaintext, the encryption algorithm also takes a tweak T as
input, which is also supplied to the decryption algorithm. Encryption is length-
preserving: for m ∈ {0, 1}l0m, e(K,m,T) ∈ {0, 1}l0m as well. The basic structure
of the construction is based on that of CMC: a CBC encryption layer, followed by
a layer of mixing, followed by a CBC decryption layer. However, using a gener-
alisation of the Feistel scheme, we eliminate the need for f−1

K during decryption,
making do with fK instead, thus making this construction inverse-free (Fig. 3).

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 167

input : A tweak T, an integer l ≥ 2, l plaintext blocks P1, ..., Pl

output: l ciphertext blocks C1, ..., Cl

begin
T ← f(T)

V0 ← T
for i ← 1 to l − 1 do

Ui ← Vi−1 ⊕ Pi

Vi ← f(Ui)

end
Ul ← b(Vl−1 ⊕ Pl)

Vl ← f(Ul)

U ′
l ← Vl ⊕ U1

V ′
l ← f(U ′

l)

M ← Vl ⊕ V ′
l

U ′
l−1 ← U2 ⊕ M

V ′
l−1 ← f(U ′

l−1)

Cl ← V ′
l−1⊕ b’(U ′

l)

for i ← 3 to l − 1 do
U ′

l+1−i ← Ui ⊕ M
V ′
l+1−i ← f(U ′

l+1−i)

Cl+2−i ← V ′
l+1−i ⊕ U ′

l+2−i

end
U ′

1 ← Ul + V ′
l

V ′
1 ← f(U ′

1)

V ′
0 ← T

C2 ← V ′
1 ⊕ U ′

2

C1 ← b(V ′
0)⊕U ′

1

end

Algorithm 1: FMix Encryption Algorithm. The decryption algorithm is
exactly same as the encryption except that the b(T) is computed in the first
layer and only T is used in the second.

The details of the construction are demonstrated in the figure, which shows
a four-block FMix construction. The algorithm for general l is described in the
box. Here, b is a balanced linear permutation, which we define below, and b′ is
b−1. Decryption is almost identical, just with T and b(T) switching roles.

Definition 2. A permutation b : {0, 1}n −→ {0, 1}n will be called a balanced
linear permutation if both t
→ b(t) and t
→ t + b(t) are linear permutations.

One choice of b could be multiplication by a primitive α, but this is not very
software-friendly. A more software-friendly choice is (t1, t2)
→ (t1⊕t2, t1), where
t1 and t2 are the higher and lower halves of t.

Notation for Our Construction. For our analysis we will assume the underly-
ing PRF to be a truly random function f . We now model the encryption scheme
in terms of computations based on f . An encryption is a computation

168 R. Bhaumik and M. Nandi

C ←− ef (T,P),

where T ∈ {0, 1}n, and P,C ∈ {0, 1}ln for some l ≥ 2. Similarly, a decryption is
a computation

P ←− df (T,C),

which inverts ef , for any tweak T. The plaintext P is denoted (P1, ..., Pl), where
each Pi is an n-bit block of P. Simlarly, the ciphertext C is denoted (C1, ..., Cl).

In the TSPRP game, the adversary makes q queries to the oracle O. Each query
is of the form (δ,T,X), where δ ∈ {e, d} denotes the direction of the query,
T ∈ {0, 1}n is the tweak, and X ∈ {0, 1}nl for some l is the input. If O is
imitating FMIX, O(e,T,X) returns Ef (T,X), and O(d,T,X) returns Df (T,X).
If O is imitating a tweaked PRP Π, O(e,T,X) returns Π(T,X), and O(d,T,X)
returns Π−1(T,X). The output of O is denoted Y.

All the queries and their outputs taken together form what we call a view. We
use the following notation in a view. For the i-th query, δi denotes the direction
of the query, Ti denotes the tweak, and li denotes the number of blocks in X.
When δi = e, the blocks of X are denoted P1, ..., Pli and those of Y are denoted
C1, ..., Cli . When δi = d, this notation is reversed, i.e., the blocks of Y are
denoted P1, ..., Pli and those of X are denoted C1, ..., Cli . In the analysis, the
tweak T is denoted both P i

0 and Ci
0.

4 TSPRP Security Analysis of FMix

4.1 Good Views and Interpolation

Our first task is to formulate the version of Patarin’s Coefficient H Technique
we shall use for our proof. We begin by restricting our attention to a particular
class of views.

Pointless View. A view is an indexed set of tuples

V = {(δi,Ti, li, P i
j , C

i
j)|1 ≤ i ≤ q, 1 ≤ j ≤ li}.

Here δi can take values e and d only. The li’s are positive integers and
Ti, P i

j , C
i
j ∈ {0, 1}n, called blocks. The P i

j and Ci
j mean the jth block of plaintext

and ciphertext respectively on the ith query. We denote Ti by both P i
0 and Ci

0.
For any 0 ≤ a ≤ b ≤ li, we write P i

a..b to represent the tuple (P i
a, . . . , P i

b) and
P i to denote P i

0..li
. Similar notation for Ci and Ci

a..b. A view V is said to be
pointless if at least one of the followings holds:

1. ∃i �= i′ such that δi = δi′
= e, P i = P i′

.
2. ∃i �= i′ such that δi = δi′

= d, Ci = Ci′
.

3. ∃i′ < i such that δi = e, δi′
= d, P i = P i′

.
4. ∃i′ < i such that δi = d, δi′

= e, Ci = Ci′
.

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 169

The first two cases are for duplicate queries. The third holds when we obtain
a response P i′

for some decryption query Ci′
and then make an encryption

query P i := P i′
. (The fourth case is the third case with the order of the queries

reversed.) It is easy to see that when an adversary A is interacting with a TES,
the view obtained is pointless if and only if A is pointless.

As we do not allow a pointless adversary we can restrict ourselves to non-
pointless views only. Now we define good and bad views among this class.

Definition 3. (Good and Bad Views). A view {(δi,Ti, li, P i
j , C

i
j)|1 ≤ i ≤

q, 1 ≤ j ≤ li} is said to be good if it is not pointless and

(∀i with δi = e)(�i′ < i)(Ci
1 = Ci′

1), and (∀i with δi = d)(�i′ < i)(P i
1 = P i′

1).

A view that is not good and not pointless is called bad.

The proof revolves around showing that the good views have a near-random
distribution, and the bad views occur with a low probability. For the rest of the
analysis, we fix a good view V.

Interpolation Probability. Now we consider the interpolation probability for
FMix construction. It is easy to see that

IPf
FMix(V) = Prf [FMixf (Ti, P i

1..li) = Ci
1..li , 1 ≤ i ≤ q]

where the probability is taken under the randomness of f chosen uniformly
from the set of all functions from {0, 1}n to itself. Similarly, the interpolation
probability for an ideal random function IP∗(V) is 2−nL where L =

∑q
i=1 li.

This corresponds to the case where O imitating a truly random function. Now
we state a result the proof of which is deferred to the next section.

Proposition 1. For any good view V,

IPf
FMix(V) ≥ (1 − ε) × 2−nL, where ε =

(
2L
2

)

2n
.

Armed with this result and the Coefficient H Technique, we are now ready to
state and prove the main result of this paper.

Theorem 3. For any SPRP-adversary A making q queries with L blocks in all,

AdvtsprpFMix (A) ≤
(
2L
2

)
+

(
q
2

)

2n
.

Proof. When a non-pointless adversary A is interacting with a pair of inde-
pendent random functions (f0, f ′

0), it obtains a bad view has probability upper
bounded by

(
q
2

)
. To see this, let the bad event occurs for the first time at the ith

query. If it is an encryption query (similar proof can be carried out for the decryp-
tion query) then Ci

1 is chosen randomly from {0, 1}n and so it matches with one
of the previous first ciphertext block is at most (i−1)/2n. So Prf0,f ′

0
[view(Af0,f ′

0)
is a bad view] ≤

∑q
i=1

i−1
2n = q(q−1)

2n+1 . By using Coefficient H Technique (see in
Sect. 2.3) and the proposition stated above we have proved our theorem. ��

170 R. Bhaumik and M. Nandi

Corollary 1. Let FMixK denote the FMix construction based on the keyed blcok-
cipher fK . For any TSPRP-adversary A making q queries with L blocks in all
there exists an adversary A′ making at most L encryption queries (and similar
time as A)

AdvtsprpFMixK
(A) ≤ AdvprpfK

(A′) +

(
2L
2

)
+

(
q
2

)

2n
.

This follows from the standard hybrid argument.

4.2 Extension of FMix for Partial Block Input

In Sect. 3, we define our construction only for complete block inputs. In practice,
messages-lengths m may not be a multiple of block-length n. For a complete enci-
phering scheme, our message space needs to be extended to include these partial
block inputs. Two known methods for message-space extension of a cipher were
XLS [20] and Nandi’s scheme [14]. XLS is now known to be insecure [15], so we
use Nandi’s generic scheme for extending the message-space. The generic con-
struction requires two additional blockcipher keys. We write these blockciphers
as f2 and f3. The blockcipher f1 is used in FMix. Given any partial block x,
1 ≤ |x| ≤ n − 1, we write pad(x) = x1‖0n−1−|x|. Similarly, chopr(x) denotes the
first r bits of x.

input : A tweak T, an integer l ≥ 2, l − 1 complete plaintext blocks
P1, ..., Pl−1, partial last plaintext block pl

output: l − 1 complete ciphertext blocks C1, ..., Cl−1, partial last ciphertext
block cl

begin
P ′
l−1 ← f2(pad(pl)) ⊕ Pl−1

(C1, . . . , Cl−2, C
′
l−1) ← FMixf1(P1, . . . , Pl−2, P

′
l−1)

cl ← chop|p′
l
|(f3(P

′
l−1 ⊕ C′

l−1)) ⊕ pl

Cl−1 ← f2(pad(cl)) ⊕ C′
l−1

end

Theorem 4. For any SPRP-adversary A making q queries with L blocks
(including incomplete) in all,

AdvtsprpFMix (A) ≤
(
2L
2

)
+

(
q
2

)

2n
+

3q(q − 1)
2n+1

.

The proof of the statement is immediate from Theorem 1 and the generic
conversion as described in [14].

5 Proof of Proposition 1

In this section we provide the proof of Proposition 1.

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 171

Proposition. For any good view V,

IPf
FMix(V) ≥ (1 − ε) × 2−nL where ε =

(
2L
2

)

2n
.

We find a lower bound for the probability on the left by counting the choices of
f that give rise to V. For this counting, we find the number of internal states
(simulations) σ that can result in V, and for each σ, the number of choices of
f compatible with it. As it turns out, slightly undercounting the simulations
(counting only what we call admissible simulations) will suffice to prove our
security bound.

5.1 Simulations

We shall develop an effective way of calculating the interpolation probability
of V. We begin by introducing the notion of variables. Let E be the set of all
encryption query indices, i.e., E = {i|δi = e}. Similarly, let D be the set of all
decryption query indices. In identifying and labelling internal blocks, we continue
using superscripts to denote query indices. Thus, for a query i, the 2li inputs of
f (other than Ti) are denoted U i

1, ..., U
i
li , U

′i
1 , ..., U ′i

li , and the 2li +1 outputs of f
are denoted V i

0 , V i
1 , ..., V i

li , V
′i
1 , ..., V ′i

li . For ease of notation, we shall write both
U i
0 and U ′i

0 to denote Ti.

Variables and Derivables. We pick a set of output blocks

S = {V i
j |i ∈ E, j ∈ {1, ..., li}} ∪ {V ′i

j |i ∈ D, j ∈ {1, ..., li}}.

S will be our set of primary variables, or simply variables. Any non-trivial
linear combination of variables, optionally including blocks from V as well, will
be called a derivable. While the proof will be primarily depend on variables,
derivables will serve in the proof mainly to simplify notation and make the proof
easier to grasp. Examples of derivables would be U2

3 ,
∑

i V ′i
1 and V 2

2 + P 1
1 . Note

that a linear combination of view blocks alone, say C3
2+C2

3 , will not be considered
a derivable, since it’s value has already been fixed by choosing V.

Let us assume for now that the input block and its corresponding output
block are unrelated. We note that all input and output blocks of f are either
variables or derivables. Thus, if we assign values to the variables, all the inputs
and outputs of f over all queries are linearly determined. Thus, the variables
linearly generate the entire set of input and output blocks, while themselves
being linearly independent. We now formalise the notion of value assignment to
variables.

Definition 4. A transcript τ is a collection of variable-value pairs (Z, v) such
that no two pairs in the collection contain the same variable. For every (Z, v) ∈ τ ,
the variable Z is said to be assigned the value v under τ . We denote this as Z|τ = v.
The domain D(τ) of a transcript τ is defined as {Z|(∃v)(Z, v) ∈ τ}. Given a set
S of variables, a transcript τ with D(τ) = S is said to be an instantiation of S.

172 R. Bhaumik and M. Nandi

For a transcript τ and a derivable Z ′ whose value only depends on the variables
in D(τ), τ effectively determines a value for Z ′. This value is denoted by Z ′||τ .
For ease of notation, for any view block X, X||τ will simply denote the value
of X fixed in V. An instantiation σ of S will be called a simulation, since it
determines all inputs and outputs of f and thus describes a complete simulation
of the internal computations that resulted in view S.

Not all simulations make sense, however, when we consider the connection
between and input block and its corresponding output block. A dependence now
creeps in among the variables, owing to the key observation below, which poses
the only non-trivial questions in the entire proof.

Wherever the inputs of f are identical, so are its outputs.

There can be simulations which violate this rule, and thus describe internal com-
putations that can never occur. A simulation which actually describes a possible
set of internal computations is called realisable. It is immediately clear that our
observation holds for all realisable simulations. The problem of calculating the
interpolation probability of V boils down to counting the number of realisable
simulations.

5.2 Admissibility

All realisable simulations can be difficult to count, however. We shall focus
instead on a smaller class of simulations, called admissible simulations, which
are easy to count and yet are abundant enough to give us the desired result.
Before that, we let us formulate in specific terms the ramifications of this obser-
vation. The immediate consequence is what we call pre-destined collisions. Let
I = ∪i{U i

0, U
i
1, ..., U

i
li , U

′i
1 , ..., U ′i

li
} be the set of all input blocks of f .

Definition 5. A pair of input blocks Z1, Z2 ∈ I is said to constitute a pre-
destined collision if for any realisable simulation σ,

Z1||σ = Z2||σ.

All other collisions between input blocks are called accidental collisions. Our
next task is to identify all pre-destined collisions. For that we’ll need some more
definitions.

Definition 6. Query indices i and i′ are called k-encryption equivalent for
some k < min(li, li

′
) if either i = i′, or

(P i
0, ..., P

i
k) = (P i′

0 , ..., P i′
k).

This is denoted as i ∼ek
i′. Similarly, i and i′ are called k-decryption equiv-

alent for some k < min(li, li
′
) if either i = i′, or

(Ci
0, ..., C

i
k) = (Ci′

0 , ..., Ci′
k).

This is denoted as i ∼dk
i′.

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 173

Note that if i ∼ek
i′, then (∀k′ < k)(i ∼ek′ i′), and similarly for decryption

equivalence. Our choice of V as a good view ensures that i ∈ E whenever i ∼e1 i′

for some i′ < i, and i ∈ D whenever i ∼d1 i′ for some i′ < i. We can now make
a list of pre-destined collisions:

– (U i
k, U i′

k), 0 ≤ k < min(li, li
′
), i ∼ek

i′

– (U ′i
k , U ′i′

k), 0 ≤ k < min(li, li
′
), i ∼dk

i′

Substituting V i
k−1 + P i

k for U i
k and V ′i

k−1 + Ci
k for U ′i

k , we can re-write the pre-
destined collisions as

– (V i
k−1 + P i

k, V i′
k−1 + P i′

k), 0 ≤ k < min(li, li
′
), i ∼ek

i′

– (V ′i
k−1 + Ci

k, V ′i′
k−1 + Ci′

k), 0 ≤ k < min(li, li
′
), i ∼dk

i′

List of Pre-destined Collision. By our Observation, a pre-destined collision
on inputs naturally entails a collision on the corresponding outputs. This leads
to a corresponding set of pre-destined output collisions, which we write in
the form of equations over derivables and view blocks:

(a) (i ∼ek
i′) → (V i

k = V i′
k), 0 ≤ k < min(li, li

′
),

(b) (i ∼dk
i′) → (V ′i

k = V ′i′
k), 0 ≤ k < min(li, li

′
).

The pre-destined output collisions linearly follow from the pre-destined collisions,
but are formulated separately here, because they’ll later be useful as a class of
constraints on realisable simulations. Finally, we define the class of admissible
simulations.

Definition 7 (Admissible). A simulation σ is called admissible if, for any
Z1, Z2 ∈ I that do not constitute a pre-destined collision, Z1||σ �= Z2||σ.

Thus, in an admissible simulation, no two input blocks of f can accidentally
collide, and the only collisions are the pre-destined ones.

5.3 Basis and Extension

We now identify a subclass B of the variables which are linearly independent
under assumption of admissibility, and such that an instantiation τB of B admits
a unique extension E(τB) to a realisable simulation. We shall call B a basis of
X. First, we’ll need one more definition.

Definition 8. A query index i, 1 ≤ i ≤ q, is called k-fresh, k ≥ 0 if k = li, or
k < li and �i′ ≤ i with k < li

′
such that i ∼ek

i′ or i ∼dk
i′.

The set Ek of k-fresh encryption queries is defined as {i|δi = e, i k-fresh}. Simi-
larly, the set Dk of k-fresh decryption queries is defined as {i|δi = d, i k-fresh}.
Clearly, E = ∪kEk, and D = ∪kDk, since any i is li-fresh.

174 R. Bhaumik and M. Nandi

We are now in a position to choose our basis B. Let l = maxi li. We define
the following:

Bj = {V i
j |i ∈ Ej}, 0 ≤ j ≤ l,

B′
j = {V ′i

j |i ∈ Dj}, 0 ≤ j ≤ l.

Finally, we define our basis as

B =
l⋃

j=0

(Bj ∪ B′
j).

We next show how to obtain σ = E(τB) given instantiation τB of B. To
simplify the description, we shall use a couple of new definitions.

Definition 9. The encryption k-ancestor of a query index i is defined as

Ae
k(i) = min

i∼ek
i′

i′.

Similarly, the decryption k-ancestor of a query index i is defined as

Ad
k(i) = min

i∼dk
i′

i′.

Clearly, if i is k-fresh, then i is its own k-ancestor.

Definition 10. For a query index i and a transcript τ , the query slice at i of
τ is defined as

Qi(τ) = {(Zi, v)|(Zi, v) ∈ τ}.

Thus, a query slice is the portion of a transcript that refers to a specific query.
The query slices of a transcript form a partition of it.

We are now ready to describe how to uniquely obtain σ. To begin with, for
all Z ∈ B, we set

Z|σ = Z|τB .

This gives us, among other things, the complete Q1(σ). (To see why, assume
without loss of generality that δ1 = e. Then 1 ∈ Ej for every j, so V 1

j ∈ B for 0 ≤
j ≤ l1.) We proceed inductively to determine Qi(σ) based on Q1(σ), ..., Qi−1(σ).

Suppose we have determined Qi′(σ) for all i′ < i. For 0 ≤ j ≤ li, let ij denote
Aδi

j (i). Clearly, {ij}j form a non-decreasing sequence, and ili = i. Let

k = min
ij=i

j.

Suppose without loss of generality that δi = d. Thus, for all j ≥ k, i ∈ Dj . So
V ′i

j ∈ B for every k ≤ j ≤ li. For 0 ≤ j < k, since i ∼dj
ij , and ij is decryption

j-fresh, we use 4.3 (b) to set

V ′i
j |σ = V

′ij
j ||σ.

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 175

Finally, we set
V i
0 |σ = V ′i

0 ||σ.

This completes our extension of τB .
To show that σ indeed is a simulation, we just observe that if ∪i−1

1 Qi(σ)
is realisable, and δi = d, then Qi(σ) cannot violate 4.3 (a) (which concerns
encryption queries only), and Qi(σ) is chosen so as to conform to 4.3 (b).

5.4 Extension Equations

We observe that in extending τB to E(τB), once we’ve set the basis variables
in accordance with τB , none of the steps we perform thereafter depend on the
specific instantiation τB . Thus, for each variable we can identify an equation
relating it to the basis variables, so that a simulation can be obtained by sim-
ply plugging in an appropriate instantiation of B. We call these equations the
extension equations.

Pick i ∈ E, j ∈ {0, ..., li}. Then V i
j is a variable. Let b1 be j, and a1 be Ae

j(i).
Having obtained b1, ..., bk and a1, ..., ak, we stop if k is odd and ak ∈ E, or if k
is even and ak ∈ D. Otherwise, let bk+1 = lak − 1 − bk, and ak+1 be Aδak

bk+1
(ak).

Since ak+1 > ak, this terminates after finitely many steps, say upon obtaining
ak0 . Then we call ((b1, a1), ..., (bk0 , ak0)) the extension chain of V i

j , denoted
C(V i

j).
To obtain the extension equation of V i

j from C(V i
j), note that V i

j = V a1
j , and

for any even k ≤ k0, V ′ak
j = V

′ak−1
j , and (if k < k0) V

ak+1
j = V ak

j . To bridge
these equations, we just need to recall the equations relating V i′

j to V ′i′

li′ −1−j
for

arbitrary i′ with li
′ ≥ j.

From our algorithm, V ′i′
0 = V i′

0 , V ′i′

li′ = b(V i′

li′ −1
+ V i′

0 + P i′

li′) + Ci′
1 and

V ′i′

li′ −1
= b(V i′

li′ + V i′
0 + P i′

1) + Ci′

li′ .

For 1 ≤ j ≤ li
′ − 2, recall the masking equation

V ′i′
j = V i′

li−j−1 + V i′

li′ + V ′i′

li′ + P i′

li′ −j
+ Ci′

j+1.

On replacing V ′i′

li′ by b(V i′

li′ −1
+ V i′

0 + P i′

li′) + Ci′
1 , this becomes

V ′i′
j = V i′

li−j−1 + V i′

li′ + b(V i′

li′ −1
+ V i′

0 + P i′

li′) + Ci′
1 + P i′

li′ −j
+ Ci′

j+1.

The extension equations can be computed inductively using the above. Similarly,
for derivables, we can get the extension equations by writing it in terms of
variables, and expanding these variables through their corresponding extension
equations. We’ll mostly be interested in the set of basis variables appearing in
the extension equation of an input derivable Z, called the base B(Z) of Z.

We’ll show that whenever for two input derivables Z and Z ′, B(Z) = B(Z ′),
(Z,Z ′) is either a pre-destined collision, or Z and Z ′ cannot collide. This’ll show
that every accidental input collision corresponds to a linear equation on the basis
variables and view blocks. Note that this linear equation actually corresponds to

176 R. Bhaumik and M. Nandi

n linear equations in terms of the bits, all of which should be dodged. For most
of the analysis, this distinction will not matter, and it’ll only become important
when we deal with two special cases in the very end.

Lemma 1. Every accidental input collision imposes a non-trivial linear equa-
tion on the basis variables.

The proof of the lemma is postponed to the end of this section. It basically
considers all cases for accidental collision and shows that it gives a non-trivial
linear equation.

5.5 Bringing It All Together

We are now ready to wrap up our proof of the proposition 1. Let L denote
∑

i li.

Let ε = (2L2)
2n . The total number of output bits V in is nL, so clearly

IP∗(V) =
1

2nL
.

Now, let F ⊂ ({0, 1}n){0,1}n

be such that (f ∈ F) ←→ (choosing f results in V).
We see that

IPf
FMix(V) =

choices of f which result in V
choices of f in all

=
|F|

(2n)2n
.

Let A be the set of all admissible simulations. For an admissible simulation σ,
let Fσ denote the subset of F such that (f ∈ Fσ) ←→ (choosing f results in V
and σ). With this notation, we can write

|F| ≥
∑

σ∈A

|Fσ|.

To calculate |Fσ|, we note that σ fixes the values f for L + |B| distinct inputs.
Thus,

|Fσ| = (2n)2
n−L−|B|.

Since this does not depend on σ, we can write
∑

σ∈A

|Fσ| = |A| · (2n)2
n−L−|B|.

Now, each admissible simulation is E(τB) for some instantiation τB of B. To
ensure E(τB) ∈ A, we just have to choose τB such that it dodges all the linear
equations corresponding to accidental input collisions. As there can be at most(
2L
2

)
such equations, we conclude that

|A| ≥ 2n|B| −
(

2L

2

)

· 2n(|B|−1) = 2n|B|(1 − ε).

Putting all of this together, we get

|F| ≥ (2n)2
n−L · (1 − ε) = (1 − ε) · IP∗(V) · (2n)2

n

,

from which the Proposition follows.

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 177

5.6 Proof of Lemma 1

Proof. We’ll divide the possible input pairs into several cases, which we’ll further
subdivide into groups, and we write out the proof only for the first case in each
group, and the rest follow from it. The classifying factors are as follows:

– Whether they both occur in the same layer (encryption layer {U i
j} or

decryption layer {U i
j}), or in different layers;

– Whether they occur in the right layer (encryption layer of an encryption
query, or decryption layer of decryption query) or the wrong layer;

– Whether their first-cross indices match (this would be the current query
index if in the wrong layer, and the index after the first backward jump during
extension if in the right layer).

We begin with an easy group of cases, where both occur in the right layer, and
their first-cross indices do not match:

Case 1a. (U i
j , U

i′
j′), i, i′ ∈ E, a = Ae

j−1(i) < Ae
j′−1(i

′) = a′

B(U i
j) = B(V i

j−1) can only contain basis variables with query indices ≤ a. Since
B(U i′

j′) = B(V i′
j′−1) will contain either V ′a′

la′ or V a′
j′ , B(U i

j) �= B(U i′
j′).

Case 1b. (U ′i
j , U ′i′

j′), i, i′ ∈ D, a = Ad
j−1(i) < Ad

j′−1(i
′) = a′

Case 1c. (U i
j , U

′i′
j′), i ∈ E, i′ ∈ D, a = Ae

j−1(i) < Ad
j′−1(i

′) = a′

Case 1d. (U ′i
j , U i′

j′), i ∈ D, i′ ∈ E, a = Ad
j−1(i) < Ae

j′−1(i
′) = a′

We next turn to another easy group, where exactly one of them is in the right
layer, and first-cross indices do not match:
Case 2a. (U i

j , U
′i′
j′), i, i′ ∈ E, a = Ae

j−1(i) �= i′

If a < i′, V i′

li′ is in B(U ′i′
j′) but not in B(U i

j). If a > i′, either V a
j−1 is in B(U i

j)
but not in B(U ′i′

j′), or V ′a
la is in B(U i

j) but not in B(U ′i′
j′).

Case 2b. (U i
j , U

′i′
j′), i, i′ ∈ D, i �= Ad

j′−1(i
′) = a′

Case 2c. (U i
j , U

i′
j′), i ∈ E, i′ ∈ D, a = Ae

j−1(i) �= i′

Case 2d. (U ′i
j , U ′i′

j′), i ∈ E, i′ ∈ D, i �= Ad
j′−1(i

′) = a′

The next group is even easier: both in the wrong layer, with non-matching first-
cross indices. This takes care of all cases with non-matching first-cross indices.

Case 3a. (U i
j , U

i′
j′), i, i′ ∈ D, i < i′

V ′i′

li′ is in B(U i′
j′) but not in B(U i

j).

Case 3b. (U ′i
j , U ′i′

j′), i, i′ ∈ E, i < i′

Case 3c. (U i
j , U

′i′
j′), i ∈ D, i′ ∈ E, i < i′

Case 3d. (U ′i
j , U i′

j′), i ∈ E, i′ ∈ D, i < i′

178 R. Bhaumik and M. Nandi

Next we turn to a slightly trickier group, where they are in the same layer, both
in the right layer, and first-cross indices match.
Case 4. (U i

j , U
i′
j′), i, i′ ∈ E,Ae

j−1(i) = Ae
j′−1(i

′)

Consider C(V i
j−1) = ((b1, a1), ..., (bk0 , ak0)), C(V i′

j′−1) = ((b′
1, a

′
1), ..., (b

′
k′
0
, a′

k′
0
)). If

the chains follow the same query paths (i.e., if k0 = k′
0 and (∀k ≤ k0)(ak = a′

k)),
assuming without loss of generality k0 is odd and k0 ∈ E (from the chain-
termination condition), we have V

ak0
bk0

∈ B(U i
j), and V

ak0
b′
k0

∈ B(U i′
j′), all other

basis variables in the two extension equations being the same. Thus, if bk0 �=
b′
k0

,B(U i
j) �= B(U i′

j′), and if bk0 = b′
k0

, (U i
j , U

i′
j′) is either a pre-destined collision

(if P i
j = P i′

j′) or it cannot be a collision. If the chains do not follow the same
query path, we can find k such that ak �= a′

k, which reduces to one of the previous
cases.
Case 4a. (U ′i

j , U ′i′
j′), i, i′ ∈ D,Ad

j−1(i) = Ad
j′−1(i

′)
The next group is much simpler, where they are in different layers, both in the
right layer, and first-cross indices match.
Case 5. (U i

j , U
′i′
j′), i ∈ E, i′ ∈ D, a = Ae

j−1(i) = Ad
j′−1(i

′)

Without loss of generality, a ∈ E. So V a
la is in B(U i′

j′) but not in B(U i
j).

Case 5a. (U ′i
j , U i′

j′), i ∈ D, i′ ∈ E,Ad
j−1(i) = Ae

j′−1(i
′)

We’re almost done with the proof at this point. We wrap up with the few remain-
ing cases. In the next group, they come from different layers, exactly one of them
in the right layer, and first-cross indices match.
Case 6. (U i

j , U
′i′
j′), i, i′ ∈ E,Ae

j−1(i) = i′

Here, V i′

li′ is in B(U i′
j′) but not in B(U i

j).

Case 6a. (U i
j , U

′i′
j′), i, i′ ∈ D, i = Ad

j′−1(i
′)

The four cases of the final group can be proved using the extension-chain-
comparison technique of Case 4. In this group, they are in the same layer, at
least one in the wrong layer, and first-cross indices match. (If they are both in
the wrong layer, and first-cross indices match, they occur at the same query, so
they cannot be in different layers, so this wraps up the case analysis).
Case 7. (U i

j , U
i′
j′), i ∈ E, i′ ∈ D,Ae

j−1(i) = i′

Case 7a. (U ′i
j , U ′i′

j′), i ∈ E, i′ ∈ D, i = Ad
j′−1(i

′)

Case 7b. (U i
j , U

i
j′), i ∈ D

Case 7c. (U ′i
j , U ′i

j′), i ∈ E

This leaves only a few boundary cases (involving the likes of U i
li), which can be

easily verified. We just point out two special cases which underline the impor-
tance of choosing b as a balanced permutation. For the pair (U i

1, U
′i
1) for some

i, if P i
1 = Ci

1, the condition for an accidental collision becomes V i
0 + b(V i

0) = 0,
which is still n independent linear equations in terms of the bits, by choice of b.
Similarly, if i ∼eli−1

i′, and b(P i
li) = P i′

li , the pair (U i
li , U

i′
li) yields the equation

An Inverse-Free Single-Keyed Tweakable Enciphering Scheme 179

b(V i
li−1) + V i′

li−1 = 0, which again is n independent linear equations in terms of
the bits.
Thus we establish our lemma. ��

6 Conclusion and Future Works

In this paper we propose a new Feistel type length preserving tweakable encryp-
tion scheme. Our construction, called FMix, has several advantages over CMC
and other blockcipher based enciphering scheme. It makes an optimal number of
blockcipher calls using single keyed PRP blockcipher. The only drawback com-
pare to EME is that the first layer of encryption, like CMC, is sequential. We
can view our construction as a composition of type-1 and type-3 Feistel ciphers.

There are several possible scopes of future work. When we apply a generic
method to encrypt last partial block message, we need an independent key. (This
is always true for generic construction.) However, one can have a very specific way
to handle partial block message keeping only one blockcipher key. The presence
of the function b helps us to simplify the security proof. However, we do not
know of any attack if we do not use this function (except for handling the tweak
in the bottom layer - that use is necessary). So it would be interesting to see
whether our proof can be extended for the variant without using the function b.

References

1. Berger, T.P., Minier, M., Thomas, G.: Extended generalized feistel networks using
matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013.
LNCS, vol. 8282, pp. 289–305. Springer, Heidelberg (2014)

2. Chakraborty, D., Sarkar, P.: HCH: a new tweakable enciphering scheme using the
hash-encrypt-hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)

3. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol.
4047, pp. 293–309. Springer, Heidelberg (2006)

4. Feistel, H.: Block cipher cryptographic system, US Patent 3,798,359, 19 March
1974

5. Halevi, S.: EME*: Extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

6. Halevi, S.: Invertible universal hashing and the TET encryption mode. In: Menezes,
A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 412–429. Springer, Heidelberg (2007)

7. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

8. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

9. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015)

180 R. Bhaumik and M. Nandi

10. Hoang, V.T., Rogaway, P.: On generalized feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010)

11. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

12. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

13. McGrew, D.A., Fluhrer, S.R.: The security of the extended codebook (XCB) mode
of operation. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol.
4876, pp. 311–327. Springer, Heidelberg (2007)

14. Nandi, M.: A generic method to extend message space of a strong pseudorandom
permutation. Computación y Sistemas 12(3), 285–296 (2009)

15. Nandi, M.: XLS is not a strong pseudorandom permutation. In: Sarkar, P., Iwata,
T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 478–490. Springer, Heidelberg
(2014)

16. Naor, M., Reingold, O.: On the construction of pseudorandom permutations:
lubyrackoff revisited. J. Cryptology 12(1), 29–66 (1999)

17. Nyberg, K.: Generalized feistel networks. In: Kim, K., Matsumoto, T. (eds.)
Advances in Cryptology ASIACRYPT 1996. LNCS, vol. 1163, pp. 91–104. Springer,
Berlin Heidelberg (1996)

18. Patarin, J.: Etude des Générateurs de Permutations Basés sur le Schéma du D.E.S.
Ph.D Thèsis de Doctorat de l’Université de Paris 6 1991

19. Patarin, J.: The “Coefficients H” technique. In: Avanzi, R.M., Keliher, L., Sica, F.
(eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009)

20. Ristenpart, T., Rogaway, P.: How to enrich the message space of a cipher. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 101–118. Springer, Heidelberg
(2007)

21. Sarkar, P.: Improving upon the TET mode of operation. In: Nam, K.-H., Rhee, G.
(eds.) ICISC 2007. LNCS, vol. 4817, pp. 180–192. Springer, Heidelberg (2007)

22. Sorkin, A.: Lucifer, a cryptographic algorithm. Cryptologia 8(1), 22–42 (1984)
23. Data Encryption Standard: Fips pub 46. Federal Information Processing Standards

Publication, Appendix A (1977)
24. Vaudenay, S.: Decorrelation: a theory for block cipher security. In: Journal of

Cryptology, Lecture Notes in Computer Science, vol. 16(4), pp. 249–286. Springer-
Verlag, New York (2003)

25. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

	An Inverse-Free Single-Keyed Tweakable Enciphering Scheme
	1 Introduction
	1.1 Our Contribution

	2 Preliminaries
	2.1 Tweakable Encryption Schemes
	2.2 Pseudorandomness and Distinguishing Games
	2.3 Domain Extensions and Coefficient H Technique

	3 The FMix Construction
	4 TSPRP Security Analysis of FMix
	4.1 Good Views and Interpolation
	4.2 Extension of FMix for Partial Block Input

	5 Proof of Proposition 1
	5.1 Simulations
	5.2 Admissibility
	5.3 Basis and Extension
	5.4 Extension Equations
	5.5 Bringing It All Together
	5.6 Proof of Lemma 1

	6 Conclusion and Future Works
	References

