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Reasoning About Loops Using Vampire in KeY?

Wolfgang Ahrendt, Laura Kovács, and Simon Robillard

Chalmers University of Technology

Abstract. We describe symbol elimination and consequence �nding in
the �rst-order theorem prover Vampire for automatic generation of quan-
ti�ed invariants, possibly with quanti�er alternations, of loops with ar-
rays. Unlike the previous implementation of symbol elimination in Vam-
pire, our work is not limited to a speci�c programming language but
provides a generic framework by relying on a simple guarded command
representation of the input loop. We also improve the loop analysis part
in Vampire by generating loop properties more easily handled by the sat-
uration engine of Vampire. Our experiments show that, with our changes,
the number of generated invariants is decreased, in some cases, by a factor
of 20. We also provide a framework to use our approach to invariant gen-
eration in conjunction with pre- and post-conditions of program loops.
We use the program speci�cation to �nd relevant invariants as well as
to verify the partial correctness of the loop. As a case study, we demon-
strate how symbol elimination in Vampire can be used as an interface for
realistic imperative languages, by integrating our tool in the KeY veri�-
cation system, thus allowing reasoning about loops in Java programs in
a fully automated way, without any user guidance.

1 Introduction

Reasoning about the (partial) correctness of programs with loops requires loop
invariants. Typically, loop invariants are provided by the user as annotations
to the program, see e.g. [1, 4, 13]. Providing such annotations requires a consid-
erable amount of work by highly quali�ed personnel and often makes program
analysis prohibitively expensive. Therefore, automation of invariant generation
is invaluable in making program analysis scale to large, realistic examples.

In [10], the symbol elimination method for generating invariants was intro-
duced. The approach uses �rst-order theorem proving, in particular the Vampire
prover [11]. Symbol elimination allows the generation of quanti�ed invariants,
possibly with quanti�er alternations, for programs with unbounded data struc-
tures, such as arrays. While experiments of invariant generation in Vampire show
that symbol elimination generates non-trivial invariants, the initial implemen-
tation [6] of program analysis and invariant generation in Vampire has various
disadvantages: it can only be used with programs written in C, the number of
generated invariants is too large, and generating relevant invariants did not take
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into account the program speci�cation. Moreover, the process of invariant gen-
eration was not integrated, nor evaluated in a veri�cation framework, making it
hard to assess the quality and practical impact of invariant generation by symbol
elimination. In this paper we address these limitations, as follows.

We provide a new and fully automated tool for invariant generation, by us-
ing symbol elimination in Vampire (Section 2). To this end, we re-implemented
program analysis and invariant generation in Vampire. Our implementation is
fully compatible with the most recent development changes in Vampire. It is
designed to be independent of any particular programming language: inputs to
our tool are program loops written in a simple guarded command language. We
also improved program analysis in Vampire by generating loop properties that
are more easily handled by the saturation engine of Vampire. We also show that
symbol elimination can be used not only to produce invariants, but also as a
direct (incomplete) method to prove the correctness of the loop. Our work pro-
vides an alternative approach to Hoare-style loop veri�cation and cancels the
need for explicitly stated invariants as program annotations.

Reasoning about real programming languages poses several challenges, e.g.
using machine integers instead of mathematical ones or reasoning about out-of-
bound array accesses. In order to showcase the relevance of our implementation
in real applications, we integrated our approach to loop reasoning in Vampire into
the KeY veri�cation system [1], thus allowing automatic reasoning about loops
in Java programs (Section 3). We experimentally evaluate invariant generation
in Vampire on realistic examples (Section 4).

The main advantage of our tool comes with its full automation for generating
invariants, possibly with quanti�er alternations. Unlike [8, 7], where user-given
invariant templates are used, we require no user guidance and infer �rst-order
invariants with arbitrary quanti�ers. Contrary to [3], we do not use specialized
abstract domains, but use saturation theorem proving to generate quanti�ed
invariants. Theorem proving, in the form of SMT solving, is also used in [12] to
automatically compute loop invariants, however only with universal quanti�ers.

Our implementation of invariant generation in Vampire1 required 3000 lines
of C++ code. The integration of Vampire with KeY required about 1000 lines of
Java code.

2 Invariant Generation in Vampire

In this section, we describe our tool to generate quanti�ed loop invariants in
a fully automatic manner. Our work uses symbol elimination and consequence
�nding in Vampire and extends Vampire with a new framework for reasoning
about loops. Compared to the earlier implementation [6] of invariant genera-
tion in Vampire, our tool is independent of the language in which the loops
are expressed, simpli�es symbol elimination in saturation theorem proving, and
provides various ways to generate a relevant set of loop invariants. The overall
work�ow of our tool is given in Figure 1 and detailed below.

1 available at www.cse.chalmers.se/~simrob
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Fig. 1. Loop reasoning in Vampire.

Input. Inputs to our tool are loops with nested conditionals, written in a simple
guarded command language. Optionally, pre- and post-conditions can also be
speci�ed. We use standard arithmetical function symbols +,−, ·,÷ and predicate
symbols ≤,≥.

Loops may contain scalar variables and arrays ranging over Boolean values
and (unbounded) integers. We write A[p] to mean (an access to) the array ele-
ment at position p in the array A. We describe loops by a loop condition and an
ordered collection of guarded assignments; the loop condition is a quanti�er-free
Boolean formula over program variables. A guarded assignment is a pair of a
guard (also a Boolean formula) and a collection of assignments. In our setting, a
guarded assignment cannot contain two assignments to the same scalar variable
v. If two array assignments A[i] := e and A[j] := e′ occur in a guarded assign-
ment, the condition i 6= j is added to the guard. Figure 2 gives an example of a
loop using the syntax supported by our tool.

Loop semantics. We assume basic knowledge about program states and tran-
sition relations. We use n to denote the upper bound on the number of loop
iterations and write σ0 and σn to respectively speak about the initial and �nal
state of the loop. For any loop iteration i we have 0 ≤ i ≤ n. Given a program
state σi describing the value of each program variable after a loop iteration i, the
semantics of the loop is as follows. If the loop condition is valid in σi, the �rst
guarded assignment whose guard is valid is executed: its assignments are applied
simultaneously to σi. This way the state σi+1 corresponding to the loop iteration
i+ 1 is obtained from σi. For example, executing the guarded assignment true
-> x = 0; y = x; in a state where x = 1 holds, yields a state in which y = 1.
If the loop condition is not valid, or if none of the guards hold, σi becomes the
�nal state of the loop σn.

Loop assertions and invariants. For each loop variable v, we denote by vinit
the value of v at the initial state σ0 of the loop. By extending the language
of quanti�er-free Boolean expressions with universal and existential quanti�ers
over program variables v and their initial values vinit, we obtain the language of
loop assertions denoted by Lasrt. An invariant is a formula that uses symbols



requires (k == 0);

ensures forall int p, (0 <= p & p < n)

==> (A[p] >= B[p]

& A[p] >= C[p]

& (A[p] == B[p] | A[p] == C[p]));

while (k < n) do

:: B[k] >= C[k] -> A[k] = B[k]; k = k + 1;

:: true -> A[k] = C[k]; k = k + 1;

od

Fig. 2. Example of an input to our tool. This example loop is composed of two guarded
assignments, computes the maximum of elements in arrays B and C at every position
and writes it in the corresponding position in the array A. The program speci�cation
is given by the pre- (requires) and post-conditions (ensures).

from Lasrt and is valid for any state σi. The pre- and post-conditions of the
loops are formulas in Lasrt that are required to hold at σ0 and σn, respectively.

Extended loop properties. For every (scalar and array) variable v, we in-
troduce a function v(i) denoting the values of v at states σi corresponding to
loop iterations i. Note that v(0) is vinit. We call v(i) an extended expression

and denote the language of loop properties with extended expressions by Lextd.
Formulas in Lextd that are valid at any loop iteration are called extended loop

properties. Compared to [6], we simpli�ed Lextd as we do not use extended ex-
pressions describing loop iteration properties or update predicates over arrays.
This simpli�cation brought a signi�cant performance increase to using symbol
elimination for invariant generation (see Section 4).

Loop analysis. In the �rst step of our invariant generation procedure, we per-
form simple static analysis to generate extended loop properties. These formu-
las express (i) monotonicity properties of scalars; (ii) the transition relation
of the loop by translating the guarded assignments into logical formulas; (iii)
update properties of the array, and (iv) the validity of the loop condition at
arbitrary loop iterations. For the loop in Figure 2, the following formula describ-
ing a monotonically increasing behavior of k is one of the generated properties:
(∀i)(0 ≤ i < n =⇒ k(i+1) = k(i) + 1).

Compared to [6], we simpli�ed and improved loop analysis in Vampire. In
particular, array update properties expressing last updates to array positions
and extended properties using loop conditions are now formulated in a way that
makes them easier to handle by a �rst-order theorem prover, for example by
introducing fewer Skolem functions. With these improvements, we generate a
signi�cantly smaller number of invariants, without loss of interesting properties
(see Section 4).

Symbol elimination. While the properties in Lextd are valid at arbitrary loop
iterations, they are not yet invariants as they use symbols that are not in Lasrt

(they use extended expressions). The next step in our invariant generation pro-
cess is to eliminate the symbols that are not in Lasrt, by generating formulas that
only use symbols from Lasrt and are logical consequences of the properties in



Lextd. To this end we use the prover to perform symbol elimination and generate
invariants in Lasrt. For more details on symbol elimination we refer to [10].
Invariant �ltering. As a result of symbol elimination, a set of loop invariants
is computed. While [6] returned all invariants discovered during symbol elimi-
nation, we note that not all generated invariants are relevant to the user when
proving the partial correctness of the loop. In our work, we provide additional
options to control the process of invariant generation, as follows. If the user
provides a loop post-condition φ, we add an invariant �ltering step to symbol
elimination by proving ¬ψ ∧ I1 ∧ . . . ∧ Ik =⇒ φ, where ψ is the loop condi-
tion and I1, . . . , Ik are the invariants generated so far by symbol elimination. If
proving this implication succeeds, the invariants that were e�ectively used in the
proof are reported to the user.

Recall that invariants are logical consequences of extended loop properties,
hence the loop post-condition can be proved directly from the extended loop
properties. We therefore also extended loop analysis in Vampire by proving par-
tial correctness of loops using extended loop properties, without the need for
generating loop invariants by symbol elimination.
Output. We provide three options regarding the output of our tool. It can
consist of (i) the set of all invariants generated by symbol elimination, (ii) the
set of relevant invariants after �ltering using the loop speci�cation, or (iii) a
partial correctness proof of the loop.

3 Integration with the KeY System

In this section we describe the integration of our invariant generation method
to the KeY veri�cation system. We discuss the modularity a�orded by our tool
and its applicability to realistic examples.
Dynamic logic. KeY [1] is a deductive veri�er for functional correctness proper-
ties of Java source code. It uses dynamic logic (DL), a modal logic for reasoning
about programs. DL extends �rst-order logic with the modality [p]φ, where p
is a program and φ is another DL formula; [p]φ is true in a state from which
running the program p, in case of termination, results in a state where φ is true.
Symbolic execution. KeY uses symbolic execution. For that, DL is extended
by �explicit substitutions�, called updates. During the symbolic execution of a
program p, the e�ects of p are gradually, from the front, turned into updates,
and applied to each other. After some proof steps, an intermediate proof node
may look like Γ ` U [p′]φ, where a certain pre�x of p has turned into update
U , representing the e�ects so far, while a �remaining� program p′ is yet to be
executed. Note that most proofs branch over case distinctions, usually triggered
by Boolean expressions in the source code. The semantics of the Γ ` U . . . part
of a sequent is in many ways close to those of a guarded assignment in Vam-
pire's programming model. Γ can be understood in the same way as Vampire's
guards, while updates and Vampire's assignments share the same semantics of
simultaneous application. We therefore use symbolic execution to perform the
translation of Java programs to Vampire's guarded command language, as fol-



lows. Given a program p containing a loop, we apply symbolic execution to all
instructions preceding the loop, leading to a sequent:

Γ ` U [while (se) { b }; p′]φ

where se is a side e�ect-free Java expression2. As a step towards employing
Vampire, we launch a separate KeY proof at this point, starting from the sequent:
Γ, se′ ` UV[b]ψ. Here, se′ is the result of applying U to se, V is an anonymizing
update [2] meant to remove information on variables modi�ed by the loop body
b, and ψ is an uninterpreted predicate. This side proof is not meant to prove
anything, but only to carry out symbolic execution of any iteration (hence V)
of the loop body b. Since ψ is uninterpreted, the side proof started with this
sequent cannot be completed; however, assuming that they do not themselves
contain an unannotated loop, instructions of b can be symbolically executed. We
are then left with a proof tree containing one or more open nodes, all of which
have the form: Γ ′ ` {v1 := e1; . . . ; vk := ek}[ ]ψ. Each of these nodes corresponds
to a possible path of symbolic execution, which is transformed into a guarded
assignment:

Gamma' -> v1 = e1; ... ; vk = ek;

The translation of Java programs to Vampire's model has limitations how-
ever. It is for example not yet possible to fully express heap-related properties in
Vampire. Another limitation is the lack of support for unannotated loops within
b.
Integration. If the user is satis�ed with delegating the proof of correctness of
the loop to Vampire, when the Vampire proof succeeds, it is possible to simply
complete the main KeY proof by applying a dedicated axiomatic rule. If more
transparency is desired, it is of course possible to import the invariants produced
by Vampire (with or without invariant �ltering) into KeY and use these invariants
in the KeY inference rule normally used with user-annotated invariants. KeY
will however need to prove that the invariants generated by Vampire are indeed
invariants.

4 Experimental Results

We evaluated our tool on 19 challenging array benchmarks taken from academic
papers [5, 6] and the C standard library. Our benchmarks are listed in Table 1.
The program absolute computes the absolute value of every element in an array,
whereas copy, copyOdd and copyPositive copy (some) elements of an array to
another. The example find searches for the position of a certain value in an array,
returning -1 if the value is absent. The program findMax locates the maximum
in an unsorted array. The examples init, initEven, and initPartial initialize
(some) array elements with a constant, whereas initNonConstant sets the value
of array elements to a value depending on array positions. inPlaceMax replaces

2 More complex Boolean expressions are transformed away by KeY rules.



Table 1. Experimental results on loop reasoning using Vampire.

Name Cond. ∆direct ∆filter N5 Nfilter

absolute yes 0.271 2.358 19 3

copy no 0.043 2.194 9 (37) 1

copyOdd no 0.122 2.090 9 (214) 1

copyPartial no 0.042 3.145 9 1

copyPositive yes 9

�nd yes 123

�ndMax yes 3

init no 0.035 2.059 9 (35) 1

initEven no 10

initNonConstant no 0.114 2.054 9 (104) 1

initPartial no 0.042 3.129 9 1

inPlaceMax yes 39

max yes 0.696 3.535 20 2

mergeInterleave no 20

partition yes 164 (647)

partitionInit yes 98 (169)

reverse no 0.038 9 (42)

strcpy no 0.036 2.126 9 1

strlen no 0.018 2.023 2 (26) 1

swap no 26

every negative value in an array by 0, and max computes the maximum of two
arrays at every position. mergeInterleave interleaves the content of two arrays,
whereas partition copies negative and non-negative values from a source array
into two di�erent destination arrays. reverse copies an array in reverse order,
and swap exchanges the content of two arrays. Finally, strcpy and strlen are
taken from the standard C library. Each benchmark contains a loop together
with its speci�cation. Our benchmarks are available at the URL of our tool.

We carried out two sets of experiments: (i) invariant generation, by using
a guarded command representation of the benchmarks as inputs to our tool;
(ii) loop analysis of realistic Java programs, by specifying the examples as Java
methods with JML contracts as inputs to our tool and using our integration
of invariant generation in KeY. All experiments were performed on a computer
with a 2.1 GHz quad-core processor and 8GB of RAM.

Table 1 summarizes our results. The second column indicates whether the
benchmark loops contain conditionals. Column ∆direct shows the time required
to prove the partial correctness of the benchmarks, by proving the loop speci�-
cation from the extended properties generated by program analysis in Vampire.
On the other hand, column ∆filter gives the time needed by our tool to gener-
ate the relevant invariants from which the loop post-condition can be proved.
The time results are given in seconds. Where no time is given, a correctness
proof/�ltering of relevant invariants was not successful. Column N5 shows the
number of all invariants generated by our tool with a time limit of 5 seconds



(before �ltering of relevant invariants). The �gure listed in parentheses gives the
number of invariants produced by a previous implementation [6] of invariant
generation in Vampire. Finally, column Nfilter reports the number of invariants
selected as relevant invariants; the conjunction of these invariants is the relevant
invariant from which the loop speci�cation can be derived.
Invariant generation. Note that for all examples, our tool successfully gener-
ated quanti�ed loop invariants. Moreover, when compared to the previous im-
plementation [6] of invariant generation in Vampire, our tool brings a signi�cant
performance increase: in all examples where the implementation of [6] succeeded
to generate invariants, the number of invariants generated by our tool is much
less than in [6]. For example, in the case of the program copyOdd, the number of
invariants generated by our tool has decreased by a factor of 24 when compared
to [6]. This increase in performance is due to our improved program analysis
for generating extended loop properties. For the examples where the number
of invariants generated by [6] is missing, the approach of [6] failed to generate
quanti�ed loop invariants over arrays. We also note that invariants generated
by [6] are logical consequences of the invariants generated by our tool.
Invariant �ltering. When evaluating our tool for proving correctness of the
examples, we succeeded for 11 examples out of 19, as shown in column ∆direct of
Table 1. For these 11 examples, the partial correctness of the loop was proved by
Vampire by using the extended loop properties generated by our tool. Further, for
10 out of these 11 examples, our tool successfully selected the relevant invariants
from which the loop speci�cation could be proved. For the example reverse the
relevant invariants could not be selected within a 5 seconds time, even though
the partial correctness of the loop was established using the extended properties
of the loop. The reason why the relevant invariants were not generated lies in
the translation of the Java method into our guarded command representation:
due to the limited representation of heap-related properties, the post-condition
given to Vampire is weaker than the original proof obligation in KeY. This causes
the invariant relevance �lter to miss properties required to carry out the proof
within KeY, even though the relevant invariants were generated by our tool.

When analyzing the 8 examples for which our tool failed to generate relevant
invariants and to prove partial correctness, we noted that these examples involve
non-trivial arithmetic and array reasoning. We believe that improving reasoning
with full �rst-order theories in Vampire would allow us to select the relevant
invariants from those generated by our tool.

5 Conclusion

We provide a new and fully automated tool for invariant generation, by re-
implementing and improving program analysis and symbol elimination in Vam-
pire. We also extend symbol elimination to prove partial correctness of loops. We
integrated our tool with the KeY veri�cation system, allowing automatic reason-
ing about realistic Java programs using �rst-order proving. We experimentally
evaluated our tool on a number of examples coming from KeY. For future work,



we intend to improve theory reasoning in Vampire. We believe that our exam-
ples coming from invariant �ltering are challenging benchmarks for reasoning
with quanti�ers and theories, and intend to add these examples to the CASC
theorem proving competition. We are also interested in analyzing more complex
programs and support the translation of the full semantics of a programming
language such as Java into our program analysis framework. For doing so, new
features and extensions of the TPTP language supported by �rst-order theorem
provers are needed, for example the use of a �rst class Boolean sort as described
in [9].
Acknowledgments. We thank Martin Hentschel for his help with KeY.
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