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Abstract. The implication problem for the class of embedded depen-
dencies is undecidable. However, this does not imply lackness of a proof
procedure as exemplified by the chase algorithm. In this paper we present
a complete axiomatization of embedded dependencies that is based on
the chase and uses inclusion dependencies and implicit existential quan-
tification in the intermediate steps of deductions.
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1 Introduction

Embedded dependencies generalize the concept database dependencies within
the framework of first-order logic. Their implication is undecidable but however
recursively enumerable, thus enabling complete axiomatizations. A standard ex-
ample of such a proof procedure is the chase that was invented in the late 1970s
[1,2], and then soon extended to equality and tuple generating dependencies [3].
In this paper we present an axiomatization for the class of embedded dependen-
cies that simulates the chase at the logical level using inclusion dependencies. In
particular, completeness of the rules is obtained by constructing deductions in
which all the intermediate steps are inclusion dependencies, except for the first
and the last step. These inclusion dependencies consist of attributes of which
some are new, i.e., such that they are not allowed to appear at any earlier stage
of the deduction.

As a background example, consider the combined class of functional and in-
clusion dependencies. It is well known that the corresponding implication prob-
lem is undecidable, lacking hence finite axiomatization [4,5]. In these situations,
one strategy has been to search for axiomatizations within a more general class of
dependencies, and partly for this reason many different dependency notions were
introduced in the 1980s. For instance, a textbook on dependency theory from
1991 considers more than 80 different dependency classes [6]. In [7] Mitchell pro-
posed another strategy by presenting an axiomatization of functional and inclu-
sion dependencies using a notion of new attributes which are to be thought of as
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implicitly existentially quantified. In this paper we take an analogous approach,
and present an axiomatization for embedded dependencies where new attributes
correspond to new values obtained from an associated chasing sequence. These
attributes are implicitly existentially quantified in the sense of team semantics,
that is, a semantic framework that has teams, i.e., sets of assignments, as its un-
derlying concept [8]. Team semantics is compositionally applicable to logics that
extend first-order logic with various database dependencies [9,10]. In this set-
ting, inclusion logic, i.e., first-order logic with additional inclusion dependencies,
captures positive greatest fixed-point logic and hence all PTIME recognizable
classes of finite, ordered models [11,12,13]. Therefore, inclusion dependencies
with new attributes can be thought of as existentially quantified inclusion logic
formulae which in turn translate into greatest fixed-point logic. Moreover, all
existentially quantified dependencies that appear in deductions translate into
existential second-order logic. This may in part enable succinct intermediate
steps in contrast to axiomatic systems that simulate the chase by composing
first-order definable dependencies.

The methods described in this paper generalize the axiomatization of condi-
tional independence and inclusion dependencies presented in [14]. It is also worth
noting that extending relations with new attributes reminds of algebraic depen-
dencies, that are, typed embedded dependencies defined in algebraic terms. The
complete axiomatization of algebraic dependencies presented in [15] involves also
an extension schema that introduces new copies of attributes.

2 Preliminaries

For two sets A and B, we write AB to denote their union, and for two sequences
ab, we write ab to denote their concatenation. For a sequence a = (a1, . . . , an)
and a mapping f , we write f(a) for (f(a1), . . . , f(an)). We denote by id the
identity function and by pri the function that maps a sequence to its ith pro-
jection. For a function f and A ⊆ Dom(f), we write f |A for the restriction of f
to A, and for a set of mappings F , we write F |A for {f |A : f ∈ F}.

We start by fixing two countably infinite sets Val and Att, the first denoting
possible values of relations and the second attributes. For notational convenience,
we will assume that Val = Att. For R ⊆ Att, a tuple over R is a mapping R → Val,
and a relation over R is a set of tuples over R. We may sometimes write r[R]
to denote that r is a relation over R. Values of a relation r over R are denoted
by Val(r), i.e., Val(r) := {t(A) : t ∈ r, A ∈ R}. Let f be a valuation, i.e., a
mapping Val → Val. Then for a tuple t, we write f(t) := f ◦ t, and for a relation
r, f(r) := {f(t) : t ∈ r}. A valuation f embeds a relation r (a tuple t) to r′ if
f(r) ⊆ r′ (f(t) ∈ r). Since we are usually interested only valuations of a relation,
we say that f : Val(r) → Val is a valuation on r. For a valuation f on r, we say
that g is an extension of f to another relation r′ if g is a valuation on r′ such
that it agrees with f on values of Val(r) ∩ Val(r′).

Embedded dependencies (ed’s) can be written using first-order logic in the
following way.
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Definition 1 (Embedded dependency). Embedded dependency is a first-
order sentence of the form

∀x1, . . . , xn
(

φ(x1, . . . , xn) → ∃z1 . . . ∃zkψ(y1, . . . , ym)
)

where {z1, . . . , zk} = {y1, . . . , ym} \ {x1, . . . , xn} and

– φ is a (possibly empty) conjunction of relational atoms using all of the vari-
ables x1, . . . , xn;

– ψ is a conjunction of relational and equality atoms using all of the variables
z1, . . . , zk;

– there are no equality atoms in ψ involving existentially quantified variables.

If at most one relation symbol occurs in an ed, then we say that the ed is
unirelational, and otherwise it is multirelational. An ed is called typed if there
is an assignment of variables to column positions such that variables in relation
atoms occur only in their assigned position, and each equality atom involves
a pair of variables assigned to the same position. Otherwise we say that an
ed is untyped. If ψ contains only one atom, then we say that the ed is single-
head, and otherwise it is multi-head. A single-head ed where ψ is an equality is
called an equality generating dependency (egd). If ψ is a conjunction of relational
atoms, then the ed is called a tuple generating dependency (tgd). For notational
simplicity, we restrict attention to unirelational ed’s. It is easy to se that any ed
is equivalent to a set of tgd’s and egd’s, and hence we restrict attention to ed’s
that belong to either of these subclasses.

The following alternative tableau presentation for egd’s and tgd’s are used
in this paper.

Definition 2. Let T and T ′ be finite relations over R, and x, y ∈ Val(T ). Then
(T, x = y) and (T, T ′) are an egd and a tgd over R, respectively, with the below
satisfaction relation for a relation r over S ⊇ R:

– r |= (T, x = y) ⇔ for all valuations f such that f(T ) ⊆ r|R, it holds that
f(x) = f(y).

– r |= (T, T ′) ⇔ for all valuations f on T such that f(T ) ⊆ r|R, there is an
extension g of f to T ′ such that g(T ′) ⊆ r|R.

Sometimes we write σ[R] to denote that σ is a dependency over R. If T or T ′

is a singleton, then we may omit the set braces in the notation, e.g., write (T, t)
instead of (T, {t}).

We also extend valuations to dependencies. For an egd σ = (T, x = y) we
write Val(σ) = Val(T ), and for a tgd τ = (T, T ′) we write Val(σ) = Val(T ) ∪
Val(T ′). Moreover, if f is a valuation, then f(σ) = (f(T ), f(x) = f(y)) and
f(τ) = (f(T ), f(T ′)).

Example 1. Consider the relation r and the tgd’s σ1 := ({t, t′}, {u}) and σ2 :=
({t, t′}, {v, v′}) obtained from Fig. 1.1 We notice that there are two valuations

1 In a tableau presentation of a dependency σ, the distinct values of σ are sometimes
denoted by blank cells.

3



on {t, t′} that embed {t, t′} to r, namely f := {(x, 0), (y, 1), (z, 2)} and g :=
{(x, 3), (y, 0), (z, 1)}. Then r |= σ1 since f and g embed u into r, witnessed
by tuples s2 and s3, respectively. We also notice that r 6|= σ2 since, although
f ∪ {(a, 3)} embeds {v, v′} into r, no extension of g does the same.

r =

A B C

s0 0 1 2

s1 3 0 1

s2 2 3 0

s3 1 4 3

σ1 =

A B C

t x y z

t′ x y

u z x

σ2 =

A B C

t x y z

t′ x y

v z a x

v′ a

Fig. 1.

Next we define inclusion dependencies which are examples of possibly un-
typed tgd’s.

Definition 3 (Inclusion dependency). Let A1, . . . , An and B1, . . . , Bn be
(not necessarily distinct) tuples of attributes. Then A1 . . . An ⊆ B1 . . . Bn is an
inclusion dependency (ind) over R = {Ai, Bi : i = 1, . . . , n} with the following
semantic rule for a relation r over S ⊇ R:

r |= A1 . . . An ⊆ B1 . . . Bn ⇔ ∀s ∈ r∃s′ ∈ r∀i = 1, . . . , n : s(Ai) = s′(Bi).

The axiomatization presented in the next section involves inclusion dependencies
that introduce new attributes. These attributes are here interpreted as existen-
tially quantified in lax team semantics sense [9]:

r |= ∃Aφ⇔ r[f/A] |= φ for some f : r → P(Val) \ {∅}, (1)

where r[f/A] := {t(x/A) : x ∈ f(A)} and t(x/A) is the mapping that agrees with
t everywhere except that it maps A to x. Interestingly, inclusion logic formulae
with this concept of existential quantification can be characterized with positive
greatest fixed-point logic formulae (see Theorem 15 in [11]).

3 Axiomatization

In this section we present an axiomatization for the class of all embedded de-
pendencies. The axiomatization contains an identity rule and three rules for the
chase. We also involve conjunction in the language and therefore incorporate its
usual introduction and elimination rules in the definition. Regarding the equal-
ities that appear in the rules, note that both AB ⊆ AA and AB ⊆ BB indicate
that the values of A and B coincide in each row. Therefore, we use A = B to
denote ind’s of either form. For a tgd (an egd) σ, we say that x ∈ Val(σ) is
distinct if it appears at most once as a value in σ. Namely,

4



– for a tgd σ = (T, T ′)[R], x is distinct if for all t, t′ ∈ T ∪ T ′ and A,B ∈ R, if
t(A) = x = t′(B), then t = t′ and B = B′;

– for an egd σ = (T, y = z)[R], x is distinct if x 6∈ {y, z} and for all t, t′ ∈ T
and A,B ∈ R, if t(A) = x = t′(B), then t = t′ and B = B′.

Lastly, note that in the following rules we assume that values can appear as
attributes and vice versa.

Definition 4. In addition to the below rules we adopt the usual introduction
and elimination rules for conjunction. In the last three rules, we assume that A
is a sequence listing the attributes of R.

EE Equality Exchange:
if A = B ∧ σ, then τ.

where σ is an ind and τ is obtained from σ by replacing any number of
occurrences of A by B and any number of occurrences of B by A.

CS Chase Start:
(T ∗, id)[RS] ∧

∧

t∈T

t(A) ⊆ A

where T = T ∗|R, S = Val(T ) consists of new attributes, and R consists of
distinct values.

CR Chase Rule:

tgd: if (T, T ′)[R] ∧
∧

t∈T

f ◦ t(A) ⊆ A, then
∧

t′∈T ′

f ◦ t′(A) ⊆ A,

egd: if (T, x = y)[R] ∧
∧

t∈T

f ◦ t(A) ⊆ A, then f(x) = f(y),

where tgd: f is a valuation that it is 1-1 on Val(T ′) \ Val(T ), and f(x) is a
new attribute for x ∈ Val(T ′) \ Val(T ).

CT Chase Termination:

tgd: if (T ∗, id)[RS] ∧
∧

t′∈T ′

u ◦ t′(A) ⊆ A, then (T, T ′)[R],

egd: if (T ∗, id)[RS] ∧ x = y, then (T, x = y)[R],

where T = T ∗|R, S = Val(T ), and Val(T ∗|S) consists of distinct values.
Moreover, tgd: u is a mapping Val(T ′) → Att that is the identity on Val(T )∩
Val(T ′), and egd: x, y ∈ Val(T ).

For a dependency σ over R, we let Att(σ) := R, and for a set of dependencies
Σ, we let Att(Σ) :=

⋃

σ∈Σ Att(σ) .

Definition 5. A deduction from Σ is a sequence (σ1, . . . , σn) such that:

1. Each σi is either an element of Σ, an instance of [CS], or follows from one
or more formulae of {σ1, . . . , σi−1} by one of the rules presented above.
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2. For each A ∈ Att(σi), if A is new in σi, then A 6∈ Att(Σ ∪ {σ1, . . . , σi−1}),
and otherwise A ∈ Att(Σ ∪ {σ1, . . . , σi−1}).

We say that σ is provable from Σ, written Σ ⊢ σ, if there is a deduction
(σ1, . . . , σn) from Σ with σ = σn and such that no attributes in σ are new
in σ1, . . . , σn.

We will also use the following rules that are derivable from [EE]:

ES Equality Symmetry:
if A = B, then B = A.

ET Equality Transitivity:

if A = B ∧B = C, then A = C.

One may find the chase rules slightly convoluted at first sight. However, the ideas
behind the rules are relatively simple as illustrated in the following examples.

Example 2 (Chase Start). Let σ0 := ({t0, t1}, {u0})[RS] be as in Figure 2,
for R := {A,B,C} and S := {x, y, z}. Then

σ0 =

A B C x y z

t0 x y z

t1 x y

u0 x y z

σ1 =

A B C

t0 x y z

t1 x y

u1 z x

σ2 =

A B C

t0 x y z

t1 x y

u2 z v

u3 v z

Fig. 2.

τ := σ0 ∧ xyz ⊆ ABC ∧ xy ⊆ BC

is an instance of [CS]. Here x, y, z are interpreted either as values or as new
attributes. By the latter we intuitively mean that any relation r[ABC] can be
extended to some r′[ABCxyz] such that r′ |= τ . For instance, one can define
r′ := q(r) where q is the following SPJR query

ABC ⊲⊳ (πxyz(σxy=BC(ρxyz/ABC(ABC) ⊲⊳ ABC)))

where σ refers to (S)election, π to (P)rojection, ⊲⊳ to (J)oin, and ρ to (R)ename
operator. Then q(r) is a relation over RS such that its restriction to xyz lists
all abc for which there exist s, s′ ∈ r such that s(ABC) = abc and s′(BC) = ab.
Let σ1 = ({t0, t1}, {u1})[R] be as in Figure 2. Now,

r |= σ1 ⇔ q(r) |= zx ⊆ AC.

Hence proving Σ |= σ1 reduces to showing that Σ ∪ {τ} |= zx ⊆ AC.
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Example 3 (Chase Rule). Assume

σ2 ∧ xyz ⊆ ABC ∧ xy ⊆ BC (2)

where σ2 = ({t0, t1}, {u2, u3})[R] is as in Fig. 2, for R := {A,B,C}. Then,
interpreting f as id, one can derive with one application of [CR]

zv ⊆ AC ∧ vz ⊆ AC (3)

from (2). Note that in (3) v is interpreted as a new attribute, and the idea is that
any relation r[R] satisfying (2) and with v 6∈ R can be extended to a relation
r′[R ∪ {v}] satisfying (3) by introducing suitable values for v.

Example 4 (Chase Termination). Assume

σ0 ∧ zx ⊆ AC (4)

where σ0 = ({t0, t1}, {u0})[RS] is as in Fig. 2, for R := {A,B,C} and S :=
{x, y, z}. Then, letting u = id, one can derive σ1 as in Fig. 2 from (4) with one
application of [CT].

4 Soundness Theorem

In this section we show that the axiomatization presented in the previous section
is sound. First note that the next lemma follows from the definitions of egd’s,
tgd’s and ind’s.

Lemma 1. Let σ be a dependency over R, and let r and r′ be relations over
supersets of R and with r|R = r′|R. Then r |= σ ⇔ r′ |= σ.

Then we prove the following lemma which implies soundness of the axioms. For
attribute sets R,R′ with R ⊆ R′ and a relation r over R, we say that a relation r′

over R′ is an extension of r to R′ if r′|R = r. Recall from equation 1 that exactly
such extensions are used in the existential quantification of lax team semantics.

Lemma 2. Let r be a relation over Att(Σ) such that r |= Σ, and let (σ1, . . . , σn)
be a deduction from Σ. Then there exists an extension r′ of r to Att(Σ ∪
{σ1, . . . , σn}) such that r′ |= Σ ∪ {σ1, . . . , σn}.

Proof. We prove the claim by induction on n. We denote by Rn the set Att(Σ ∪
{σ1, . . . , σn}). Assuming the claim for n−1, we first find an extension rn−1 of r to
Rn−1 such that rn−1 |= Σ ∪ {σ1, . . . , σn−1}. If σn is obtained by an application
of a conjunction or some ind rule, then it is easy to see that we may choose
rn := rn−1. Hence, it suffices to consider the cases where σn is obtained by using
one of the chase rules. Due to Lemma 1, it suffices to find an extension rn of
rn−1 to Rn such that rn |= σn. In the following cases, A denotes a sequence
listing the attributes of R ⊆ Rn−1.
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Case [CS]. Assume that σn is obtained by [CS] and is of the form

(T ∗, id)[RS] ∧
∧

t∈T

t(A) ⊆ A

where T = T ∗|R, S = Val(T ) consists of new attributes and R of distinct values.
Let rn := rn−1 ⊲⊳ r be an extension of rn−1 to Rn = Rn−1S, where

r := {h : h is a valuation on T such that h(T ) ⊆ rn−1|R}.

We claim that rn |= σn. Consider the first conjunct of σn, and let h be a valuation
on T ∗ such that h(T ∗) ⊆ rn|RS . Then h|S is is a valuation on T such that
h(T ) ⊆ rn|R = rn−1|R, i.e., h|S = t0|S for some t0 ∈ rn. Since R consists of
distinct values and thus R ∩ Dom(h) = ∅, we may define h′ as an extension
of h with A 7→ t0(A), for A ∈ R. Then h′|RS = t0|RS ∈ rn|RS , and therefore
rn |= (T ∗, id)[RS].

Consider then t(A) ⊆ A, for t ∈ T , and let t0 ∈ rn. By the definition,
t0|S = h for some valuation h on T such that h(T ) ⊆ rn|R, and hence we obtain
that t0 ◦ t(A) = h ◦ t(A) = t1(A) for some t1 ∈ rn. Therefore, rn |= t(A) ⊆ A.

Case [CR]. Assume that σn is of the form (i)
∧

t′∈T ′ f ◦ t′(A) ⊆ A or (ii)
f(x) = f(y), and is obtained by [CR] from

(i) (T, T ′)[R] ∧
∧

t∈T f ◦ t(A) ⊆ A,
(ii) (T, x = y)[R] ∧

∧

t∈T f ◦ t(A) ⊆ A,

where in case (ii) f is a valuation on T ∪ T ′ such that it is 1-1 on S := Val(T ′) \
Val(T ) and f(x) is a new attribute for x ∈ S. Let s ∈ rn−1. Since rn−1 |=
∧

t∈T f ◦ t(A) ⊆ A, we first obtain that s ◦ f(T ) ⊆ rn−1|R.

(i) Since rn−1 |= (T, T ′)[R] we find a mapping g : S → Val such that h(T ′) ⊆
rn−1|R, for h = g∪ (s ◦ f). Since f is 1-1 on S, we can now define rn as the
relation obtained from rn−1 by extending each s ∈ rn−1 with f(x) 7→ g(x)
for x ∈ S. Then for each s ∈ rn, s ◦ f(T ′) ⊆ rn|R, and hence we obtain
that rn |=

∧

t′∈T ′ f ◦ t′(A) ⊆ A.
(ii) It suffices to show that rn−1 |= f(x) = f(y). Since s ◦ f(x) = s ◦ f(y) by

rn−1 |= (T, x = y)[R], this follows immediately.

Case [CT]. Assume that σn is of the form (i) (T, T ′)[R] or (ii) (T, x = y)[R]
and is obtained by [CT] from

(i) (T ∗, id)[RS] ∧
∧

t′∈T ′ u ◦ t′(A) ⊆ A, where u is a mapping Val(T ′) → Att

that is the identity on Val(T ) ∩ Val(T ′),
(ii) (T ∗, id)[RS] ∧ x = y, where x, y ∈ Val(T ).

Moreover, in both cases T = T ∗|R, S = Val(T ), and Val(T ∗|S) consists of distinct
values. It suffices to show that rn−1 |= σn, so let h be a valuation on T such that
h(T ) ⊆ rn−1|R. Since Val(T ∗|S) consists of disctinct values, h can be extended
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to a valuation h′ on T ∗ such that h′(T ∗) ⊆ rn−1|RS . Since rn−1 |= (T ∗, id)[RS],
there is an extension h′′ of h′ to attributes in R such that h′′|RS ∈ rn−1|RS .
Hence, we obtain that h|S ∈ rn−1|S . Let then s ∈ rn−1 be such that it agrees
with h on S.

(i) Since rn−1 |=
∧

t′∈T ′ u ◦ t′(A) ⊆ A, we obtain that s ◦ u(T ′) ⊆ rn−1|R.
Moreover, we notice that s ◦ u = h on Val(T ) ∩ Val(T ′).

(ii) Since rn−1 |= x = y, we obtain that s(x) = s(y). Then h(x) = h(y) since
x, y ∈ S.

Hence, in both cases we obtain that rn−1 |= σn. This concludes the [CT] case
and the proof. ⊓⊔

Using the previous lemma, soundness of the rules follows.

Theorem 1. Let Σ ∪{σ} be a finite set of egd’s and tgd’s over R. Then Σ |= σ
if Σ ⊢ σ.

Proof. Let r be a relation such that r |= Σ, and assume that (σ1, . . . , σn) is a
deduction from Σ where σ = σn contains no attributes that appear as new in
σ1, . . . , σn. If R

′ := Att(Σ∪{σ1, . . . , σn}), then by Lemma 2 we find an extension
r′ of r|R to R′ such that r′ |= σ. Then using Lemma 1 we obtain that r |= σ. ⊓⊔

5 Chase Revisited

In this section we define the chase for the class of egd’s and tgd’s. The chase
algorithm was generalized to typed egd’s and tgd’s in [3], and here we present
the chase using notation similar to that in [16]. First let us assume, for nota-
tional convenience, that there is a total, well-founded order < on the set Val,
e.g., x1 < x2 < x3 < . . . for Val = {x1, x2, x3, . . .}. Let Σ ∪ {σ} be a set of
egd’s and tgd’s over R. A chasing sequence of σ over Σ is a (possibly infinite)
sequence σ0, σ1, . . . , σn, . . . where σ0 = σ, and σn+1 is obtained from σn, with
T := pr1(σn), according to either of the following rules.

Let τ ∈ Σ be of the form (S, x = y), and suppose that there is a valuation f
on S such that f(S) ⊆ T but f(x) 6= f(y). Then τ (and f) can be applied to σn
as follows:

– egd rule: Let σn+1 := g(σn) where g : Val → Val is the identity everywhere
except that it maps f(y) to f(x) if f(x) < f(y), and f(x) to f(y) if f(y) <
f(x).

Let τ ∈ Σ be of the form (S, S′), and suppose that there is a valuation f on
S such that f(S) ⊆ T , but there exists no extension f ′ of f to S′ such that
f(S′) ⊆ T . Then τ can be applied to σn as follows:

– tgd rule: List all f1, . . . , fn that have the above property, and for each fi
choose a distinct extension to S′, i.e., an extension f ′

i to S′ such that each
variable in Val(S′) \Val(S) is assigned a distinct new value greater than any
value in Val(σ0) ∪ . . . ∪ Val(σn). Moreover, no new value is assigned by two
f ′

i , f
′

j where i 6= j. Then we let σn+1 : (T ∪ f ′

1(S
′) ∪ . . . ∪ f ′

m(S′), pr2(σn)).
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Construction of a chasing sequence is restricted with the following two con-
ditions:

(i) Whenever an egd is applied, it is applied repeatedly until it is no longer
applicable.

(ii) No dependency is starved, i.e., each dependency that is applicable infinitely
many times is applied infinitely many times.

Let (Σ, σ) = σ0, σ1, . . . be a chasing sequence of σ over Σ. Due to the possibility
of applying egd’s, a chasing sequence may not be monotone with respect to ⊆.
Hence, depending on whether σ is a tgd or an egd, we define

– egd: chase(Σ, σ) := (T 1, x = y),
– tgd: chase(Σ, σ) := (T 1, T 2),

where T i := {u : ∃m∀n ≥ m(u ∈ pri(σn))} and x = y is pr2(σn) for n ∈ N such
that pr2(σn) = pr2(σm) for all m ≥ n. Note that “newer” values introduced
by the tgd rule are always greater than the “older” ones, and values may only
be replaced with smaller ones. Hence, no value can change infinitely often, and
therefore chase(Σ, σ) is always well defined and non-empty.

We also associate each chasing sequence with the following descending val-
uations ρn, for n ≥ 0. We let ρ0 = id, ρn+1 = g ◦ ρn if σn+1 is obtained by an
application of the egd rule where σn+1 = g(σn), and ρn+1 = id ◦ ρn otherwise.
We then define ρ(x) = limn→∞ ρn(x), i.e., ρ(x) = ρn(x) if n ∈ N such that
ρm(x) = ρn(x) for all m ≥ n. Then we obtain that

chase(Σ, σ) =

∞
⋃

n=0

ρ(σn).

A dependency τ is trivial if

– τ is of the form (T, x = x), or
– τ is of the form (T, T ′) and there is a valuation f on T ′ such that f is the

identity on Val(T ) ∩ Val(T ′) and f(T ′) ⊆ T .

It is well-known that the chase algorithm captures unrestricted implication
of dependencies. The proof of the following proposition is hence located in Ap-
pendix.

Proposition 1. Let Σ ∪ {σ} be a set of egd’s and tgd’s over R. Then the fol-
lowing are equivalent:

(i) Σ |= σ,

(ii) there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of σ over Σ such that
chase(Σ, σ) is trivial,

(iii) there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of σ over Σ such that σn is
trivial, for some n.

10



6 Completeness Theorem

In this section we show that the rules presented in Definition 4 are complete for
the implication problem of embedded dependencies. Let us first illustrate the
use of the axioms in the following simple example.

Example 5. Consider the implication problem {σ, σ′} |= τ where σ, σ′, τ are
illustrated in Fig. 3, e.g., σ = (T, t) where T consists of the top two rows of σ and
t is the bottom row. Note that σ and τ are embedded multivalued dependencies
of the form A ։ B|C and A ։ B|CD, respectively, and σ′ is a functional
dependency of the form C → D. It is easy to see that the implication holds, and

σ =

A B C D

a0 b0 c0 d0
a0 b1 c1 d1

a0 b0 c1 d2

σ′ =

A B C D

a0 b0 c0 d0
a1 b1 c0 d1

d0 = d1

τ =

A B C D

a0 b0 c0 d0
a0 b1 c1 d1

a0 b0 c1 d1

Fig. 3.

this can be also verified by a chasing sequence τ0, τ1, τ2 of τ over {σ, σ′} where
τ2 is trivial. In the chasing sequence, τ0 = τ and τ1 is the result of applying
σ to τ0. For this, note that there exists two valuations on T that embed T to
pr1(τ0) but has no extension that embeds t into pr1(τ0). These valuations are
the identity and the function f that swaps the values of the top and bottom row
of T . Then τ1 is obtained by adding to pr1(τ0) id∗(t) and f∗(t) where id∗ and
f∗ are distinct extensions of id and f to t, e.g., id∗ = id also on d2 and f∗ maps
d2 to d3. Also, τ2 is the result of applying σ′ to τ1 two times, i.e., τ2 is obtained
from τ1 by replacing d3 with d0 and d2 with d1. Clearly τ2 is trivial, and hence
we obtain the claim by Proposition 1.

τ0 =

A B C D

a0 b0 c0 d0
a0 b1 c1 d1

a0 b0 c1 d1

τ1 =

A B C D

a0 b0 c0 d0
a0 b1 c1 d1

a0 b0 c1 d2
a0 b1 c0 d3

a0 b0 c1 d1

τ2 =

A B C D

a0 b0 c0 d0
a0 b1 c1 d1
a0 b0 c1 d1
a0 b1 c0 d0

a0 b0 c1 d1

Fig. 4.

This procedure can now be simulated with our axioms as follows. First, with
one application of [CS] we derive

(T, id)[RS] ∧ a0b0c0d0 ⊆ ABCD ∧ a0b1c1d1 ⊆ ABCD

11



where T = {t, t′}, R = {A,B,C,D}, and S = {a0, b0, b1, c0, c1, d0, d1} is a set
of values that are interpreted as new attributes. Here t(x) and t′(x), for x ∈ S,
and A,B,C,D are interpreted as distinct values. (T, t)[RS] is illustrated in Fig.
5 where all the distinct values are hidden. Now with one application of [CR],

A B C D a0 b0 b1 c0 c1 d0 d1
t a0 b0 c0 d0
t′ a0 b1 c1 d1
id a0 b0 b1 c0 c1 d0 d1

Fig. 5. (T, id)[RS]

letting f = id, we derive a0b0c1d2 ⊆ ABCD from

σ ∧ a0b0c0d0 ⊆ ABCD ∧ a0b1c1d1 ⊆ ABCD (5)

Note that in this step, d2 is interpreted as a new attribute. Let then f be the
valuation that is the identity on a0, b0, b1, d1, and otherwise maps a1 7→ a0,
c0 7→ c1, and d0 7→ d2. We notice that f(a0b0c0d0) = a0b0c1d2 and f(a1b1c0d1) =
a0b1c1d1. Hence, we may derive with one application of [CR] f(d0) = f(d1), i.e.,
d2 = d1 from

σ′ ∧ f(a0b0c0d0) ⊆ ABCD ∧ f(a1b1c0d1) ⊆ ABCD.

Then we apply [EE] and derive a0b0c1d1 ⊆ ABCD from

d2 = d1 ∧ a0b0c1d2 ⊆ ABCD

Finally, we may apply [CT] and derive τ from (T, id)[RS] ∧ a0b0c1d1 ⊆ ABCD.

The following lemma shows that the above technique extends to all chasing
sequences. The proof is straightforward and located in Appendix.

Lemma 3. Let (Σ, σ) = σ0, σ1, . . . be a chasing sequence of σ over Σ, where
Σ ∪ {σ} is a finite set of egd’s and tgd’s over R, let A be a sequence listing
the attributes of R, let T := pr1(σ) and Ti := pr1(σi), and let n ∈ N. Then
there exists a deduction from Σ, with attributes from R ∪

⋃

i∈N
Val(Ti), listing

the following dependencies:

(i) (T ∗, id)[RS] where T ∗|R = T , S = Val(T ), and T ∗|S consists of distinct
values,

(ii) f(x) = f(y), for each application of (S, x = y) and f to σm, for m < n,
(iii) t(A) ⊆ A, for t ∈ Tm where m ≤ n.

With the lemma, we can now show completeness.

Theorem 2. Let Σ ∪ {σ} be a finite set of egd’s and tgd’s over R. Then Σ |=
σ ⇔ Σ ⊢ σ.

12



Proof. Assume that Σ |= σ, and let A be a sequence listing R. Then by Propo-
sition 1 there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of σ over Σ such that σn
is trivial for some n. Let D = (τ1, . . . , τl) be a deduction from Σ obtained by
Lemma 3, and let T := pr1(σ) and Ti := pr1(σi).

Assume first that σ is an egd of the form (T, x = y). Then σn is (Tn, z = z)
where z = ρn(x) = ρn(y). Now, either ρi+1(x) is ρi(x), or the equality ρi+1(x) =
ρi(x) (or its reverse) is listed in D by item (ii). Hence, using repeatedly [ES,ET]
we may further on derive z = x. Since z = y is derivable analogously, we therefore
obtain x = y by [ES,ET]. Then with one application of [CT], we derive (T, x = y)
from (T ∗, id)[RS] ∧ x = y where T ∗|R = T . Note that the (T ∗, id)[RS] of the
correct form is listed in D by item (i) of Lemma 3.

Assume then that σ is a tgd of the form (T, T ′), and let T ′

i := pr2(σi). Then
σn is (Tn, T

′

n), and there is a valuation f on T ′

n such that f is the identity on
Val(Tn) ∩ Val(T ′

n) and f(T ′

n) ⊆ Tn. Let t
′ ∈ T ′. Then ρn ◦ t′ ∈ T ′

n and by item
(iii) of Lemma 3 we obtain that f ◦ ρn ◦ t′(A) ⊆ A is listed in D. For A ∈ R, we
have then two cases :

– If t′(A) ∈ Val(T ′) ∩ Val(T ), then we first notice that f ◦ ρn ◦ t′(A) is ρn ◦
t′(A) since ρn ◦ t′(A) ∈ Val(T ′

n) ∩ Val(Tn). Also we notice that the equality
ρn ◦ t′(A) = t′(A) can be derived analogously to the egd case.

– If t′(A) ∈ Val(T ′)\Val(T ), then f ◦ρn◦t′(A) = f ◦t′(A) since by the definition
of the chase ρn is the identity on Val(T ′) \ Val(T ).

Now, letting f∗ be the mapping Val(T ′) → Att which is the identity on Val(T ′)∩
Val(T ) and agrees with f on Val(T ′) \ Val(T ), we can by the previous reasoning
and using repeatedly [EE] derive f∗ ◦ t′(A) ⊆ A from f ◦ρn ◦ t

′(A) ⊆ A. Finally,
we can then with one application of [CT] derive (T, T ′) from

(T ∗, id)[RS] ∧
∧

t′∈T ′

f∗ ◦ t′(A) ⊆ A.

⊓⊔

7 Typed dependencies

Consider then the class of typed embedded dependencies. In this setting [CS] and
[CT] can be replaced with rules that involve only embedded join dependencies
(ejd’s) and inclusion dependencies. We define ejd’s over tuples of attributes as
follows.

Definition 6. Let A1, . . . ,An be tuples of attributes listing R1, . . . , Rn, respec-
tively, and let R :=

⋃n
i=1 Ri. Then ⊲⊳ (Ai)

n
i=1 is an embedded join dependency

with the semantic rule

– r |= ⊲⊳(Ai)
n
i=1 if and only if r|

R
= r|

R1
⊲⊳ . . . ⊲⊳ r|

Rn

.

The two alternative rules for the chase are now the following. We call a relation
typed if none of its values appears in two distinct columns.

13



CS* Chase Start∗:
∧

t∈T

A ⊆ t(A)∧ ⊲⊳(t(A))t∈T ∧
∧

t∈T

t(A) ⊆ A

where T is a typed relation and Val(T ) is a set of new attributes.
CT* Chase Termination∗:

tgd : if
∧

t∈T

A ⊆ t(A)∧ ⊲⊳(t(A))t∈T ∧
∧

t′∈T ′

u ◦ t′(A) ⊆ A, then (T, T ′)[R],

egd : if
∧

t∈T

A ⊆ t(A)∧ ⊲⊳(t(A))t∈T ∧ x = y, then (T, x = y)[R],

where tgd: u is a mapping Val(T ′) → Att that is the identity on Val(T ′) ∩
Val(T ′), and egd: x, y ∈ Val(T ).

The first rule is sound for typed dependencies since, for arbitrary r with
Dom(r)∩Val(T ) = ∅, an instance of [CS*] is satisfied by r ⊲⊳ q(r) where q is the
SPJR query

ρt1(A)/AA ⊲⊳ . . . ⊲⊳ ρtn(A)/AA,

where ρ is the rename operator and T = {t1, . . . , tn}. However, a counter example
for soundness can be easily constructed for untyped dependencies. If T and r
are the relations illustrated in Fig. 6, then no extension r′ of r to Val(T ) satisfies
∧

t∈T t(AB) ⊆ AB.

T =

A B

t x y

t′ y x

r =
A B

s 0 1

Fig. 6.

Soundness of [CT*] is obtained analogously to that of [CT]. Also, com-
pleteness is obtained by deriving exactly in the same way as in the general
case,

∧

t′∈T ′ u ◦ t′(A) ⊆ A (in the tgd case) or x = y (in the egd case) from
∧

t∈T t(A) ⊆ A. Let us then write Σ ⊢∗ σ if σ is deduced from Σ in the sense
of Definition 5 and using rules [EE,CS*,CR,CT*] together with elimination and
introduction of conjunction. Then we obtain the following theorem.

Theorem 3. Let Σ ∪ {σ} be a finite set of typed egd’s and tgd’s over R. Then
Σ |= σ ⇔ Σ ⊢∗ σ.
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Appendix

Proof. (Proposition 1) Let Σ ∪ {σ} be a set of egd’s and tgd’s over R. The
direction (ii) ⇒ (iii) is clear because it suffices to choose σn such that all the
relevant tuples and values remain fixed in σm for m ≥ n. We show (i) ⇒ (ii)
and (iii) ⇒ (i).

(i) ⇒ (ii): Assume that there is a chasing sequence (Σ, σ) = σ0, σ1, . . . of
σ over Σ such that chase(Σ, σ) is non-trivial. We claim that chase(Σ, σ) |= Σ
and chase(Σ, σ) 6|= σ. Let Tn denote pr1(σn). Assume first that (S, x = y) ∈ Σ
and assume to the contrary that f is a valuation such that f(S) ⊆ chase(Σ, σ)
but f(x) 6= f(y). Then there exists m ∈ N such that f(S) ∈ Tn for all n ≥ m,
contradicting the assumption that no dependency is starved in the chase.

Assume that (S, S′) ∈ Σ, and assume that f is a valuation such that f(S) ⊆
chase(Σ, σ), and let m ∈ N be such that f(S) ⊆ Tn for all n ≥ m. Then
there is an extension f ′ of f to S′ such that f ′(S′) ⊆ Tm′ for some m′ ≥ m,
where we define T ′

n := pr2(σn). Note that ρn ◦ f ′(S) ⊆ T ′

n for all n ≥ m′,
and hence there exists m′′ ≥ m′ such that ρm′′ ◦ f ′(S) ⊆ T ′

n for all n ≥ m′′.
Since f(S) ⊆ chase(Σ, σ), ρm′′ is the identity on f(S), and hence we obtain that
chase(Σ, σ) |= (S, S′).

Finally, we show that chase(Σ, σ) 6|= σ. Analogously to the previous case we
find a valuation ρn such that ρn(T ) ⊆ pr1(chase(Σ, σ)). If σ is of the form (T, x =
y), then we obtain that ρn(x) = ρn(y) is pr2(chase(Σ, σ)). Since chase(Σ, σ) is
non-trivial, ρn(x) and ρn(y) must be two distinct values. Hence, ρn witnesses
chase(Σ, σ) 6|= (T, x = y).

Assume then that σ is of the form (T, T ′). Then analogously ρn ◦ T ⊆
pr1(chase(Σ, σ)) and ρn ◦ T ′ = pr2(chase(Σ, σ)) for some n ∈ N. Also note
that by the construction ρn is the identity on Val(T ′) \ Val(T ). Now, if there
is an extension h of ρn|Val(T ) to T ′ such that h(T ′) ⊆ pr1(chase(Σ, σ)), then

chase(Σ, σ) is trivial. Hence ρn is a witness of chase(Σ, σ) 6|= σ.
(iii) ⇒ (i): Let (Σ, σ) = σ0, σ1, . . . be a chasing sequence of σ over Σ, where

σn is trivial, and let Ti (or T ) denote pr1(σi) (or pr1(σ)). Assume that r |= Σ,
and let f be a valuation on T to r. Using the chase construction rules and the
assumption it is easy to show inductively that for all n there is an extension fn
of f to ∪n

i=0Ti such that

(i) fn(Tn) ⊆ r,
(ii) fn ◦ ρn = fn.

Assume first that σ is of the form (T, x = y), and hence ρn(x) = ρn(y). Then by
the induction claim we obtain that f(x) = f(y). Assume that σ is of the form
(T, T ′), and let h be a valuation such that h(T ′

n) ⊆ Tn and h is the identity
on Val(Tn) ∩ Val(T ′

n). Then fn ◦ h ◦ ρn(T ′) ⊆ r where, by the induction claim,
fn ◦ h ◦ ρn is f on Val(T ) ∩ Val(T ′). Hence, we obtain that r |= σ in both cases.
This concludes the proof. ⊓⊔

Proof (Lemma 3). W.l.o.g. we may assume that no attribute of R appears as a
value in the chasing sequence, i.e., R ∩

⋃

i∈N
Val(σi) = ∅. We show the claim by

induction on n.
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The base case. First it suffices to deduce by one application of [CS]

(T ∗, id)[RS] ∧
∧

t∈T

t(A) ⊆ A

where (T ∗, id)[RS] is of the form described in (i).

The inductive step. Assuming the claim for n, we next show the claim for
n + 1. Assume first that σn+1 is obtained from σn by using the egd rule for
(S, x = y) ∈ Σ over a valuation f on S such that f(S) ⊆ Tn and f(x) 6= f(y).
Then Tn+1 = g(Tn) where g is the identity everywhere except that it maps, say
f(y) to f(x). By the induction assumption, it now suffices to consider (ii) and
(iii) only in the cases that associate with the construction of σn+1.

(ii) The equality f(x) = f(y) can be derived with one application of [CR], since
f ◦ s(A) ⊆ A, for all s ∈ S, have been deduced by the assumption.

(iii) Let t ∈ Tn+1, and let t′ ∈ Tn be such that t = g ◦ t′. If f(y) 6∈ Val(t′),
then t(A) ⊆ A has been derived by the induction assumption. Otherwise,
t′(A) = f(y) for some A ∈ R. Now using repeatedly [EE] to f(y) = f(x) and
t′(A) ⊆ A, we obtain t(A) ⊆ A.

Assume then that σn+1 is obtained from σn by using the tgd rule for (S, S′) ∈
Σ. W.l.o.g. we may assume that there is only one valuation f on S with the
property that f embeds S to Tn, but no extension of f to S′ embeds S′ to T ′

n.
Let f ′ be the distinct extension associated with this step, i.e., f ′ is an extension
of f to S′ such that each variable in Val(S′) \ Val(S) is assigned a distinct
new value greater than any value appearing in σ0, . . . , σn. By the induction
assumption, none of these new values appear in the deduction. Hence, by the
assumption we may with one application of [CR] from (S, S′) ∧

∧

s∈S f
′ ◦ s(A)

deduce
∧

s′∈S′ f ′ ◦ s′(A) ⊆ A where all the new values are interpreted as new
attributes. Since Tn+1 = Tn∪f ′(S′), this concludes item (iii) and thus the proof.

⊓⊔
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