1508.07829v1 [cs.LO] 31 Aug 2015

arxXiv

Using Program Synthesis for Program Analysis

Cristina David, Daniel Kroening, and Matt Lewis

University of Oxford

Abstract. In this paper, we identify a fragment of second-order logic
with restricted quantification that is expressive enough to capture nu-
merous static analysis problems (e.g. safety proving, bug finding, ter-
mination and non-termination proving, superoptimisation). We call this
fragment the synthesis fragment. Satisfiability of a formula in the syn-
thesis fragment is decidable over finite domains; specifically the decision
problem is NEXPTIME-complete. If a formula in this fragment is sat-
isfiable, a solution consists of a satisfying assignment from the second
order variables to functions over finite domains. To concretely find these
solutions, we synthesise programs that compute the functions. Our pro-
gram synthesis algorithm is complete for finite state programs, i.e. every
function over finite domains is computed by some program that we can
synthesise. We can therefore use our synthesiser as a decision procedure
for the synthesis fragment of second-order logic, which in turn allows us
to use it as a powerful backend for many program analysis tasks. To show
the tractability of our approach, we evaluate the program synthesiser on
several static analysis problems.

1 Introduction

Fundamentally, every static program analysis is searching for a program proof.
For safety analysers this proof takes the form of a program invariant [I], for
bug finders it’s a counter-model [2], for termination analysis it can be a ranking
function [3], whereas for non-termination it’s a recurrence set [4]. Finding each
of these proofs was subject to extensive research resulting in a multitude of
techniques.

The process of searching for a proof can be roughly seen as a refinement loop
with two phases. One phase is heuristic in nature, e.g. adjusting the unwinding
depth (for bounded model checking [2]), refining the set of predicates (for predi-
cate abstraction and interpolation [5l6]), selecting a template (for template-based
analyses [7]), applying a widening operator (for abstract interpretation based
techniques [I]), whereas the other phase usually involves a call to a decision pro-
cedure. From the perspective of the proof, the heuristic constrains the universe
of potential proofs to just one candidate (by fixing the unwinding bound, the
template, the set of predicates, etc), which is then validated by the other phase.
The unknowns in the first phase are proofs (second-order entities), whereas the
unknowns in the second phase are program variables. Essentially, the first phase
reduces a second-order problem to a first-order/propositional one.

Such a design makes it difficult to separate the problem’s formulation (the
second-order problem) from parts of the solving process, resulting in analyses

http://arxiv.org/abs/1508.07829v1

that are cluttered and fragile. Any change to the search process causes changes to
the whole analysis. Ideally, we would like a modular design, where the search for
a solution is encapsulated and, thus, completely separated from the formulation
of the problem.

The existing design is dictated by the state of the art in solver technology.
While the SAT/SMT technologies nowadays allow solving industrial sized in-
stances, there is hardly any progress made for second-order solvers.

Our Contributions. In this paper, we take a step towards addressing this sit-
uation by identifying a fragment of second-order logic with restricted quantifi-
cation that is expressive enough to capture numerous static analysis problems
(e.g. safety proving, bug finding, termination and non-termination proving, su-
peroptimisation) and solving it via program synthesis. We call this fragment the
synthesis fragment. The synthesis fragment is decidable over finite domains, and
its decision problem is NEXPTIME-complete.

If a formula in the synthesis fragment is satisfiable, a solution consists of a
satisfying assignment from the second order variables to functions over finite
domains. Additionally, every function over finite domains is computed by some
program that we can synthesise. This correspondence between logical satisfia-
bility and program synthesis allows us to design the decision procedure for the
synthesis fragment as a program synthesiser, which in turn allows us to use it
as a powerful backend for many program analysis tasks.

The program synthesiser uses a combination of bounded model checking, ex-
plicit state model checking and genetic programming. Additionally, one of its
important strategies is generalisation — it finds simple solutions that solve a
restricted case of the problem, then it tries to generalise to a full solution. Con-
sequently, our approach achieves surprisingly good performance for a problem
with such high complexity, as whown by our experimental evaluation on several
static analysis problems.

Our program synthesiser vs Syntar Guided Synthesis (SyGuS) [8]. Recently,
a successful approach to program synthesis is denoted by SyGuS. The SyGuS
synthesisers supplement the logical specification with a syntactic template that
constrains the space of allowed implementations. Thus, each semantic specifica-
tion is accompanied by a syntactic specification in the form of a grammar.

In contrast to SyGuS, our program synthesiser is optimised for program
analysis in the following ways:

1. Our specification language is a fragment of C, which results in concise speci-
fications. Using our tool to build a program analyser only requires providing
a generic specification of the problem to solve. The programs to be anal-
ysed do not need to be modified, symbolically executed or compiled to an
intermediate language. As shown by our experimental results in Sec 8, our
specifications are an order of magnitude smaller than the equivalent SyGuS
specifications.

2. We do not require specifications to include a grammar restricting the space of
solutions. The language in which we synthesise our programs is universal, i.e.

every finite function is computed by at least one program in our language.
Furthermore this language is concise, which means that programs in this
language tend to be short. This property of not requiring a grammar makes
it easy to target our specifications from an automated program analysis tool,
since the frontend analyser need not guess the syntax of a solution.

3. Our solution language has first-class support for programs computing mul-
tiple outputs, which allows us to directly encode lexicographic ranking func-
tions of unbounded dimension. We were unable to find a way to encode such
functions with SyGusS.

4. Our solver has first-class support for synthesising programs containing con-
stants. By contrast, SyGuS builds constants using unary encoding which
requires exponentially more space. We discuss this in Section

5. Our solver’s runtime is heavily influenced by the length of the shortest proof,
i.e. the Kolmogorov complexity of the problem as we will discuss in Sec [l If
a short proof exists, then the solver will find it quickly. This is particularly
useful for program analysis problems, where, if a proof exists, then most of
the time many proofs exist and some are short ([9] relies on a similar remark
about loop invariants).

Related logics. Other second-order solvers are introduced in [T0/TT]. As opposed
to ours, these are specialised for Horn clauses and the logic they handle is unde-
cidable. Wintersteiger et al. present in [I2] a decision procedure for a logic related
to the synthesis fragment, the Quantified bit-vector logic, which is a many sorted
first-order logic formula where the sort of every variable is a bit-vector sort. It
is possible to reduce formulae in the synthesis fragment over finite domains to
Effectively Propositional Logic [I3], but the reduction would require additional
axiomatization and would increase the search space, thus defeating the efficiency
we are aiming to achieve.

2 The Synthesis Fragment

In this section, we identify a fragment of second-order logic with a constrained
use of quantification that is expressive enough to encode numerous static analysis
problems. We will suggestively refer to the fragment as the synthesis fragment:

Definition 1 (Synthesis Fragment (SF)). A formula is in the synthesis
fragment iff it is of the form

E'Pl .. .Pm.QliL'l .. .QnZL'n.O'(Pl,. .. ,Pm,.fCl,.. .,ZL'n)

where the P; range over functions, the Q; are either 3 or V, the x; range over
ground terms and o is a quantifier-free formula.

If a pair (1.D> , ¥) is a satisfying model for the synthesis formula, then we write
(].5 , @) E o. For the remainder of the presentation, we drop the vector notation
and write z for 7, with the understanding that all quantified variables range
over vectors.

3 Program Analysis Specifications in the Synthesis
Fragment

Program analysis problems can be reduced to the problem of finding solutions
to a second-order constraint [T4JTONT5]. In this section we will show that, the
synthesis fragment is expressive enough to capture many interesting such prob-
lems. When we describe analyses involving loops, we will characterise the loop
as having initial state I, guard G, transition relation B.

Safety Invariants. Given a safety assertion A, a safety invariant is a set of states
S which is inductive with respect to the program’s transition relation, and which
excludes an error state. A predicate S is a safety invariant iff it satisfies the
following criteria:

ISV, 2’ I(z) — S(z) A (1)
S(z) ANG(z) A B(x,z") — S(z') A (2)
S(x) A —G(x) = A(x) (3)

() says that each state reachable on entry to the loop is in the set S, and in
combination with (2)) shows that every state that can be reached by the loop is
in S. The final criterion (B]) says that if the loop exits while in an S-state, the
assertion A is not violated.

Termination and non-termination. As shown in [I5], termination of a loop can
be encoded as the following formula, where W is an inductive invariant of the
loop that is established by the initial states I if the loop guard G is met, and R
is a ranking function as restricted by W:

AR, WNz,z' . I(x) AN G(x) — W(x) A
G(x) AN\W(x) A B(z,2') = W(2') A R(z) > 0A R(x) > R(x')

Similarly, non-termination can be expressed in the synthesis fragment as follows:

3N, C,xg.Vz.N(xzo) AN N(z) - G(z) AN(zx) = B(z,C(x)) A N(C(x))

N denotes a recurrence set, i.e. a nonempty set of states such that for each
s € N there exists a transition to some s’ € N, and C' is a Skolem function that
chooses the successor x’. More details on the formulations for termination and
non-termination can be found in [15].

4 The Synthesis Fragment over Finite Domains

When interpreting the ground terms over a finite domain D, the synthesis frag-
ment is decidable and its decision problem is NEXPTIME-complete. We use the
notation SFp to denote the synthesis fragment over a finite domain D.

Theorem 1 (SFp is NEXPTIME-complete). For an instance of Defini-
tion [with n first-order variables, where the ground terms are interpreted over
D, checking the truth of the formula is NEXPTIME-complete.

Proof. In Appendix [A.1]

Next, we are concerned with building a solver for SFp. A satisfying model for
a formula in SFp is an assignment mapping each of the second-order variables
to some function of the appropriate type and arity. When deciding whether a
particular SFp instance is satisfiable, we should think about how solutions are
encoded and in particular how a function is to be encoded. The functions all
have a finite domain and co-domain, so their canonical representation would
be a finite set of ordered pairs. Such a set is exponentially large in the size of
the domain, so we would prefer to work with a more compact representation if
possible.

We will generate finite state programs that compute the functions and repre-
sent these programs as finite lists of instructions in SSA form. This representation
has the following properties, proofs for which can be found in Appendix

Theorem 2. FEvery total, finite function is computed by at least one program in
this language

Theorem 3. Furthermore, this representation is optimally concise — there is no
encoding that gives a shorter representation to every function.

Finite State Program Synthesis To formally define the finite state synthesis
problem, we need to fix some notation. We will say that a program P is a finite
list of instructions in SSA form, where no instruction can cause a back jump,
i.e. our programs are loop free and non-recursive. Inputs x to the program are
drawn from some finite domain D. The synthesis problem is given to us in the
form of a specification ¢ which is a function taking a program P and input
x as parameters and returning a boolean telling us whether P did “the right
thing” on input x. Basically, the finite state synthesis problem checks the truth
of Definition

Definition 2 (Finite Synthesis Formula).
PVx € D.o(P,x)

To express the specification o, we introduce a function exec(P,z) that re-
turns the result of running program P with input z. Since P cannot contain
loops or recursion, exec is a total function.

Ezxample 1. The following finite state synthesis problem is satisfiable:
JPVx € Ng.exec(P,z) >«

One such program P satisfying the specification is return 8, which just
returns 8 for any input.

We now present our main theorem, which says that satisfiability of SFp can
be reduced to finite state program synthesis. The proof of this theorem can be
found in Appendix [Al

Theorem 4 (SFp is Polynomial Time Reducible to Finite Synthesis).
Every instance of Definition [, where the ground terms are interpreted over D
s polynomial time reducible to an instance of Definition[2.

Corollary 1. Finite-state program synthesis is NEXPTIME-complete.

We are now in a position to sketch the design of a decision procedure for SFp:
we will convert the SFp satisfiability problem to an equisatisfiable finite syn-
thesis problem which we will then solve with a finite state program synthesiser.
This design will be elaborated in Section [l

5 Deciding SFp via Finite-State Program Synthesis

In this section we will present a sound and complete algorithm for finite-state
synthesis that we use to decide the satisfiability of formulae in SFp. We begin
by describing a general purpose synthesis procedure (Section [B.]), then detail
how this general purpose procedure is instantiated for synthesising finite-state
programs. We then describe the algorithm we use to search the space of possible
programs (Sections [(£.3] [6 and [6.2)).

5.1 General Purpose Synthesis Algorithm

Algorithm 1 Abstract refinement algorithm

1: function SYNTH(inputs) 16: function REFINEMENT LOOP
2 (i1,...,in) < inputs 17: inputs < 0
3 query < 3P.o(i1, P)A.. Ao (in, P) 18: loop
4: result < decide(query) 19: candidate <— SYNTH(inputs)
5: if result.satisfiable then 20: if candidate = UNSAT then
6: return result.model 21: return UNSAT
7 else 22: res < VERIF(candidate)
8 return UNSAT 23: if res = valid then
24: return candidate
9: function VERIF(P) 25: else
10: query < Jx.—o(z, P) 26: inputs < inputs U res

11: result < decide(query)
12: if result.satisfiable then

13: return result.model
14: else
15: return valid

We use Counterexample Guided Inductive Synthesis (CEGIS) [16/17] to find
a program satisfying our specification. Algorithm [is divided into two proce-
dures: SYNTH and VERIF, which interact via a finite set of test vectors INPUTS.
The SYNTH procedure tries to find an existential witness P that satisfies the
partial specification: IP.Vx € INPUTS.o (2, P)

If SYNTH succeeds in finding a witness P, this witness is a candidate solution
to the full synthesis formula. We pass this candidate solution to VERIF which

determines whether it does satisfy the specification on all inputs by checking
satisfiability of the verification formula: 3z.—o(z, P)

If this formula is unsatisfiable, the candidate solution is in fact a solution to
the synthesis formula and so the algorithm terminates. Otherwise, the witness x
is an input on which the candidate solution fails to meet the specification. This
witness = is added to the INPUTS set and the loop iterates again. It is worth
noting that each iteration of the loop adds a new input to the set of inputs
being used for synthesis. If the full set of inputs is finite, this means that the
refinement loop can only iterate a finite number of times.

5.2 Finite-State Synthesis

We will now show how the generic construction of SectionB.Ilcan be instantiated
to produce a finite-state program synthesiser. A natural choice for such a synthe-
siser would be to work in the logic of quantifier-free propositional formulae and
to use a propositional SAT or SMT-BY solver as the decision procedure. How-
ever we propose a slightly different tack, which is to use a decidable fragment of
C as a “high level” logic. We call this fragment C~.

The characteristic property of a C~ program is that safety can be decided
for it using a single query to a Bounded Model Checker. A C™ program is just
a C program with the following syntactic restrictions:

(i) all loops in the program must have a constant bound;

(ii) all recursion in the program must be limited to a constant depth;

(iii) all arrays must be statically allocated (i.e. not using malloc), and be of
constant size.

C~ programs may use nondeterministic values, assumptions and arbitrary-width
types.

Since each loop is bounded by a constant, and each recursive function call
is limited to a constant depth, a C~ program necessarily terminates and in fact
does so in O(1) time. If we call the largest loop bound k, then a Bounded Model
Checker with an unrolling bound of £ will be a complete decision procedure for
the safety of the program. For a C~ program of size [and with largest loop
bound k, a Bounded Model Checker will create a SAT problem of size O(lk).
Conversely, a SAT problem of size s can be converted trivially into a loop-free
C~ program of size O(s). The safety problem for C~ is therefore NP-complete,
which means it can be decided fairly efficiently for many practical instances.

5.3 Candidate Generation Strategies

A candidate solution P is written in a simple RISC-like language £, whose syntax
is given in Fig. Blin Appendix[Bl We supply an interpreter for £ which is written
in C~. The specification function ¢ will include calls to this interpreter, by which
means it will examine the behaviour of a candidate £ program.

For the SYNTH portion of the CEGIS loop, we construct a C~ program
SYNTH.C which takes as parameters a candidate program P and test inputs. The
program contains an assertion which fails iff P meets the specification for each of
the inputs. Finding a new candidate program is then equivalent to checking the
safety of SYNTH.C for which we use the strategies described in the next section.

There are many possible strategies for finding these candidates; we employ the
following strategies in parallel:

(i) Explicit Proof Search. The simplest strategy for finding candidates is to
just exhaustively enumerate them all, starting with the shortest and progres-
sively increasing the number of instructions.

(i) Symbolic Bounded Model Checking. Another complete method for gener-
ating candidates is to simply use BMC on the SYNTH.C program.

(iii) Genetic Programming and Incremental Evolution. Our final strategy is
genetic programming (GP) [I8/19]. GP provides an adaptive way of searching
through the space of L-programs for an individual that is “fit” in some sense. We
measure the fitness of an individual by counting the number of tests in INPUTS
for which it satisfies the specification.

To bootstrap GP in the first iteration of the CEGIS loop, we generate a
population of random L-programs. We then iteratively evolve this population
by applying the genetic operators CROSSOVER and MUTATE. CROSSOVER com-
bines selected existing programs into new programs, whereas MUTATE randomly
changes parts of a single program. Fitter programs are more likely to be selected.

Rather than generating a random population at the beginning of each sub-
sequent iteration of the CEGIS loop, we start with the population we had at
the end of the previous iteration. The intuition here is that this population con-
tained many individuals that performed well on the k& inputs we had before,
so they will probably continue to perform well on the k£ + 1 inputs we have
now. In the parlance of evolutionary programming, this is known as incremental
evolution [20].

6 Searching the Space of Possible Solutions

An important aspect of our synthesis algorithm is the manner in which we search
the space of candidate programs. The key component is parametrising the lan-
guage L, which induces a lattice of progressively more expressive languages. We
start by attempting to synthesise a program at the lowest point on this lattice
and increase the parameters of £ until we reach a point at which the synthesis
succeeds.

As well as giving us an automatic search procedure, this parametrisation
greatly increases the efficiency of our system since languages low down the lattice
are very easy to decide safety for. If a program can be synthesised in a low-
complexity language, the whole procedure finishes much faster than if synthesis
had been attempted in a high-complexity language.

6.1 Parameters of language £

Program Length: . The first parameter we introduce is program length, denoted
by [. At each iteration we synthesise programs of length exactly [. We start with
[=1 and increment [whenever we determine that no program of length [can
satisfy the specification. When we do successfully synthesise a program, we are
guaranteed that it is of minimal length since we have previously established that
no shorter program is correct.

Word Width: w. An L-program runs on a virtual machine (the £-machine) that

is parametrised by the word width, that is, the number of bits in each internal
register and immediate constant.

Number of Constants: c. Instructions in £ take up to three operands. Since any
instruction whose operands are all constants can always be eliminated (since its
result is a constant), we know that a loop-free program of minimal length will
not contain any instructions with two constant operands. Therefore the number
of constants that can appear in a minimal program of length [is at most [. By
minimising the number of constants appearing in a program, we are able to use
a particularly efficient program encoding that speeds up the synthesis procedure
substantially.

6.2 Searching the Program Space

The key to our automation approach is to come up with a sensible way in
which to adjust the £-parameters in order to cover all possible programs. Two
important components in this search are the adjustment of parameters and the
generalisation of candidate solutions. We discuss them both next.

Adjusting the search parameters. After each round of SYNTH, we may need to
adjust the parameters. The logic for these adjustments is shown as a tree in
Fig. 0

Whenever SYNTH fails, we consider which parameter might have caused the
failure. There are two possibilities: either the program length | was too small,
or the number of allowed constants ¢ was. If ¢ < [, we just increment ¢ and try
another round of synthesis, but allowing ourselves an extra program constant. If
¢ = [, there is no point in increasing ¢ any further. This is because no minimal
L-program has ¢ > [, for if it did there would have to be at least one instruction
with two constant operands. This instruction could be removed (at the expense
of adding its result as a constant), contradicting the assumed minimality of the
program. So if ¢ = I, we set ¢ to 0 and increment [, before attempting synthesis
again.

If SYNTH succeeds but VERIF fails, we have a candidate program that is
correct for some inputs but incorrect on at least one input. However, it may be
the case that the candidate program is correct for all inputs when run on an
L-machine with a small word size. Thus, we try to generalise the solution to a
bigger word size, as explained in the next paragraph. If the generalisation is able
to find a correct program, we are done. Otherwise, we need to increase the word
width of the £-machine we are currently synthesising for.

Generalisation of candidate solutions. It is often the case that a program which
satisfies the specification on an £-machine with w = k will continue to satisfy
the specification when run on a machine with w > k. For example, the program
in Fig. 2 isolates the least-significant bit of a word. This is true irrespective of
the word size of the machine it is run on — it will isolate the least-significant bit
of an 8-bit word just as well as it will a 32-bit word. An often successful strategy
is to synthesise a program for an £-machine with a small word size and then to
check whether the same program is correct when run on an £-machine with a
full-sized word.

10

VERIF
Parameters succeeds
unchanged for small
words?

c:=0
l:=1+1

Fig. 1: Decision tree for increasing parameters of L.

The only wrinkle here is that we will sometimes synthesise a program con-
taining constants. If we have synthesised a program with w = k, the constants
in the program will be k-bits wide. To extend the program to an n-bit machine
(with n > k), we need some way of deriving n-bit-wide numbers from k-bit ones.
We have several strategies for this and just try each in turn. Our strategies are
shown in Fig. B BY(v,n) denotes an n-bit wide bitvector holding the value v
and b-c means the concatenation of bitvectors b and c¢. For example, the first
rule says that if we have the 8-bit number with value 8, and we want to extend
it to some 32-bit number, we’d try the 32-bit number with value 32. These six
rules are all heuristics that we have found to be fairly effective in practice.

int isolate_lsb (int x) { Examplil()l 11010
return x & —x; -x =01000110
} x&-x=00000010

Fig. 2: A tricky bitvector program

BY(m,m) — BV(n,n) BY(xz,m) — BY(x,n)
BY(m —1,m) — BV(n—1,n) BY(z,m) — BV(x,m)- BV(0,n —m)
BY(m+1,m) — BV(n+1,n) BY(z,m) — BV (z,m)-...-BV(x,m)

X times
Fig. 3: Rules for extending an m-bit wide number to an n-bit wide one.

6.3 Stopping Condition for Unsatisfiable Specifications

If a specification is unsatisfiable, we would still like our algorithm to terminate
with an “unsatisfiable” verdict. To do this, we can observe that any total function

11

taking n bits of input is computed by some program of at most 2" instructions
(a consequence of Theorems 2] and B]). Therefore every satisfiable specification
has a solution with at most 2" instructions. This means that if we ever need to
increase the length of the candidate program we search for beyond 2", we can
terminate, safe in the knowledge that the specification is unsatisfiable.

7 Soundness and Completeness

We will now state soundness and completeness results for the SFp solver. Proofs
for each of these theorems can be found in Appendix [Al

Theorem 5. Alg[l is sound — if it terminates with witness P, then P = o.

Theorem 6. Alg[dl with the stopping condition described in Section[6.3 is com-
plete when instantiated with C~ as a background theory — it will terminate for
all specifications o.

Since safety of C~ programs is decidable, Algorithm [Ilis sound and complete
when instantiated with C~ as a background theory and using the stopping con-
dition of Section This construction therefore gives as a decision procedure
for SFD.

Runtime as a Function of Solution Size. We note that the runtime of our solver
is heavily influenced by the length of the shortest program satisfying the spec-
ification, since we begin searching for short programs. We will now show that
the number of iterations of the CEGIS loop is a function of the Kolmogorov
complexity of the synthesised program. Let us first recall the definition of the
Kolmogorov complexity of a function f:

Definition 3 (Kolmogorov complexity). The Kolmogorov complexity K(f)
is the length of the shortest program that computes f.

We can extend this definition slightly to talk about the Kolmogorov com-
plexity of a synthesis problem in terms of its specification:

Definition 4 (Kolmogorov complexity of a synthesis problem). The
Kolmogorov complexity of a program specification K (o) is the length of the short-
est program P such that P is a witness to the satisfiability of o.

Let us consider the number of iterations of the CEGIS loop n required for
a specification o. Since we enumerate candidate programs in order of length,
we are always synthesising programs with length no greater than K (o) (since
when we enumerate the first correct program, we will terminate). So the space
of solutions we search over is the space of functions computed by L-programs
of length no greater than K (o). Let’s denote this set L(K(0)). Since there are
O(2%)) programs of length K (o) and some functions will be computed by more
than one program, we have |£(K (0))| < O(25(9)).

Each iteration of the CEGIS loop distinguishes at least one incorrect function
from the set of correct functions, so the loop will iterate no more than |L(K (0))]
times. Therefore another bound on our runtime is NTIME (2K(")).

12

8 Experiments

We implemented our decision procedure for SFp as the KALASHNIKOV tool. We
used KALASHNIKOV to solve formulae generated from a variety of problems taken
from superoptimisation, code deobfuscation, floating point verification, ranking
function and recurrent set synthesis, safety proving, and bug finding. The su-
peroptimisation and code deobfuscation benchmarks were taken from the exper-
iments of [21I]; the termination benchmarks were taken from SVCOMP’15 [22]
and they include the experiments of [15]; the safety benchmarks are taken from
the experiments of [23].

We would like to stress that these experiments serve to evaluate the potential
of using our program synthesiser as a backend for many program analysis tasks
and are not intended to compare performance with specialised solvers for each
of these tasks.

We ran our experiments on a 4-core, 3.30 GHz Core i5 with 8 GB of RAM.
Each benchmark was run with a timeout of 180s. The results are shown in
Table[Il For each category of benchmarks, we report the total number of bench-
marks in that category, the number we were able to solve within the time limit,
the average solution size (in instructions), the average number of iterations of
the CEGIS loop, the average time and total time taken. The deobfuscation and
floating point benchmarks are considered together with the superoptimisation
ones.

It should be understood that in contrast to less expressive logics that might be
invoked several times in the analysis of some problem, each of these benchmarks
is a “complete” problem from the given problem domain. For example, each of the
benchmarks in the termination category requires KALASHNIKOV to prove that
a full program terminates, i.e. it must find a ranking function and supporting
invariants, then prove that these constitute a valid termination proof for the
program being analysed.

Discussion of the experimental results. The timings show that for the instances
where we can find a satisfying assignment, we tend to do so quite quickly (on
the order of a few seconds). Furthermore the programs we synthesise are often
short, even when the problem domain is very complex, such as for liveness and
safety.

Not all of these benchmarks are satisfiable, and in particular around half of
the termination benchmarks correspond to attempted proofs that non-terminating
programs terminate and vice versa. This illustrates one of the current shortcom-
ings of KALASHNIKOV as a decision procedure: we can only conclude that a
formula is unsatisfiable once we have examined candidate solutions up to a very
high length bound. Being able to detect unsatisfiability of a SFp formula ear-
lier than this would be extremely valuable. We note that for some formulae we
can simultaneously search for a proof of satisfiability and of unsatisfiability. For
example, for some program P, we can construct a formula ¢ that is satisfiable
iff P terminates on all inputs, and another formula ¢y that is satisfiable iff P
does not terminate for some input [I5]. Therefore ¢ V ¢ is guaranteed to be
satisfiable, so we can synthesise a program proving ¢rV¢n and then check which

13

of ¢ and ¢n it proves. This avoids the bad case where we try to synthesise a
solution for an unsatisfiable specification.

|Category H#Benchmarks|#Solved‘Avg. solution size|Avg. iterations|Avg. time (s)‘Total time (s)‘
Superoptimisation 29 22 4.1 2.7 7.9 166.1
Termination 47 35 5.7 14.4 11.2 392.9
Safety 20 18 8.3 7.1 11.3 203.9
[Total I 96 | 75] 5.9 | 9.2 [103 [7629 |

Table 1: Experimental results.

To help understand the role of the different solvers involved in the synthe-
sis process, we provide a breakdown of how often each solver “won”, i.e. was
the first to return an answer. This breakdown is shown in Table 2al We see
that GP and explicit account for the great majority of the responses, with the
load spread fairly evenly between them. This distribution illustrates the different
strengths of each solver: GP is very good at generating candidates, explicit is
very good at finding counterexamples and CBMC is very good at proving that
candidates are correct. The GP and explicit numbers are similar because they
are approximately “number of candidates found” and “number of candidates
refuted” respectively. The CBMC column is approximately “number of candi-
dates proved correct”. The spread of winners here shows that each of the search
strategies is contributing something to the overall search and that the strategies
are able to co-operate with each other.

CBMC|Explicit| GP |Total SYNTH|VERIF|GENERALIZE| Total
1122 2499 (1654|5405 6937s|1114s 559's 8052s
21% 46% [31%(100% 86% | 14% 7% 100%

(a) How often each solver (b) Where the time is spent.
“wins”.

Table 2: Statistics about the experimental results.

#Benchmarks|#Solved|#TO|#Crashes|Avg. time (s)|Spec. size
KALASHNIKOV 20 18 2 0 11.3 341
ESOLVER 20 7 5 8 13.6 3140

Table 3: Comparison of KALASHNIKOV and ESOLVER on the safety benchmarks.

To help understand where the time is spent in our solver, Table 2b] shows
how much time is spent in SYNTH, VERIF and constant generalization. Note that
generalization counts towards VERIF’s time. We can see that synthesising can-
didates takes much longer than verifying them, which suggests that improved
procedures for candidate synthesis will lead to good overall performance improve-
ments. However, the times shown in this table include all the runs that timed
out, as well as those that succeeded. We have observed that runs which time out
spend more time in synthesis than runs which succeed, so the distribution here
is biased by the cost of timeouts.

14

8.1 Comparison to SyGuS

In order to compare KALASHNIKOV to another synthesis based decision proce-
dure, we translated the 20 safety benchmarks into the SyGuS format [§] and
ran the best available SyGuS solver (ESOLVER, taken from the SyGuS Github
repository on 5/7/2015)) on these benchmarks. We ran ESOLVER on the same
machine used for the previous experiments. The results of these experiments are
shown in Table [B] which contains the total number of benchmarks, the number
of benchmarks solved correctly, the number of timeouts, the number of crashes
(exceptions thrown by the solver), the mean time to successfully solve and the
total number of lines in the 20 specifications.

Our comparison only uses 20 of the 127 benchmarks because it was difficult
for us to convert from our specification format (a subset of C) into the SyGuS
format. In particular, there are no tools for converting C programs to SyGuS
specifcations and we found it quite difficult to write such a tool so we had to
do the conversion by hand. Since the ESOLVER tool crashed on many of the in-
stances we tried, we reran the experiments on the StarExec platform [24] to check
that we had not made mistakes setting up our environment, however the same
instances also caused exceptions on StarExec. A technical limitation of SyGuS’s
output format compared to KALASHNIKOV’s meant that while KALASHNIKOV
can express lexicographic ranking functions of unbounded dimension, SyGuS
cannot. The benchmarks we converted to SyGuS involved searching for ranking
functions, which meant that we could only use benchmarks that did not require
lexicographic ranking functions.

Overall, we can see that KALASHNIKOV performs significantly better than the
best SyGusS solver on these benchmarks, which validates our claim that KALASH-
NIKOV is a good backend for program analysis problems. It is also worth noting
that KALASHNIKOV specifications are significantly more concise than SyGuS
specifications, as witnessed by the total size of the specifications: the KALASH-
NIKOV specifications are around 11% of the size of the SyGuS ones.

We noticed that for a lot of the cases in which ESOLVER timed out, KALASH-
NIKOV found a solution that involved non-trivial constants. Since ESOLVER rep-
resents constants in unary (as chains of additions), finding programs containing
constants, or finding existentially quantified first order variables is very expen-
sive. KALASHNIKOV’s strategies for finding and generalising constants make it
much more efficient at this subtask.

9 Conclusions

We have shown that the synthesis fragment is well-suited for program verification
by using it to directly encode safety, liveness and superoptimisation properties.

We built a decision procedure for SFp via a reduction to finite state pro-
gram synthesis. The synthesis algorithm is optimised for program analysis and
uses a combination of symbolic model checking, explicit state model checking
and stochastic search. An important strategy is generalisation — we find simple
solutions that solve a restricted case of the specification, then try to generalise to

15

a full solution. We evaluated the program synthesiser on several static analysis
problems, showing the tractability of the approach.

References

1. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL.
(1977)

2. Clarke, E.M., Kroening, D., Yorav, K.: Behavioral consistency of C and verilog
programs using bounded model checking. In: DAC. (2003) 368-371

3. Floyd, R.W.: Assigning meanings to programs. (1967)
4. Gupta, A., et al.: Proving non-termination. In: POPL. (2008)
5. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided

abstraction refinement. In: CAV. (2000)

McMillan, K.L.: Lazy abstraction with interpolants. In: CAV. (2006)

Leike, J., Heizmann, M.: Ranking templates for linear loops. In: TACAS. (2014)

Alur, R., et al.: Syntax-guided synthesis. In: FMCAD. (2013)

Kong, S., Jung, Y., David, C., Wang, B., Yi, K.: Automatically inferring quantified

loop invariants by algorithmic learning from simple templates. In: APLAS. (2010)

10. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI. (2012) 405-416

11. Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified horn
clauses. In: CAV. (2013) 869-882

12. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. In: FMCAD. (2010)

13. Piskac, R., de Moura, L.M., Bjgrner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reasoning 44(4) (2010) 401-424

14. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.
In: PLDI. (2008) 281-292

15. David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-termination
proofs for bit-vector programs. In: ESOP. (2015)

16. Solar-Lezama, A.: Program sketching. STTT 15(5-6) (2013) 475-495

17. Brain, M., et al.: TOAST: Applying answer set programming to superoptimisation.
In: ICLP. (2006)

18. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)

19. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)

20. Gomez, F., Miikkulainen, R.: Incremental evolution of complex general behavior.
Adaptive Behavior (1997)

21. Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.
In: PLDI. (2011) 62-73

22. : http://sv-comp.sosy-lab.org/2015/.

23. David, C., Kroening, D., Lewis, M.: Danger invariants. CoRR (2015)

24. : https://wuw.starexec.org.

25. Fagin, R.: Generalized First-Order Spectra and Polynomial-Time Recognizable
Sets. In Karp, R., ed.: Complexity of Computation. (June 1974)

A Proofs
Al SFp

Theorem 7 (Fagin’s Theorem [25]). The class of structures A recognisable
in time |A|F, for some k, by a nondeterministic Turing machine is evactly the
class of structures definable by existential second-order sentences.

©XND

http://sv-comp.sosy-lab.org/2015/
https://www.starexec.org

16

Theorem 8 (SFp is NEXPTIME-complete). For an instance of Defini-
tion [with n first-order variables, where the ground terms are interpreted over
D, checking the truth of the formula is NEXPTIME-complete.

Proof. We will apply Theorem [Tl To do so we must establish the size of the uni-
verse implied by Theorem [7} Since Definition [[] uses n D variables, the universe
is the set of interpretations of the n variables. This set has size |D|™, and so by
Theorem [l Definition [I] over finite domains defines exactly the class sets recog-
nisable in (|D|")* time by a nondeterministic Turing machine. This is the class
NEXPTIME, and so checking validity of an arbitrary instance of Definition [
over D is NEXPTIME-complete.

A.2 Program Encodings

We encode finite-state programs as loop-free imperative programs consisting of
a sequence of instructions, each instruction consisting of an opcode and a tuple
of operands. The opcode specifies which operation is to be performed and the
operands are the arguments on which the operation will be performed. We allow
an operand to be one of: a constant literal, an input to the program, or the result
of some previous instruction. Such a program has a natural correspondence with
a combinational circuit.

A sequence of instructions is certainly a natural encoding of a program, but
we might wonder if it is the best encoding. We can show that for a reasonable
set of instruction types (i.e. valid opcodes), this encoding is optimal in a sense
we will now discuss. An encoding scheme E takes a function f and assigns it a
name s. For a given ensemble of functions F' we are interested in the worst-case
behaviour of the encoding F, that is we are interested in the quantitiy

|E(F)| = max{|E(f)| | f € F}
If for every encoding E’, we have that
|E(F)| = |E'(F)

then we say that F is an optimal encoding for F'. Similarly if for every encoding
E’, we have

O(IE(F)]) € O(IE'(F)])

we say that E is an asymptotically optimal encoding for F.

Lemma 1 (Languages with ITE are Universal and Optimal Encodings
for Finite Functions). For an imperative programming language including in-
structions for testing equality of two values (EQ) and an if-then-else (ITE) in-
struction, any total function f : S — S can be computed by a program of size
O(|S|1og |S]) bits.

Proof. The function f is computed by the following program:

17

t1 = EQ(x, 1)

t2 = ITE(t1, f(1), £(0))
t3 = EQ(x, 2)

t4 = ITE(t3, £(2), t2)

Each operand can be encoded in log,(|S| + 1) = log,(3 x |S]) bits. So each
instruction can be encoded in O(log|S|) bits and there are O(|S|) instructions
in the program, so the whole program can be encoded in O(|S|log |S]) bits.

Lemma 2. Any representation that is capable of encoding an arbitrary total
function f : S — S must require at least O(|S|log|S|) bits to encode some
functions.

Proof. There are |S|IS! total functions f : S — S. Therefore by the pigeonhole
principle, any encoding that can encode an arbitrary function must use at least
log, (|S|1°1) = O(|S|log, |S|) bits to encode some function.

From Lemma [I] and Lemma 2] we can conclude that any set of instruction
types that include ITE is an asymptotically optimal function encoding for total
functions with finite domains.

A.3 Complexity of Finite State Program Synthesis

Theorem 9 (SFp is Polynomial Time Reducible to Finite Synthesis).
Every instance of Definition [, where the ground terms are interpreted over D
s polynomial time reducible to an instance of Definition[2.

Proof. We first Skolemise the instance of definition [l to produce an equisatisfi-
able second-order sentence with the first-order part only having universal quan-
tifiers (i.e. bring the formula into Skolem normal form). This process will have
introduced a function symbol for each first order existentially quantified vari-
able and taken linear time. Now we just existentially quantify over the Skolem
functions, which again takes linear time and space. The resulting formula is an
instance of Definition

A.4 Soundness and Completeness
Theorem 10. Algorithm [is sound — if it terminates with witness P, then

PEo.

Proof. The procedure SYNTH terminates only if SYNTH returns “valid”. In that
case, Jr.—o (P, x) is unsatisfiable and so Vz.o(P, x) holds.

Lemma 3. Algorithm [0 is semi-complete — if a solution P |= o exists then
Algorithm [0 will find it.

Proof. If the domain X is finite then the loop in procedure SYNTH can only
iterate | X| times, since by this time all of the elements of X would have been

18

added to the inputs set. Therefore if the SYNTH procedure always terminates,
Algorithm [does as well.

Since the EXPLICITSEARCH routine enumerates all programs (as can be seen
by induction on the program length), it will eventually enumerate a program
that meets the specification on whatever set of inputs are currently being tracked,
since by assumption such a program exists. Since the first-order theory is decid-
able, the query in VERIF will succeed for this program, causing the algorithm to
terminate. The set of correct programs is therefore recursively enumerable and
Algorithm [M] enumerates this set, so it is semi-complete.

Theorem 11. Algorithm [1l with the stopping condition described in Section [6.3
is complete when instantiated with C~ as a background theory — it will terminate
for all specifications o.

Proof. If the specification is satisfiable then Theorem [3] holds, and if it is not
then the stopping condition will eventually hold at which point we (correctly)
terminate with an “unsatisfiable” verdict.

B Counterexample Guided Inductive Synthesis (CEGIS)

Candidate program

—

Synthesise Verify Valid @

~_

Counterexample input

Fig.4: Abstract synthesis refinement loop
C Encoding in C—

Integer arithmetic instructions:
add a b sub a b mul a b div a b
neg a mod a b min a b max a b

Bitwise logical and shift instructions:
and a b or ab xor a b
1shr a b ashr a b not a

Unsigned and signed comparison instructions:
le ab 1t ab sle ab
slt a b eq ab neq ab

Miscellaneous logical instructions:
implies a b ite a b c

Floating-point arithmetic:

fadd a b fsub a b fmul a b fdiv a b

Fig.5: The language £

19

	Using Program Synthesis for Program Analysis

