
HAL Id: hal-01395030
https://hal.sorbonne-universite.fr/hal-01395030v2

Submitted on 4 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling Moral Reasoning and Ethical Responsibility
with Logic Programming

Fiona Berreby, Gauvain Bourgne, Jean-Gabriel Ganascia

To cite this version:
Fiona Berreby, Gauvain Bourgne, Jean-Gabriel Ganascia. Modelling Moral Reasoning and Ethical
Responsibility with Logic Programming. 20th International Conference, Logic for Programming,
Artificial Intelligence, and Reasoning, Nov 2015, Suva, Fiji. pp.532-548, �10.1007/978-3-662-48899-
7_37�. �hal-01395030v2�

https://hal.sorbonne-universite.fr/hal-01395030v2
https://hal.archives-ouvertes.fr


Modelling Moral Reasoning and Ethical
Responsibility with Logic Programming

Fiona Berreby, Gauvain Bourgne, and Jean-Gabriel Ganascia

LIP6, Univ. Pierre and Marie Curie
4 Place Jussieu, 75005 Paris (France)

Email: {fiona.berreby, gauvain.bourgne, jean-gabriel.ganascia} @lip6.fr

Abstract. In this paper, we investigate the use of high-level action lan-
guages for representing and reasoning about ethical responsibility in goal
specification domains. First, we present a simplified Event Calculus for-
mulated as a logic program under the stable model semantics in order to
represent situations within Answer Set Programming. Second, we intro-
duce a model of causality that allows us to use an answer set solver to
perform reasoning over the agent’s ethical responsibility. We then extend
and test this framework against the Trolley Problem and the Doctrine of
Double Effect. The overarching aim of the paper is to propose a general
and adaptable formal language that may be employed over a variety of
ethical scenarios in which the agent’s responsibility must be examined
and their choices determined. Our fundamental ambition is to displace
the burden of moral reasoning from the programmer to the program
itself, moving away from current computational ethics that too easily
embed moral reasoning within computational engines, thereby feeding
atomic answers that fail to truly represent underlying dynamics.

1 Introduction

The study of morality from a computational point of view has attracted a grow-
ing interest from researchers in artificial intelligence; as reviewed in [1]. This en-
deavour can help us better understand morality, and reason more clearly about
ethical concepts that are employed throughout philosophical, legal and even tech-
nological domains. Confronting ethical theories and philosophical works with the
systematicity and logical constraints of programming languages indeed forces us
to think about, and make explicit, the underlying mechanisms that characterize
those works. It also sheds light on the possible inconsistencies or ambiguities
that they may contain. In addition, as the autonomy of artificial agents grows
and as an increasing amount of tasks are delegated to them, it becomes vital
to equip them with the capacity to process moral restrictions and goals, be it
within their own reasoning scheme or for interaction with human users.

The challenge therefore is to shift the burden of moral reasoning from the user
or programmer to the program itself. Current works in computational ethics too
often tend to embed moral factors within their computational engine, without



generating moral reasoning to speak of. The moral worth and causal implica-
tions of actions are atomically afforded, rather than extracted and ‘understood’
from facts and rules. In contrast, our aim is to provide a general and adaptable
framework that enables the artificial agent to both understand the situation in
which the dilemma arises and the ethical rules that constrain its actions, so as
to determine from these only the correct course of action. To achieve this, we
combine an entirely ethics-free model of the world with an ethical over-layer
that the agent can understand and apply back onto its knowledge of the world.
What is particularly important to note here is that at the centre of this process
lies the notion of causality, for only when the agent can reason about causes
and consequences can he begin to reason about moral choice and responsibility.
Therefore, our model of moral reasoning and responsibility pivots around our
discussion of causal models, which we implement in Event Calculus.

Formally, we chose the use of nonmonotonic logic as its study has been put
forward by A.I. researchers as a way to handle the kind of defeasible generali-
sations that pervade much of our commonsense reasoning, and that are poorly
captured by classical logic systems [11]. The term covers a family of formal frame-
works devised to apprehend the kind of inference in which conclusions stay open
to modification in the light of new information. On a regular basis it seems we
draw conclusions from bodies of data that can be dropped when faced with new
data. For example, we will hold that a certain bird can fly, until we learn that it is
a penguin. This kind of default based reasoning is significantly present in ethical
reasoning: we may determine the moral value of an action, for example theft, dif-
ferently depending on surrounding information. Such factors as the presence of
alternative options, indirect consequences, or extenuating circumstances might
overthrow our ethical judgement. Accordingly, nonmonotonic goal specification
languages are particularly well suited to modelling ethical reasoning.

The Doctrine of Double Effect (DDE) introduces fundamentally nonmono-
tonic precepts. It is a set of ethical criteria that was put forward most promi-
nently by Philippa Foot for evaluating the ethical permissibility of an action
that has both good and bad consequences [5]. It allows that while actions with
negative consequences are morally prohibited a priori, there may be instances in
which they are morally permissible. We therefore chose the DDE as the basis for
moral recommendation, and applied it onto the dilemma of Trolley. Moreover,
the DDE has been the focus of research in cognitive science, and was shown to
be consistently corroborated by demographically different groups[21]; we aim to
computationally explain but also test these intuitions. We begin by introducing
the DDE and related current works in computational ethics, then lay out the
basic tenets of ASP and the Event Calculus [Sects. 2 and 3]. Next, we expose
our extension of the Event Calculus that enables us to handle issues pertaining
to causal paths, and introduce our representation of the planning domain and
problem [Sects. 4 and 5]. We then discuss the definitions and models of the no-
tions of responsibility and prevention [Sect. 6], and describe the ethical motor
and implementation of the Doctrine of Double Effect [Sect. 7], before concluding
[Sect. 8].



2 Motivation

2.1 The Doctrine of Double Effect and The Trolley Problem

The DDE specifies four conditions that must be satisfied in order to render
morally permissible an action that has both a good and a bad effect:

1. Nature-of-the-act. The action itself must either be morally good or indifferent.
2. Means-end. The good effect must not be reached by means of the bad effect.
3. Right-intention. Only the good effect must be intended, while the bad effect

may only be an unintended side effect.
4. Proportionality. The good effect must be at least equivalent to the bad effect.

The DDE draws a distinction between intending harm and merely foreseeing
harm, and can justify departures from purely consequentialist thinking in which
only the proportionality condition operates. Significantly, it provides a reading
of the Trolley Problem, an ethical dilemma formulated in Foot’s 1967 paper.
Consider the following scenario:

(switch) A train is running towards five workmen repairing train tracks.
If the agent does nothing, the train will run over and kill them. However,
the agent has the option of actioning a switch that will deviate the train
off the tracks and onto side tracks along which one person is walking.
This will kill that person.

Intuitively, respondents tend to agree that this action (actioning the switch),
is ethically admissible [29]. This fits with the utilitarian notion that killing one
person to save five is the better option (the other option being no action at all).
Now take another case,

(push) There is no switch button, instead there is a bridge above the
tracks on which stands an onlooker. Here, the agent knows that if they
push the onlooker onto the tracks, the train will hit and kill the onlooker,
stop as a result of the crash, and spare the five workmen.

Respondents have significantly deemed this action ethically impermissible [29],
and are motivated by something other than utilitarian reasoning, since they
choose the death of five over the death of one. The DDE successfully interprets
this dilemma by justifying these seemingly inconsistent intuitions. Indeed, in the
second case (push), while the nature-of-the-act and proportionality conditions
are met, the means-end and right-intention conditions are violated: the death of
the onlooker is used as a means to preventing the death of the five workmen, and
as such is not just a foreseen side-effect but an intended act. About the nature-of-
the-act condition it is important to note that only the intrinsic nature of the act
itself is considered: even though pushing someone off a bridge is morally wrong,
the act of pushing alone is not, unlike, for instance, stealing or lying. Looking
back at the first case (switch), the death of the person walking on the other track
plays no upstream causal role in the saving of the five: they are saved whether
or not that one person dies, as long as the train leaves its original tracks.



2.2 Existing Works

In order to make clear the contribution of the present paper, it is necessary to
first look at existing approaches in computational ethics before discussing our
own. Pereira and Saptawijaya, in particular, also modelled the Trolley Problem
and the DDE using prospective logic [26].
They represent the situation in which the agent throws the switch as follows:

turnSide ← consider(throwingSwitch).
kill(1) ← human(X), onSide(X), turnSide.
end(saveMen, niKill(N)) ← turnSide, kill(N).
observedEnd ← end(X,Y).

In parallel, the case in which the agent pushes a person on the tracks is modelled
as follows:

onTrack(X) ← consider(shove(X)).
stopTrain(X) ← onTrack(X), heavy(X).
kill(1) ← human(X), onTrack(X).
kill(0) ← inanimateObject(X), onTrack(X).
end(saveMen,iKill(N)) ← human(X), stopTrain(X), kill(N).

In order to ascribe ethical criteria, they employ a priori constraints which rule
out impermissible actions according to a particular ethical rule (corresponding
to the means-end condition of the DDE) and a posteriori preferences that elim-
inate those solutions with worse consequences (the proportionality condition).
The means end condition, importantly, is obtained via the two rules ‘falsum ←
intentionalKilling.’ and ‘intentionalKilling ← end(saveMen,iKill(Y)).’

The difficulty with this kind of formalization is that it directly embeds the
moral requirement into the model of the situation by indicating whether the
killing is intentional (‘iKill(N)’ ), or not (‘niKill(N)’ ). The program is ‘told’
whether the outcome of the action fits with the ethical rules in place, through
atomic statements of the form ‘end(saveMen,iKill(N)) ← human(X), stopTrain(X),
kill(N)’. This is problematic for a number of reasons. First, it fails to represent
the actual reasoning that underpins moral decision making, in particular con-
cerning what constitutes intentionality. Second, because it atomically specifies
the ethical character of the situation’s outcome, it requires the creation of a dif-
ferent program for each new case. Therefore, even situations that share common
features must be modelled independently, as is the case with trolley variations.
This is redundant and can also lead to inconsistencies. Because rules lack ex-
pressive power, two identical expressions might refer to diverging stories, for
example there is nothing in ‘human(X), stopTrain(X), kill(N)’ that indicates
whether the killing is intentional or not, and as such could be employed in either
case (here it is used for the push case). Moreover, there is no account of causal-
ity, such that the action and its consequences are not dynamically linked; the
relationship between them is stated rather than inferred. Therefore, no account
of ethical responsibility can be discussed on its basis. Finally, the model cannot
logically confront ethical theories so as to make explicit their assumptions and
give insight into them, nor can it enable us to explore and generate new ethical
dilemmas for further testing. Even though it successfully points to the expres-



sive power of nonmonotonic logic for ethical reasoning, it seems that this account
fails to ”provide a general framework to model morality computationally” [26].
These remarks also apply to other current works in computational ethics, in-
cluding models concerned with the Belief Desire Intention framework [27][15].
Instead, establishing an unchanging and ethics-free account of the world atop
which can fit changeable ethical restrictions allows for generalisation, flexibility
and automation. Separating the ethical constraints from the facts of the world is
imperative if we are to model general ethical rules instead of performing case by
case discrimination that resembles ethical judgement more than it does ethical
theory.

3 Preliminaries

3.1 ASP

Answer Set Programming is a form of declarative logic programming suited
for representing different Artificial Intelligence problems, particularly those that
relate to knowledge representation and automated reasoning with incomplete
information. Problems are encoded as extended disjunctive programs, finite logic
theories from which are extracted stable models (answer sets) that declaratively
identify the solutions to these problems [6].

We give here a very succinct overview of the answer set semantics for a
program defined over a set of literals Lit (see [7] for more details). An ex-
tended disjunctive program (EDP) is a set of rules of the form: L1; · · · ;Ll ←
Ll+1, . . . , Lm, not Lm+1, . . . , not Ln (n ≥ m ≥ l ≥ 0) where each Li ∈ Lit is a posi-
tive/negative literal, namely, A or ¬A for an atom A. not is negation as failure
(NAF), and notL is called an NAF-literal. The symbol“;” represents disjunction.
For each rule r of the above form, head(r), body+(r), body−(r), and not body−(r)
denote the sets of (NAF-)literals {L1, . . . , Ll}, {Ll+1, . . . , Lm}, {Lm+1, . . . , Ln},
and {notLm+1, . . . , not Ln}, respectively. A rule r is an integrity constraint if
head(r) = ∅; and r is a fact if body(r) = ∅. A program P with variables is seman-
tically identified with its ground instantiation. The semantics of EDPs is given
by the answer set semantics [7]. A set S ⊆ Lit satisfies a rule r if body+(r) ⊆ S
and body−(r) ∩ S = ∅ imply head(r) ∩ S 6= ∅. S satisfies a ground program P if
S satisfies every rule in P . Let P be a program such that ∀r ∈ P, body−(r) = ∅.
Then, a set S ⊂ Lit is a (consistent) answer set of P if S is a minimal set
such that (i) S satisfies every rule from the ground instantiation of P , and (ii)
S does not contain a pair of complementary literals L and ¬L. Next, let P be
any EDP and S ⊆ Lit. For every rule r in the ground instantiation of P , the
rule rS : head(r)← body+(r) is included in the reduct PS if body−(r) ∩ S = ∅.
Then, S is an answer set of P if S is an answer set of PS .

3.2 The Event Calculus

The “Event Calculus” was first introduced in a 1986 paper by Bob Kowalski
and Marek Sergot [16] as a logic programming framework used to represent and



reason about the effects of events or actions [23]. First employed in database
applications, it has since then been integrated into other forms of logic pro-
gramming, classical logic and modal logic, and used in wider contexts such as
planning, abductive reasoning or cognitive robotics [18][22] [17].

The Event Calculus typically states that fluents (which are time-varying
properties of the world) are true or false depending on whether they have been
initiated or terminated by action occurrences. For the purpose of simplicity and
to make the study of causality clearer, discrete time is employed, and is repre-
sented by integers. To fit the requirements of modeling ethical dilemmas per-
taining to complex and realistic scenarios, one of our contributions has been to
introduce automatic events in addition to actions. These automatic events occur
when all their preconditions, in the form of fluents, hold, without direct input
from the agent. Actions additionally require that the agent carries them out.
As such, there are two types of events: actions and automatic events. We have
made a further distinction between what we have called inertial fluents and non
inertial fluents [22]. Once initiated by an event occurrence (or if initially true),
inertial fluents remain true until they are terminated by another event occur-
rence. Non inertial fluents are only true at the point in time at which they have
been initiated by an event occurrence, or at time T0 if they were true initially.
An action is performed by the agent when the course of events begins, at time
T0. A maximum of one automatic event can occur at each time point.

4 Adapted Event Calculus

Domain dependent axioms describe which events initiate and terminate which
fluents, and which fluents are preconditions to which events. The dynamic do-
main given here is composed as follows: T is a set of time points (as integers,
variables T1, T2, T3...), P]is a set of positive fluents (variables P1, P2, P3...),
F ]is a set of fluents, composed of the items in the set P and of their negation
(variables F1, F2, F3...), E ]is a set of events (variables E1, E2, E3...). Our calcu-
lus is based on eight primary predicates. Holds(F, T) indicates that F is true at
T; Initially(F) means that F is true at T0; NonInertial(F) points out the special
kinds of fluents that are non inertial. Occurs(E, T) indicates that E occurs at
T; Automatic(E) points out the special kinds of events that occur without di-
rect agent input - all events that are not automatic are actions by default and
require the agent’s volition in addition to fluent preconditions. Priority(E1, E2)
allows for prioritisation among automatic events but also among goals, i.e. be-
tween actions undertaken by the agent in cases where it is required to act more
than once. Effect(E, F) expresses that F is an effect of E and Precondition(F,
E) expresses that F is a precondition for E.

Fluents. In order to capture the behaviour of fluents relative to the occurrence of
events, we define auxiliary predicates in terms of primary predicates. Initiates(E,
P, T) indicates that E occurs and initiates P at T; Terminates(E, P, T) indicates
that E occurs and terminates P at T; Clipped(P, T) indicates that a fluent which
has been terminated by an occurrence of an event at T is clipped at T.



Initiates(E, P, T) ← Effect(E, P), Occurs(E, T).
Terminates(E, P, T) ← Effect(E, neg(P)), Occurs(E, T).
Clipped(P, T) ← Terminates(E, P, T).

We can now axiomatize the principles that govern fluents. A fluent which has
been initiated by an occurrence of an event at T, or was initially true, continues
to hold until the occurrence of another event which terminates it. However, if it
is non inertial, it holds at T only (or T0 if it was true initially). If it is not stated
that a fluent holds, then its negation is true.

Holds(P, T+1) ← Initiates(E, P, T).
Holds(P, T0) ← Initially(P).
Holds(P, T+1) ← Holds(P, T), not Clipped(P, T), not NonInertial(P).
Holds(neg(S), T) ← not Holds(S, T).

Events. In order to capture the behaviour of events relative to the truth values
of fluents (their preconditions), we first define a number of auxiliary predicates
that constrain this mechanism. MissingPrecondition(F, E, T) means that there
exists a precondition fluent F for E that does not hold at T; Incomplete(E, T)
expresses that E is incomplete at T if it is missing one or more preconditions;
Possible(E, T) expresses that E is possible at T if it is not missing any precon-
ditions. Overtaken(E, T) expresses the fact that an event E has been overtaken
by another event at T. This axiom must ensure that only one automatic event
occurs at each time point, while an infinite number of events might be possible
at any given time.

MissingPrecondition(F, E, T) ← Precondition(F, E), not Holds(F, T).
Incomplete(E, T) ← MissingPrecondition(F, E, T).
Possible(E, T) ← not Incomplete(E, T).
Overtaken(E1, T) ← Possible(E1, T), Possible(E2, T), Priority(E2, E1), E1!=E2.

We can now axiomatize the principles that govern the occurrence of events.
Occurs(E, T) denotes that E occurs at T if all its preconditions are true at T
and no other event that has priority over it is also possible at T. We also specify
that an event can only occur if it is possible.

Occurs(E, T) ← Possible(E, T), not Overtaken(E, T), Automatic(E).
← Occurs(E, T), not Possible(E, T).

5 Representing the Planning Domain and Problem

Defining the Domain and Problem. In order to represent the situation onto
which ethical constraints are to be applied, we must hierarchize and specify a
number of facts about the world we are aiming to represent. Within the present
model, the simulation of a situation is characterised by (a) An initial situation
that is composed by the truth values of all fluents at time T0; (b) A specification
of the actions available to the agent, and of their causal powers over fluents; (c)
A specification of automatic events, and of their causal powers over fluent; (d)
A specification of the precondition fluents for events.



Representing the Trolley Problem. Initial Situation. Because our model
aims at handling a general account of the world, it allows for the fact that both
switch and push are actions that the agent can carry out in a single situational
environment, rather than in two separate ones. As such, the initial situation
states that all persons are alive, that there are 5 people on the 4th section of the
main tracks and one person on the 3rd section of the side tracks (the sections of
the tracks on which the people are stationed were chosen arbitrarily), and that
the train is stationed on section 0 of the main tracks (see Fig.1). There is a con-
sequentialist specification in the DDE’s proportionality condition, namely that
the good effect must be at least equivalent to the bad effect. Therefore, people
who are involved in the dilemma are organised in numbered groups. Moreover,
on(train, B) is NonInertial since the train only stays on a section of the tracks
for one time point.

Initially(alive(G)). NbPersons(group1, 5).
Initially(on(group1, main(4))). NbPersons(group2, 1).
Initially(on(group2, side(3))). NbPersons(group3, 1).
Initially(on(train, main(0))). NonInertial(trainOn(B)).
Initially(on(group3, bridge)).

Event Preconditions and Effects. We determine the actions push and switch, and
the automatic events run and crash. Crash has priority over Run; therefore the
train stops as its preconditions for running are no longer fulfilled. In the follow-
ing statements, N refers to numbers, G denotes groups of people, M denotes
sections of the main tracks, L denotes sections of the side tracks, B denotes both
tracks (B = K ∪ L).

Precondition(on(train, B), run(train, B)). Precondition(on(G, bridge), push(G, B)).
Precondition(on(G, B), crash(G, B)). Precondition(on(train, main(0), switch)).
Precondition(on(train, B), crash(G, B)).
Effect(push(G, B), on(G, B)). Effect(crash(G, B), neg(on(train, B))).
Effect(switch, neg(on(train, main(0)))). Effect(crash(G, B), neg(alive(G))).
Effect(switch, on(train, side(0))). Priority(crash(G, B), run(B)).

Effect(run(train, main(N)), on(train, main(N+1))).
Effect(run(train, side(N)), on(train, side(N+1))).

6 Modelling Responsibility

6.1 Agent Responsibility Regarding Caused Events

Defining Causation. Causality is a subtle notion that has been widely dis-
cussed in the philosophy literature, from Hume [12] to present day works [30][25][8].



But the challenge of defining causality reaches far beyond philosophy, and is for
instance highly pertinent to legal decision making, such as in the event of a road
accident in which legal responsibility must be determined. Causality is also cen-
tral to the notion of ethical responsibility and decision making [3]. Agents are
typically held responsible for (some of) their actions, but also for some exter-
nal states of affairs that belong in the world. The question, when attributing
responsibility, is therefore to determine what these states of affairs are and why.
As far as the causal powers of an agent’s actions seem to constitute the only links
between them and the world, it is natural to suggest that agents are responsible
for those states of affairs which they have caused [4]. But there are also cases in
which an agent can be held responsible for something they didn’t cause, say by
failing to rescue a drowning child. Here, the fact that they may be in a position
to interact with the world and prevent a certain outcome still involves the notion
of causality. As such, this notion must be investigated and defined.

Going back to Hume, we may be tempted to suggest a definition of causality
in terms of counter-factual dependence: α is a cause of β, if, had α not hap-
pened, then β would not have happened. However, this naive definition fails to
capture a number of subtleties present in causality, as it cannot deal with cases
of preemption and over determination (when one cause may be replaced by an-
other or when there are more causes than are necessary to produce the effect).
Consider the following: Suzy throws a rock at a bottle (s-throws), and shatters it
(shatters). Billy was standing by with a second rock. Had Suzy not thrown her
rock, Billy would have shattered the bottle by throwing his rock (b-throws)[14].
Here, it is not the case that if (s-throws) had not happened, then (shatters)
would not have happened, since (b-throws) would have made (shatters) happen.
This definition therefore fails to capture the fact that something might have
a cause while not being counter-factually dependent on it. This is particularly
problematic when we want to address questions of responsibility: surely Suzy is
responsible for shattering the bottle regardless of Billy’s volitions.

Another branch of research has focused on structural causal models [9][24][25].
These have been particularly effective in assessing causal relationships between
variables. However, while they handle well issues of counter-factual dependency,
they fail to capture some of the intricacies emanating from the fact that causal
relations hold in dynamically changing situations [10]. In particular, they cannot
distinguish between conditions and transitions, or between actions and omissions
[9], yet these distinctions are central to the study of responsibility (for instance,
causal weight is not equally divided between acting and omitting to act). Re-
versely, as argued by Hopkins and Pearl in [10], the formal semantics of Situation
Calculus succeed in handling these issues. This is also true of Event Calculus,
and further motivates our choice of this particular formalism. The fluent/event
distinction in Event Calculus allows us to model the condition/transition divide,
and the facts that events occur and fluents hold or fail to hold provide the ade-
quate tools for addressing the action/omission distinction. These formal objects
that correspond in natural ways to the situations at hand. For more, see [10]. In
the next section, we present our corresponding account of causation.



Modelling Causation. We consider a fluent P to be a consequence of an event
E1 if E1 initiates P (or terminates neg(P)), regardless of whether another event
E2 would have initiated P in the absence of E1. Likewise, an event E1 is a
consequence of a fluent P if P is a precondition to E1, and both are true. This
accommodates for the possibility that there may be more than one precondition
for the occurrence of E1, and that P be not considered a cause of E1 if E1
does not occur (say because the other preconditions were not fulfilled). Our
model considers the causal links that hold between events and fluents (i.e. the
consequences that these would have on the world were they to obtain), separately
from whether they actually obtain. This, and our choice to define causality in
terms of consequences, affords us with a useable trace of causal paths and allows
us to dynamically assess causal relationships.

We first define a domain D such that D ≡ F ∪ E . Consequence(D1, D2) indi-
cates that D2 is a consequence of D1. The reflexivity of consequences is necessary
to simplify the definitions of predicates that contain the Consequence predicate.
For the sake of simplifying rules that pertain to causal chains, all fluents and
events that hold or occur are also considered consequences of themselves. As
such:

Consequence(E, F) ← Effect(E, F), Occurs(E, T), Holds(F, T+1).
Consequence(F, E) ← Precondition(F, E), Holds(F, T), Occurs(E, T).
Consequence(D1, D3) ← Consequence(D1, D2), Consequence(D2, D3).
Consequence(D, D) ← Holds(D, T).
Consequence(D, D) ← Occurs(D, T).

Now that we have established a model of causality, we can see that formulating
the bottle example in terms of an Event Calculus model, rather than via counter-
factual dependence, is unproblematic: If Suzy throws and hits the bottle, then
she is considered responsible for its shattering. If she doesn’t throw, and it is
specified that ‘b-throw ← not s-throw’, then Billy will throw and be considered
responsible.

6.2 Agent Responsibility Regarding Prevented Events

Defining Prevention. Ethical responsibility is most often associated with the
occurrence of events, for example pertaining to the number of deaths caused by
an air strike or the amount of aid given to a relief centre. Yet agent responsi-
bility is equally a question of avoided or prevented harms; think of lives saved
by a particular military strategy or medical investment, or of people rescued
from falling beneath the poverty threshold. Works in the computational ethics
literature often fail to even address this fact, or consider prevention uniformly
with causation [26][15]. However, these two concepts rely on severely different
mechanisms, and make different computational demands. In particular, unlike
causality which is concerned with the actual state of affairs of the world, preven-
tion requires that we be able to represent possible, but untrue worlds: we must
account for what could have happened - but didn’t. We must be able to say why
it didn’t happen, and whether the agent is truly responsible for this. Thus, to
model the fact that an agent prevents an event from occurring by performing an



action A, we must be in a position to compare the actual chain of events with
the hypothetical chain of events in which the agent does not perform A. Within
ASP, one way to achieve this is to simulate both cases and compare the results,
however, this solution requires post processing the individual answer sets. The
action theory architecture that specifies preconditions for events and fluents al-
lows us to avoid this procedure, and provides us with the traceable account of
causal paths needed to model ethical responsibility.

An event E1 prevents an event E2 if all three of the following are true: (a)
E1 terminates a fluent F that is a precondition to an event E3 of which E2 is a
consequence (note that it is possible that E2 ≡ E3); (b) all other preconditions
of E2 hold; (c) E2 does not occur. (a) ensures that the E1 may break the
causal chain between E1 and E2 at any point. For example E1 may impede
a precondition to E2, or impede the precondition to a precondition to E2. (b)
ensures that E2 would have happened had E1 not happened: it guarantees the
counter-factual dependency of E2 on ¬E1. (c) ensures that if E2 occurs as a
result of being caused by another event through another causal path, then E1
cannot be said to succeed in preventing E2.

Modelling Prevention. We model the Prevents predicate, which accounts for
the causal relations that exist but that have not been executed. We define the
predicate HypConsequence (D1, D2), which denotes that a fluent and an event
are causally linked, but says nothing about the actual state of the world, i.e.,
about whether this causal link has been instantiated. Hypothetical consequences,
like consequences, are transitive (and reflexive).

HypConsequence(E, F) ← Effect(E, F).
HypConsequence(F, E) ← Precondition(F, E).
HypConsequence(D1,D3) ← HypConsequence(D1,D2), HypConsequence(D2,D3).
HypConsequence(D,D).

Next, we define a number of prior predicates: TransTerminates(E1, F2) de-
notes that an event E transterminates a fluent F2 if it terminates a fluent F1
that is causally linked, and causally anterior to F2. This definition allows for
indirect cases where E affects a non contiguous fluent further down the causal
chain. NotPrevents(E1, E2) identifies the cases in which an event E1 causes the
termination of a precondition fluent to an event E2, but where at least one other
precondition for E2 is missing (i.e., one that has not been transterminated by
E1). Finally, in order to preclude the possibility that the event occurs via another
causal path, it is necessary to define the Happens(E) predicate that characterises
any event that has occurred at some point in time.

TransTerminates(E, F2) ← Terminates(E, F1, T), HypConsequence(F1, F2).
NotPrevents(E1, E2) ← TransTerminates(E1, F1), Precondition(F1, E2), Miss-
ingPrecondition(F2, E2, T1), not TransTerminates(E1, F2), F1!=F2.
Happens(E) ← Occurs(E, T).

We can now define the pivot predicate Prevents(E1, E2), which states that an
event E1 prevents and event E2 if E1 transterminates a precondition for E2, all
other preconditions for E2 hold and E2 does not happen.



Prevents(E1, E2) ← Occurs(E1, T), TransTerminates(E1, F), Precondition(F,
E2), not NotPrevents(E1, E2), not Happens(E2).

7 Ethical Implementation

7.1 Determining the Desirability of Events

In order to implement the DDE, which places additional ethical valuation on
actions with already determined desirable and undesirable effects, we must first
have an account of which events are desirable and which are not. One way of
doing this is by simply stating that, for instance, a train crash is undesirable
and that people staying alive is desirable. Within our semantics, however, it is
fitting to evaluate the desirability of events in terms of the effect they have on
ethically relevant fluents. Indeed, an event can only be measured relative to the
effect it has on the world. For instance, a collision is significant only in so far
as it changes the state or condition of the parties involved in it. We therefore
are interested in the moment at which events, atomically and independently of
surrounding factors, become desirable or undesirable.

Rights-based ethical theories are particularly well suited to this task, as they
make moral claims over the permissibility of actions depending on whether these
respect certain rights, which can be likened to states of affairs, such as, for ex-
ample, the right to property or the right to safety [20][28]. We base ourselves on
Beauchamp and Childress’s account of a right which they define as a “justified
claim that individuals and groups can make upon other individuals or upon so-
ciety; to have a right is to be in a position to determine by one’s choices, what
others should do or need not do” [2]. This definition captures well the fact that a
right denotes both a state of affairs for the person concerned (the exercise of the
right) and a constraint on others (which they can respect or violate through their
actions). We therefore chose to define an undesirable event as one that clips (vio-
lates) a right, which is here a special kind of fluent. We specify the corresponding
situational domain R as a set of rights, and the definitional axioms:

Undesirable(E) ← Effect(E, neg(R)).
Desirable(E) ← Effect(E, R).
Indifferent(E) ← not Desirable(E), not Undesirable(E).

7.2 The Doctrine of Double Effect.

The Nature-of-the-act Condition. The first axiom of the DDE is modelled
as such: Impermissible(A) ← not Desirable(A), not Indifferent(A).

The Means-end and the Right-intention Conditions. These two axioms
are collapsed into one rule within our model, for we consider that using an
event as a means to an end (i.e. for the occurrence or prevention of another
event), is equivalent to intending that event. Correspondingly, unintended side
effects cannot be means to ends. It follows that the two axioms are analogous
computationally, unless intentions are explicitly modelled. A good effect may be



reached in one of two ways, either by causing a desirable event or by preventing
an undesirable one. The reverse is true for bad effects, therefore, four rules must
be specified.

Impermissible(A, T) ← Occurs(A, T), Consequence(A, E1), Consequence(E1,
E2), Undesirable(E1), Desirable(E2).
Impermissible(A, T) ← Occurs(A, T), Consequence(A, E1), Prevents(E1, E2),
Undesirable(E1), Undesirable(E2).
Impermissible(A, T) ← Occurs(A, T), Prevents(A, E1), Prevents(E1, E2),
Desirable(E1), Undesirable(E2).
Impermissible(A, T) ← Occurs(A, T), Prevents(A, E1), Consequence(E1, E2),
Desirable(E1), Desirable(E2).

The Proportionality Condition. The fourth axiom of the DDE introduces a
consequentialist requirement, as it demands the weighing against each other of
the action’s good and bad effects. There are numerous ways in which effects can
be measured, both quantitatively and qualitatively. We chose to gauge events in
terms of the number of people involved in them and define the predicate Weight
⊆ E × N , determined for each event by rules of the type “Weight(crash(G, B),
N) ← NbPersons(G, N)”. As such, performing an action A at T is not permissible
if it causes two automatic events E1 and E2, which respectively involve N1 and
N2 numbers of people, and where E1 is undesirable and E2 is desirable, if N1 is
greater than N2.

Impermissible(A, T) ← Occurs(A, T), Consequence(A, E1), Consequence(A,
E2), Undesirable(E1), Desirable(E2), Weight(E1, N1), Weight(E2, N2), N1>N2.

Because of the combination of causation and prevention, as with the means-
end condition, three other axioms are also necessary to represent every possible
situation that might result from an action with both a good and bad effect,
corresponding to the Consequence x Prevents matrix (as with the previous con-
dition). In the model, if we reverse the number of people on the side and main
tracks, the switch action becomes impermissible, since more people will die if
the agent pushes the switch. The modular nature of the model allows us to play
around with the characteristics of the dilemma and explore the DDE.

7.3 Ethical Choice

The agent selects one and only one action (here either push or switch) to carry
out in separate scenarios, resulting in different answer sets, then only chooses to
perform the actions that are not impermissible.

1{Occurs(push(group3, main(2)), T), Occurs(switch, T)}1 ← T=0.
← Occurs(A, T), Impermissible(A, T).

We are then left with no, one or a number of stable models that each represent an
action that is permissible in regards to the specified situation and the ethical rules
that regulate the agent’s behaviour. In our model of the Trolley Problem and
consistently with experimental findings [21], the unique stable model represents
the choice of the switch action (see Appendix A). Note that for now, this is a



mostly non disjunctive stratified problem that could be programmed with logic
programming tools other than ASP. However, the extensions we envisage for the
model will make full use of the properties of ASP, in particular regarding ethical
plans.

8 Conclusion

Computing ethical theories allows us to reach a greater understanding of the
concepts at play, both formally in relation to the predicates and formalisms
employed, and in relation to notions used by philosophers and law-makers. Us-
ing ASP to model the DDE has shed light on the importance and difficulty
of handling causal paths in order to justify claims of ethical responsibility. In
particular, it has exposed the necessity to tackle both caused and prevented
events. Moreover, in the case of prevention, it has made clear the requirement
of adequately handling situational circumstances: an agent can only prevent an
event that would have occurred had he not acted. This underlines the fact that
responsibility concerns not just the effect of actions, but is to be apprehended
from the state of the world itself. While these remarks belong in the realm of
common sense for human agents, they are remarkably heavy in repercussion for
the modelling of autonomous agents faced with ethical challenges.

The model we have presented here adapts the Event Calculus to facilitate
the examination and resolving of ethical dilemmas within a nonmonotonic logic
domain. While its present focus is on the Trolley Problem and the DDE, its scope
is extensive and adaptable. In order to develop our model, we therefore envision
a number of future avenues. First, we believe that we need to further explore
ways of expressing intentionality so as to enable artificial agents to evaluate their
own moral choices as well as those of others. This will enable the study of other
ethical theories that are concerned with agent intention, such as the Doctrine of
Triple Effect, put forward by Kamm as a response to dilemmas that the DDE
fails to properly handle [13][19]. Staying within the Trolley Problem, we are also
currently working on the generation of ethical dilemmas based on the situational
domain. The aim of this is to test the DDE on numerous and novel variations of
the problem, with the possible adjunction of new empirical data. Creating new
dilemmas opens avenues for testing ethical theories and refining them. Finally, we
intend to model different ethical criteria such as Kant’s categorical imperative or
value-based ethics, thereby extending our framework to other ethical traditions
and applicative domains. This might also include the formulation of ethical plans
of action, working up towards a true planning domain.

References

1. M Anderson and S Anderson. Machine ethics. Cambridge University Press, 2011.

2. T Beauchamp and J Childress. Principles of Biomedical Ethics. Principles of
Biomedical Ethics. Oxford University Press, 2001.



3. H Beebee, C Hitchcock, and P Menzies. The Oxford handbook of causation. Oxford
University Press, 2009.

4. J Feinberg. Doing & deserving; essays in the theory of responsibility. 1970.

5. P Foot. The problem of abortion and the doctrine of the double effect. Applied
Ethics: Critical Concepts in Philosophy, 2:187, 2002.

6. M Gelfond. Answer sets. Foundations of Artificial Intelligence, 3:285–316, 2008.

7. M Gelfond and V Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9:365–385, 1991.

8. J Halpern and C Hitchcock. Actual Causation and the Art of Modelling In R.
Dechter, H. Geffner, J. Halpern (Eds.), Heuristics, Probability, and Causality, 2010.

9. J Halpern and J Pearl. Causes and explanations: A structural-model approach.
Part I: Causes. The British journal for the philosophy of science, 56(4):843–887,
2005.

10. M Hopkins and J Pearl. Causality and counterfactuals in the situation calculus.
Journal of Logic and Computation, 17(5):939–953, 2007.

11. J Horty. Nonmonotonic foundations for deontic logic. In Defeasible deontic logic.
Springer, 1997.

12. D Hume. A treatise of human nature. Courier Corporation, 2012.

13. F Kamm. The Doctrine of Triple Effect and Why a Rational Agent Need not Intend
the Means to His End: Frances M. Kamm. In Aristotelian Society Supplementary
Volume, volume 74, pages 21–39. Wiley Online Library, 2000.

14. B Kment. Modality and Explanatory Reasoning. Oxford University Press, 2014.

15. R Kowalski. Computational logic and human thinking: how to be artificially intel-
ligent. Cambridge University Press, 2011.

16. R Kowalski and M Sergot. A logic-based calculus of events. In Foundations of
knowledge base management, pages 23–55. Springer, 1989.

17. J Lee and R Palla. Reformulating the situation calculus and the event calculus in
the general theory of stable models and in answer set programming. Journal of
Artificial Intelligence Research, 2012.

18. F Lévy and J Quantz. Representing beliefs in a situated event calculus. In Pro-
ceedings of the 13th European Conference on Artificial Intelligence. Citeseer, 1997.

19. S M Liao. The loop case and Kamm’s doctrine of triple effect. Philosophical
Studies, 146(2), 2009.

20. J Locke. Two Treatises of Government. C. and J. Rivington, 1824.

21. J Mikhail. Universal moral grammar: Theory, evidence and the future. Trends in
cognitive sciences, 11(4):143–152, 2007.

22. R Miller and M Shanahan. Some alternative formulations of the event calculus. In
Computational logic: logic programming and beyond. Springer, 2002.

23. E T Mueller. Commonsense Reasoning: An Event Calculus Based Approach. El-
sevier Science, 2014.

24. J Pearl. Causal diagrams for empirical research. Biometrika, 82(4):669–688, 1995.

25. J Pearl. Causality: models, reasoning, and inference. Econometric Theory, 2003.

26. L M Pereira and A Saptawijaya. Modelling morality with prospective logic. In
Progress in Artificial Intelligence, pages 99–111. Springer, 2007.

27. L M Pereira and A Saptawijaya. Moral decision making with ACORDA. Short
Paper LPAR, 7, 2007.

28. A Ridley. Beginning Bioethics: A Text with Integrated Readings. Bedford, 1998.

29. P Singer. Ethics and intuitions. The Journal of Ethics, 9(3-4):331–352, 2005.

30. E Sosa and M Tooley. Causation, volume 27. Oxford University Press, 1993.



A Appendix A

The rules ‘1{occurs(push(group3, main(2)), T), occurs(switch, T)}1 :- T=0.’
and ‘:- occurs(A, T), impermissible(A, T).’ generate one stable model that cor-
responds to the permissible switch action.

initiates(switch, on(train, side(0)), 0).
initiates(run(train, main(0)), on(train, main(1)), 0).
initiates(run(train, side(0)), on(train, side(1)), 1).
initiates(run(train, side(1)), on(train, side(2)), 2).
initiates(run(train, side(2)), on(train, side(3)), 3).
occurs(switch, 0).
occurs(run(train, main(0)), 0).
occurs(run(train, side(0)), 1).
occurs(run(train, side(1)), 2).
occurs(run(train, side(2)), 3).
occurs(crash(group2, side(3)), 4).
overtaken(run(train, main(1)), 1).
overtaken(run(train, side(3)), 4).
prevents(switch, crash(group1, main(4))).
terminates(switch, on(train, main(0)), 0).
terminates(crash(group2, side(3)), alive(group2), 4).
terminates(crash(group2, side(3)), on(train, side(3)), 4).
permissible(switch, 0).

Disabling the second rule (‘:- occurs(A, T), impermissible(A, T).’) allows us
to look at the stable model for the impermissible push action:

initiates(push(group3, main(2)), on(group3, main(2)), 0).
initiates(run(train, main(0)), on(train, main(1)), 0).
initiates(run(train, main(1)), on(train, main(2)), 1).
occurs(run(train, main(0)), 0).
occurs(push(group3, main(2)), 0).
occurs(run(train, main(1)), 1).
occurs(crash(group3, main(2)), 2).
overtaken(run(train, main(2)), 2).
prevents(crash(group3, main(2)), crash(group1, main(4))).
terminates(crash(group3, main(2)), alive(group3), 2).
terminates(crash(group3, main(2)), on(train, main(2)), 2).
impermissible(push(group3, main(2)), 0).


