
There Is No Best β-Normalization Strategy
for Higher-Order Reasoners?

Alexander Steen and Christoph Benzmüller
a.steen|c.benzmueller@fu-berlin.de

Freie Universität Berlin, Institute of Computer Science

Abstract. The choice of data structures for the internal representation
of terms in logical frameworks and higher-order theorem provers is a cru-
cial low-level factor for their performance. We propose a representation
of terms based on a polymorphically typed nameless spine data structure
in conjunction with perfect term sharing and explicit substitutions.
In related systems the choice of a β-normalization method is usually
statically fixed and cannot be adjusted to the input problem at runtime.
The predominant strategies are hereby implementation specific adaptions
of leftmost-outermost normalization. We introduce several different β-
normalization strategies and empirically evaluate their performance by
reduction step measurement on about 7000 heterogeneous problems from
different (TPTP) domains.
Our study shows that there is no generally best β-normalization strategy
and that for different problem domains, different best strategies can be
identified. The evaluation results suggest a problem-dependent choice of
a preferred β-normalization strategy for higher-order reasoning systems.

1 Introduction

Higher-order (HO) automated theorem proving (ATP) is, in many ways, more
complex and involved than ATP in first-order or propositional logic. This addi-
tional complexity can be found on the proof search layer as well as on the layer of
terms respectively formulas. However, one advantage is that the increased prac-
tical expressiveness of higher-order logic often enables more intuitive and concise
problem representations and solutions. Many interactive and automated theo-
rem provers for higher-order logic are based on Church’s simple type theory [7]
– also called classical higher-order logic (HOL) – or extensions of it.

In automated reasoning systems, terms are the most general and common
pieces of information that are accessed, manipulated and created by most rou-
tines of the reasoning system. It is therefore not surprising, that the internal
representation of terms is a crucial detail which has direct consequences on the
efficiency of the whole system.

We present a combination of term representation techniques for HO ATP
systems that is based on locally nameless spine terms [4] and explicit treatment

? This work has been supported by the German National Research Foundation (DFG)
under grant BE 2501/11-1 (Leo-III).

of substitutions [1]. These base choices are appropriately adjusted to meet the
requirements of HO ATP systems. In particular, our representation natively
admits an expressive typing system, efficient term operations and reasonable
memory consumption through term sharing in a combination that is novel to
HO reasoners.

The support for efficient term operations hereby not only covers those adopted
from the first-order universe, but also the essential operation of β-normalization.
To this end, we differ from prominent other reasoning systems in proposing sev-
eral new (modified) β-normalization strategies that allow a problem-dependent
handling of β-reduction. Thus, we do not hard-wire a single, preferred β-normal-
ization strategy that we anticipate to perform best over all possible problem
inputs. We think that this approach can in fact increase the overall performance
of HO ATP systems in which β-(re-)normalization has to be repeatedly carried
out during proof search.

This research is motivated by previous observations [18] that suggest that
there is no single best normalization strategy. The here proposed strategies have
been empirically evaluated using a representative set of benchmark problems
for theorem proving. This evaluation confirms that there are problem classes at
which the de-facto standard leftmost-outermost strategy is outperformed by our
rather simple alternative strategies. The evaluation has been conducted within
the LeoPARD [21] system platform for HOL reasoners.1

2 HOL Term Representation

HOL is an elegant and expressive formal system that extends first-order logic
with quantification over arbitrary sets and functions. We consider Alonzo Church’s
simple type theory [7] which is a formulation of HOL that is built on top of the
simply typed λ-calculus [5,6].

The simply typed λ-calculus, denoted λ→, augments the untyped λ-calculus
with simple types, which are freely generated from a set of base types and the
function type constructor →. In HOL, the set of base types is usually taken as
a superset of {ι, o} with ι and o for individuals and truth values, respectively.

The work presented here focuses on an extended variant of λ→ that natively
supports parametric polymorphism and incorporates a locally nameless represen-
tation using de-Bruijn indices for bound variables [3]. The notion of de-Bruijn
indices is extended for nameless type variables to keep up the guarantee of syn-
tactical uniqueness of α-equivalent terms. Types (denoted by τ or ν) are thus
given by

τ, ν ::= s ∈ T | i ∈ N | τ → ν | ∀. τ

where T is a non-empty set of base type symbols and i is a nameless type variable.
The term data structure presented next adopts, combines and extends tech-

niques that are employed in state-of-the-art HO reasoning systems, such as

1 The LeoPARD framework is freely available under BSD license and can be down-
loaded at https://github.com/cbenzmueller/LeoPARD.

Teyjus λProlog [12] (which is based on explicit substitutions of the Suspen-
sion Calculus [11]), the logical frameworks TWELF [13] and Beluga [14], and
the interactive Abella prover [8]. In particular, the combination of techniques for
term data structures presented here is, up to our knowledge, novel in the context
of HO ATP and not employed in any modern system.

On the basis of nameless terms, spine notation [4] in conjunction with explicit
substitutions [1] is employed. The first technique allows quick head access and
a left-to-right traversal method that is more efficient than in classical curried
representation. The latter method’s explicit treatment of substitutions enables
the combination of substitution runs which in turn permits a more efficient β-
normalization procedure.

More specifically, the internal representation of polymorphic HOL syntax is
given by (types are partially omitted for simplicity):

s ::= (h · S) | (s · S) | (λτ . s) | (Λ. s) | s[σ]
h ::= iτ | cτ | h[σ]
S ::= Nil | sτ ;S | τ ;S | S[σ]

σterm ::= ↑i | sτ · σterm σtype ::= ↑i | τ · σtype

where the terms s are either roots, redexes, term and type abstraction, or clo-
sures (respectively) with heads h (that are bound indices i, constants cτ ∈ Σ
from the signature Σ or itself closures) and spines S. We support defined con-
stants cτ and their expansion using directed equation axioms (cτ := dτ). The
spines collect arguments in a linear sequence, concatenated by the ; constructor.
A substitution σ = (σterm, σtype) is internally represented by a pair of a term-
and a type substitution, for which each individual substitution exclusively con-
tains substitutes for the corresponding de-Bruijn indices. In the current version,
closures cannot occur within types. This is because the number of type variables
within current common ATP problems is typically very low (often zero), and,
hence, merging of substitution runs in types is not crucial.

We extend the notion of β-normalization to substitutions σ = (σterm, σtype)
by σ

�

β = (σterm

�

β , σtype) where σterm

�

β denotes the substitution ρ for which
it holds that ρ(i) = σterm(i)

�

β , i.e. all components of the substitution are β-
normalized individually.

The type abstraction mechanism (Λ. s) is due to Girard and Reynolds, who
independently developed a polymorphically typed λ-calculus today widely known
as System F [9,16]. We use a Church-style λ-calculus in which each type is
considered a part of the term’s name and thus intrinsic to it. This has several
advantages over the extrinsic, or Curry-style, interpretation, but comes with
some downsides, e.g., wrt. typing flexibility.

3 Normalization Strategies

We now introduce corresponding strategies, two of them novel (wrt. earlier ex-
periments in [18]), and present them along with a brief discussion of possible

benefits (and downsides). Subsequently, these strategies are empirically evalu-
ated using an extensive benchmark set. The strategies are:

1. DEFAULT (Leftmost-outermost): This normalization method corresponds
to the standard normal-order strategy, that is, the leftmost-outermost redex
is processed first at each step during β-normalization. We use DEFAULT
as starting point for the presentation and explanation of further strategies
below. The complete rules for DEFAULT can be found in Fig. 1. Here,
s

� σ
β denotes β-normalization relative to substitution σ. The computation of

the β-normal form of term s is initiated by s

�

β := s
� (id,id)

β , where id is the

identity substitution id := ↑0.
2. HSUBSTn (n > 0, Heuristic application of substitution in RxApp): If the

size of the term to be prepended onto the substitution is smaller than n, it is
normalized strictly. Otherwise, the substitution is postponed using closures
as before. The rule RxApp from Fig. 1 is thus replaced by the two rules

(s · t;Stail)

� σ,σ′
β s = λτ . s

′ |t| ≥ n
RxApp≥

(s′ · Stail)

� (t[σ]·σterm,σtype),σ′
β

(s · t;Stail)

� σ,σ′
β s = λτ . s

′ |t| < n
RxApp<

(s′ · Stail)

� (t

� σ
β
·σterm,σtype),σ′

β

where |t| denotes the size of term t (i.e. the number of term nodes in internal
representation).

3. WHNF (Normalize substitution once WHNF is obtained): When arrived at
weak head normal form c·S of the current (sub-)term during β-normalization,
the substitution σ is normalized and then used to further β-normalize the
spine S. Thus, the rule RAtom (cf. Fig. 1) is replaced by

(c · S)

� σ
β c ∈ Σ σ′ = σ

�

β
RAtom′

c · S

� σ′
β

4. STRCOMP (Strict composition of term-substitutions): The standard (meta-
operation) of term-substitution composition with closures is given by

(sτ · σterm) ◦ ρterm −→ sτ [ρterm] · (σterm ◦ ρterm) (1)

In STRCOMP it is instead calculated strictly:

(sτ · σterm) ◦ ρterm −→ sτ

� (ρterm,id)
β · (σterm ◦ ρterm) (2)

In contrast to (1), the application of substitution ρterm in (2) is not post-
poned using closures but applied immediately by β-normalization.

Root rules
(c · S)

� σ
β c ∈ Σ

RAtom
c · S

� σ
β

(iτ · S)

� σ
β σterm(i) = j

RBndSub
jτ [σtype] · S

� σ
β

(i · S)

� σ
β σterm(i) = s

RTermSub

(s · S)

� (id,σtype),σ
β

(h[ρ′][ρ] · S)

� σ
β

RClosClos
(h[ρ′ ◦ ρ] · S)

� σ
β

(c[ρ] · S)

� σ
β c ∈ Σ

RAtomClos
c · S

� σ
β

(iτ [ρ] · S)

� σ
β (ρterm ◦ σterm)(i) = j

RBndClos
jτ [ρtype◦σtype] · S

� σ
β

(i[ρ] · S)

� σ
β (ρterm ◦ σterm)(i) = s

RTermClos

(s · S)

� (id,ρtype◦σtype),σ
β

Abstraction/Closure rule

(λτ . s)

� σ
β

Abs

λτ [σtype]. s

� (1·σterm◦↑,σtype)
β

(Λ. s)

� σ
β

TyAbs

Λ. s

� (σterm,1·σtype◦↑)
β

(s[σ′])

� σ
β

Clos

s

� σ′◦σ
β

Redex rules

(s ·Nil)
� σ,σ′

β
RxSpNil

s
� σ

β

(s · S[ρ])

� σ,σ′
β

RxSpClos

(s · S)

� σ,ρ◦σ′
β

(s · t;Stail)

� σ,σ′
β s = λτ . s

′

RxApp

(s′ · Stail)

� (t[σ]·σterm,σtype),σ′
β

(s · τ ;Stail)

� σ,σ′
β s = Λ. t

RxTyApp

(t · Stail)

� (σterm,τ [σ′type]·σtype),σ′
β

(s · S)

� σ,σ′
β s = h · S′

RxRMrg

(h[σ] · S′[σ] ++ S[σ′])

� (id,id)
β

(s · S)

� σ,σ′
β s = t · S′

RxRxMrg

(t · S′[σ] ++ S[σ′])

� σ,(id,id)
β

(s · S)

� σ,σ′
β s = t[ρ]

RxClos

(t · S)

� ρ◦σ,σ′
β

Spine rules

Nil

� σ
β

SpNil
Nil

(S[ρ])

� σ
β

SpClos
S

� ρ◦σ
β

(s0;Stail)

� σ
β

SpApp
(s0

� σ
β);Stail

� σ
β

(τ ;Stail)

� σ
β

SpTyApp
(τ [σtype]);Stail

� ρ◦σ
β

Fig. 1: β-normalization strategy DEFAULT

5. WEAK (Weakly normalize substitutions on demand): Before application of
RTermSub or RTermClos, β-normalize the term before substituting, and

update σ accordingly. This means that each time a term is supposed to be
substituted, its β-normal form is substituted instead. Also, in order to avoid
re-computations, the original term is replaced by its β-normal form in the
substitution σ, too. Thus, rule RTermSub from Fig. 1 is replaced by

(i · S)

� σ
β σterm(i) = s s′ = s

�

β
RTermSub′

(s′ · S)

� (id,σtype),(σterm[i←t

�

β
],σtype)

β

and RTermClos is replaced analogously. Here, when term t is substituted
for de-Bruijn index i, the substitution σ is updated to hold the normalized
t at position i, i.e. σ′(j) = t

�

β iff j = i and σ′(j) = σ(j) otherwise.

4 Evaluation and Further Work

In order to estimate the expected effects of using different β-normalization strate-
gies in practical scenarios of automated reasoning, a worst-case analysis seems
inappropriate and is therefore omitted. In lieu thereof, a representative set of
problems for (HO) theorem proving has been chosen for which the number of β-
normalization reduction steps has been compared empirically between all strate-
gies. Since the proposed strategies do not include costly heuristics (e.g. based
on structural properties of terms), a decrease in reduction counts can directly
be translated to a speed-up with respect to actual time consumption. The eval-
uation has been conducted with the LeoPARD system platform, in which the
term data structures from §2 and the strategies from §3 have been implemented.

The benchmarks. The benchmark problems were chosen from a relatively broad
field of diversity: The first three benchmark domains are the sets denoted Church
I, Church II and Church III that contain reducible arithmetic terms (of the
form mult(i, i), power(i, 3), power(3, i) respectively) in polymorphic Church nu-
merals encoding [17]. The domains S4E and S4F contain a total of 3480 HO
problems, converted from propositional and first-order modal logic problems
from the QMLTP library [15]. Both domains differ wrt. to the details of the
employed semantic embedding of logic S4 in HOL [2].2

The remaining benchmarks (a total of 3246 problems) are (typed) first-order
and HO problems from the TPTP problem library [19,20]. These benchmark
domains are denoted according to their problem domain name as given by the
TPTP library. Generally, first-order CNF problems, as well as TPTP domains
that only contain them, were not considered for the evaluation, since the con-
tained formulae are already given in clause normal form which results in likewise
β-normalized internal clause representations in LeoPARD.

The benchmark problem selection embodies, in its sum, a representative set
of nearly 7000 practical inputs for reasoning systems and a heterogeneous set of
(syntactic and semantic) term characteristics is covered.

 0

 1000

 2000

 3000

 4000

 5000

 6000

DEFAULT HSUBST6 HSUBST4 WHNF STRCOMP WEAK

N
u
m

b
e
r

o
f

p
ro

b
le

m
s

Strategy

Best
Unique

(a) Distribution of best performance
over all benchmark problems

 100000

 1e+06

 1e+07

 1e+08

KRS286+1.p

KRS285+1.p

KRS284+1.p

KRS283+1.p

KRS287+1.p

KRS288+1.p

KRS289+1.p

KRS290+1.p

KRS291+1.p

KRS280+1.p

KRS281+1.p

KRS282+1.p

KRS278+1.p

KRS279+1.p

R
e
d
u
ct

io
n
 c

o
u
n
t

DEFAULT
WHNF

(b) Highest reduction count differences in
problem domain KRS

Fig. 2: Evaluation results

Results and Discussion. Fig. 2a shows the number of benchmark problems
(throughout all domains) that were β-normalized (uniquely) best using the given
strategy. It can be seen that, in our benchmark set, the DEFAULT strategy
has the higher number of problems normalized with minimal reduction count
(compared to the other strategies). Nevertheless, HSUBST4 and WHNF are
competitive alternatives, and there are even problems that are uniquely normal-
ized best in the remaining strategies. It should be pointed out again that the
competing strategies are relatively simple, since they do not use sophisticated
term structure heuristics and yet already admit a fair effectiveness in certain
domains.

In order to give a brief idea of the amount of potential reduction count
savings, a quantitative comparison of 14 problems from KRS with highest re-
duction count differences between default leftmost-outermost and the alternative
WHNF strategy is shown in Figure 2b. These difference are, in the most strik-
ing cases, up to factor 4.5 which is considerable in magnitudes of 106 reduction
steps and above.

More detailed results that underline our observations can be found in Table 1.
Here, for selected problem domains3, and each relevant β-normalization strategy,
the number of problems that performed best and worst are displayed (i.e. the
number of problems that had the lowest respectively highest overall reduction
count for this strategy). Additionally, the number of unique problems – denoted
(u) – which normalized strictly faster in this strategy than in any other strat-
egy within the domain is given. The sum of all reduction steps, denoted Σri,
throughout the whole problem domain, as well as the maximal number of reduc-
tion steps (for a single problem) are given. The remaining three values, r̃i, ri and

2 The archive of semantically embedded S4-formulae from QMLTP can be found at
http://page.mi.fu-berlin.de/cbenzmueller/papers/THF-S4-ALL.zip

3 The complete evaluation results can be found at http://inf.fu-berlin.de/~lex/

files/betaresults.pdf

http://page.mi.fu-berlin.de/cbenzmueller/papers/THF-S4-ALL.zip
http://inf.fu-berlin.de/~lex/files/betaresults.pdf
http://inf.fu-berlin.de/~lex/files/betaresults.pdf

σ, denote the arithmetic mean, the median value and the standard derivation of
the measurement results (respectively).

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

STRCOMP 88 (88) 3 (3) 1151350 79 32650 11·103 9014.5 9·103

DEFAULT 12 (0) 0 (0) 1712750 17 50408 17127.5 12962.5 15·103

WHNF 12 (0) 0 (0) 1712750 17 50408 17127.5 12962.5 15·103

HSUBST4 0 (0) 0 (0) 1712850 18 50409 17128.5 12963.5 15·103

HSUBST6 0 (0) 0 (0) 1733050 22 50809 17330.5 13165.5 15·103

WEAK 0 (0) 97 (0) 39838425 33 1546215 398384.2 205336.5 445·103

(a) Domain CHURCH1 (100 problems)

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

STRCOMP 17 (17) 0 (0) 147516 150 25782 7764.0 4704.0 7·103

DEFAULT 2 (0) 0 (0) 236075 80 42110 12425.0 7325.0 12·103

WHNF 2 (0) 0 (0) 236075 80 42110 12425.0 7325.0 12·103

HSUBST6 0 (0) 0 (0) 1262759 107 271331 66461.0 27665.0 80·103

HSUBST4 0 (0) 0 (0) 1262759 107 271331 66461.0 27665.0 80·103

WEAK 0 (0) 1 (0) 1359621 171 289215 71559.0 30483.0 86·103

(b) Domain CHURCH2 (19 problems)

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

WHNF 14 (0) 0 (0) 704503 511 14846 5636.0 5378.0 3·103

HSUBST6 0 (0) 0 (0) 834604 513 22883 6676.8 5475.0 5·103

DEFAULT 80 (16) 0 (0) 848536 511 23663 6788.3 5472.0 5·103

HSUBST4 50 (0) 0 (0) 848599 513 23663 6788.8 5472.0 5·103

STRCOMP 14 (0) 3 (0) 8443020 511 419068 67544.2 13622.0 106·103

WEAK 0 (0) 14 (0) 23354287 913 1069897 186834.3 89193.0 252·103

(c) Domain GRA (125 problems)

Strategy Best (u) Worst (u) Σri min ri max ri ri r̃i σ

WHNF 173 (14) 95 (0) 35695447 0 6106161 129801.6 689.0 67·104

HSUBST6 96 (0) 85 (0) 106292434 0 15011396 386517.9 835.0 206·104

DEFAULT 254 (12) 95 (0) 106316948 0 15028663 386607.1 689.0 206·104

HSUBST4 239 (0) 109 (14) 106317316 0 15028665 386608.4 689.0 206·104

STRCOMP Unfeasible

WEAK Unfeasible

(d) Domain KRS (275 problems)

Table 1: Selected results of reduction count measurements

As an example, in benchmark domain Church I (cf. Table 1a) STRCOMP
performs drastically better than in any other domain: Although DEFAULT
and WHNF have the lowest minimum value, STRCOMP is by far the best

strategy (in problem count and overall reduction sum) with 88 of 100 problems
(uniquely) normalized best. In terms of reduction steps per problem, STR-
COMP takes only roughly 70% of the number of steps required by DEFAULT
(in both average and mean). Similar results also apply for the remaining Church
domains. Also, in the GRA domain (cf. Table 1c), the mean normalization step
count ri is more than 100 steps lower in the WHNF strategy than when us-
ing DEFAULT. These results demonstrate that the alternative normalization
strategies can in fact perform better (wrt. reduction count per problem) than
default leftmost-outermost in certain problem domains.

Further Work. While the present evaluation grouped problems by a (given, prac-
tically motivated) semantic classification, further investigations need to identify
syntactic criteria in order to group problems with similar properties (with respect
to β-normalization performance) for a specific strategy.

Based on observation and some preliminary experiments, we are positive that
methods based on syntactic criteria such as the following can be employed for
choosing an appropriate normalization strategy at runtime:

– Recognition of regular patterns in terms
– The term’s size and depth
– The number of abstractions not occurring at top-level
– The number of bound indices

For future work, not only concrete (syntactical) heuristics but also machine
learning techniques could be employed to study representative sets of problems.

5 Conclusion

A sophisticated internal representation mechanism for (second-order) polymor-
phically typed HO terms, including a locally nameless spine notation combined
with explicit substitutions and perfect term sharing, has been presented.

Using the above representation, several new β-normalization strategies have
been introduced. These strategies vary in their extent of laziness and strictness in
certain normalization rules, e.g. during composition of substitutions. They have
subsequently been implemented and evaluated within the LeoPARD frame-
work. The conducted evaluation was based on a representative benchmark set.

For logical frameworks and meta languages, the representation of objects such
as programs and proofs in λProlog has previously been studied [10]. However,
a fine-grained evaluation of normalization strategies in context of HO ATP as
reported here has not been carried out before. Extending previous studies in
a rather orthogonal manner (wrt. application domain, granularity, and system
of explicit substitutions), our benchmarks reveal that there is no single best
β-normalization strategy for a relevant set of problem classes. In particular,
our findings show that the performance of a strategy rather depends on some
(syntactic) characteristics of the input problem. The reduction count difference
between the default leftmost-outermost strategy and the leading strategy can,
in fact, be as high as factor four.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Levy, J.J.: Explicit substitutions. In: Proc.
of the 17th Symp. on Principles of Programming Languages. pp. 31–46. POPL ’90,
ACM, New York, NY, USA (1990)

2. Benzmüller, C., Raths, T.: HOL based first-order modal logic provers. In: LPAR.
LNCS, vol. 8312, pp. 127–136. Springer (2013)

3. Bruijn, N.G.D.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem.
INDAG. MATH 34, 381–392 (1972)

4. Cervesato, I., Pfenning, F.: A linear spine calculus. J. Logic and Computation
13(5), 639–688 (2003)

5. Church, A.: A Set of Postulates for the Foundation of Logic. Annals of Mathematics
33(2), 346–366 (1932)

6. Church, A.: A Set of Postulates for the Foundation of Logic, Second Paper. The
Annals of Mathematics 34(4), 839–864 (Oct 1933)

7. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2) (1940)
8. Gacek, A.: The Abella interactive theorem prover (system description). In: Auto-

mated Reasoning, IJCAR. LNCS, vol. 5195, pp. 154–161. Springer (2008)
9. Girard, J.: Interprétation fonctionnelle et élimination des coupures de

l’arithmétique d’ordre supérieur. Ph.D. thesis, Université Paris VII (1972)
10. Liang, C., Nadathur, G., Qi, X.: Choices in representation and reduction strategies

for lambda terms in intensional contexts. J. Autom. Reasoning 33(2), 89–132 (2004)
11. Nadathur, G.: A fine-grained notation for lambda terms and its use in intensional

operations. Journal of Functional and Logic Programming 1999(2) (1999)
12. Nadathur, G., Mitchell, D.: System Description: Teyjus - A Compiler and Abstract

Machine Based Implementation of λProlog. In: Automated Deduction, CADE,
LNAI, vol. 1632, pp. 287–291. Springer (1999)

13. Pfenning, F., Schürmann, C.: System description: Twelf - A meta-logical framework
for deductive systems. In: Automated Deduction, CADE. LNAI, vol. 1632, pp. 202–
206. Springer (1999)

14. Pientka, B., Dunfield, J.: Beluga: A framework for programming and reasoning
with deductive systems (system description). In: Automated Reasoning, IJCAR.
LNCS, vol. 6173, pp. 15–21. Springer (2010)

15. Raths, T., Otten, J.: The qmltp problem library for first-order modal logics. In:
Automated Reasoning, IJCAR, LNCS, vol. 7364, pp. 454–461. Springer (2012)

16. Reynolds, J.C.: Towards a theory of type structure. In: Symposium on Program-
ming. LNCS, vol. 19, pp. 408–423. Springer (1974)

17. Reynolds, J.C.: An introduction to polymorphic lambda calculus. In: Logical Foun-
dations of Functional Programming. pp. 77–86. Addison-Wesley (1994)

18. Steen, A.: Efficient Data Structures for Automated Theorem Proving in Expressive
Higher-Order Logics. Master’s thesis, Freie Universität Berlin, Berlin (2014)

19. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

20. Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the
TPTP THF infrastructure. Journal of Formalized Reasoning 3(1), 1–27 (2010)

21. Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — A Generic Platform for
the Implementation of Higher-Order Reasoners. In: Intelligent Computer Mathe-
matics, CICM. LNCS, vol. 9150, pp. 325–330. Springer (2015)

	There Is No Best -Normalization Strategyfor Higher-Order Reasoners

