
JoCG 8(1), 125–152, 2017 125

Journal of Computational Geometry jocg.org

COMPETITIVE LOCAL ROUTING WITH CONSTRAINTS∗†

Prosenjit Bose,‡Rolf Fagerberg,§André van Renssen,¶‖and Sander Verdonschot‡

Abstract. Let P be a set of n vertices in the plane and S a set of non-crossing line segments
between vertices in P , called constraints. Two vertices are visible if the straight line segment
connecting them does not properly intersect any constraints. The constrained Θm-graph is
constructed by partitioning the plane around each vertex into m disjoint cones, each with
aperture θ = 2π/m, and adding an edge to the ‘closest’ visible vertex in each cone. We
consider how to route on the constrained Θ6-graph. We first show that no deterministic
1-local routing algorithm is o(

√
n)-competitive on all pairs of vertices of the constrained Θ6-

graph. After that, we show how to route between any two visible vertices of the constrained
Θ6-graph using only 1-local information. Our routing algorithm guarantees that the returned
path is 2-competitive. Additionally, we provide a 1-local 18-competitive routing algorithm
for visible vertices in the constrained half-Θ6-graph, a subgraph of the constrained Θ6-graph
that is equivalent to the Delaunay graph where the empty region is an equilateral triangle.
To the best of our knowledge, these are the first local routing algorithms in the constrained
setting with guarantees on the length of the returned path.

1 Introduction

A fundamental problem in any graph is the question of how to route a message from one
vertex to another. What makes this more challenging is that often in a network the routing
strategy must be local. Informally, a routing strategy is local when the routing algorithm
must decide which vertex to forward a message to based solely on knowledge of the source and
destination vertex, the current vertex and all vertices directly connected to the current vertex.
Routing algorithms are considered geometric when the graph that is routed on is embedded in
the plane, with edges being straight line segments connecting pairs of vertices and weighted by
the Euclidean distance between their endpoints. Geometric routing algorithms are important
in wireless sensor networks (see [11] and [12] for surveys of the area) since they offer routing
∗Research supported by NSERC, the Ontario Ministry of Research and Innovation, Carleton University’s

President’s 2010 Doctoral Fellowship, the Carleton-Fields Postdoctoral Award, the Danish Council for Inde-
pendent Research, Natural Sciences, grant DFF-1323-00247, and JST ERATO Grant Number JPMJER1305,
Japan.
†An extended abstract containing some of the results in this paper appeared in the 26th International

Symposium on Algorithms and Computation (ISAAC 2015) [5].
‡School of Computer Science, Carleton University, Ottawa, Canada, jit@scs.carleton.ca,

sander@cg.scs.carleton.ca
§Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark,

rolf@imada.sdu.dk
¶National Institute of Informatics, Tokyo, Japan, andre@nii.ac.jp
‖JST, ERATO, Kawarabayashi Large Graph Project

http://jocg.org/

JoCG 8(1), 125–152, 2017 126

Journal of Computational Geometry jocg.org

strategies that use the coordinates of the vertices to guide the search, instead of the more
traditional routing tables.

Most of the research has focused on the situation where the network is constructed
by taking a subgraph of the complete Euclidean graph, i.e. the graph that contains an edge
between every pair of vertices and the length of this edge is the Euclidean distance between
the two vertices. We study this problem in a more general setting with the introduction of
line segment constraints. Specifically, let P be a set of vertices in the plane and let S be a
set of line segments between vertices in P , with no two line segments intersecting properly.
The line segments of S are called constraints. Two vertices u and v can see each other if and
only if either the line segment uv does not properly intersect any constraint or uv is itself a
constraint. If two vertices u and v can see each other, the line segment uv is a visibility edge.
The visibility graph of P with respect to a set of constraints S, denoted Vis(P, S), has P as
vertex set and all visibility edges as edge set. In other words, it is the complete graph on P
minus all non-constraint edges that properly intersect one or more constraints in S.

This natural extension allows for more realistic network modeling by excluding edges
that cannot be used, such as ones crossing mountain ranges or areas of high interference
which would scramble the message if used. As such, this setting has been studied extensively
within the context of motion planning amid obstacles. Clarkson [9] was one of the first who
studied this problem and showed how to construct a (1 + ε)-spanner of Vis(P, S) with a
linear number of edges. A subgraph H of G is called a t-spanner of G (for t ≥ 1) if for each
pair of vertices u and v, the shortest path in H between u and v has length at most t times
the shortest path in G between u and v. The smallest value t for which H is a t-spanner is
the spanning ratio or stretch factor of H. Following Clarkson’s result, Das [10] showed how
to construct a spanner of Vis(P, S) with constant spanning ratio and constant degree. Bose
and Keil [7] showed that the Constrained Delaunay Triangulation (which contains an edge
between two visible vertices u and v if and only if uv is a constraint or there exists a circle
with u and v on its boundary that contains no vertices visible to u and v in its interior) is a
2.42-spanner of Vis(P, S). Recently, the constrained half-Θ6-graph (which is identical to the
constrained Delaunay graph whose empty visible region is an equilateral triangle, a formal
definition follows in Section 2) was shown to be a plane 2-spanner of Vis(P, S) [4] and all
constrained Θ-graphs with at least 6 cones were shown to be spanners as well [8].

However, though it is known that these graphs contain short paths, it is not known
how to route in a local fashion. In other words, other than by running some global shortest
path algorithm or flooding the network with messages, the vertices are still unable to
communicate with each other. To address this issue, we look at k-local routing algorithms in
the constrained setting, i.e. routing algorithms that must decide which vertex to forward
a message to based solely on knowledge of the source and destination vertex, the current
vertex and all vertices that can be reached from the current vertex by following at most
k edges. Furthermore, we require our algorithms to be competitive, i.e. the length of the
returned path needs to be related to the length of the shortest path in the graph.

In the unconstrained setting, there exists a 1-local 0-memory routing algorithm that
is 2-competitive on the Θ6-graph and 5/

√
3-competitive on the half-Θ6-graph (the Θ6-graph

consists of the union of two half-Θ6-graphs) [6]. In the same paper, the authors also show

http://jocg.org/

JoCG 8(1), 125–152, 2017 127

Journal of Computational Geometry jocg.org

that these ratios are the best possible, i.e. there are matching lower bounds.

In this paper, we show that the situation in the constrained setting is quite different:
no deterministic 1-local routing algorithm is o(

√
n)-competitive on all pairs of vertices of

the constrained Θ6-graph, regardless of the amount of memory (defined in Section 2) it is
allowed to use. This shows that routing in the constrained setting is considerably harder
than in the unconstrained setting.

Despite this lower bound, we describe a 1-local 0-memory routing algorithm between
any two visible vertices of the constrained Θ6-graph that guarantees that the length of the
path traveled is at most 2 times the Euclidean distance between the source and destination.
Additionally, we provide a 1-local O(1)-memory 18-competitive routing algorithm between
any two visible vertices in the constrained half-Θ6-graph. To the best of our knowledge,
these are the first local routing algorithms in the constrained setting with guarantees on the
path length.

2 Preliminaries

We define a cone C to be the region in the plane between two rays originating from a single
vertex. This vertex is referred to as the apex of the cone. We let six rays originate from each
vertex, with angles to the positive x-axis being multiples of π/3 (see Figure 1). Each pair
of consecutive rays defines a cone. We write Cui to indicate the i-th cone of a vertex u, or
Ci if the apex is clear from the context. For ease of exposition, we only consider point sets
in general position: no two vertices define a line parallel to one of the rays that define the
cones and no three vertices are collinear.

C0

C1C5

C4

C3

C2

u

Figure 1: The cones having apex u in the
Θ6-graph.

C0,0

C5,0

C4,0

C3,0

C2,0

u

C0,1

C1,0

C1,1

C1,2

C4,1

Figure 2: The subcones having apex u in
the constrained Θ6-graph. Constraints are
shown as thick red line segments.

Let vertex u be an endpoint of a constraint and let the other endpoint lie in cone
Cui . The lines through all such constraints split Cui into several subcones (see Figure 2). We
use Cui,j to denote the j-th subcone, in clockwise order, of Cui . When a constraint c = (u, v)
splits a cone of u into two subcones, we define v to lie in both of these subcones. We consider

http://jocg.org/

JoCG 8(1), 125–152, 2017 128

Journal of Computational Geometry jocg.org

a cone that is not split to be a single subcone.

The constrained Θ6-graph is constructed as follows: for each subcone Ci,j of each
vertex u, add an edge from u to the closest visible vertex in that subcone, where distance
is measured along the bisector of the original cone, not the subcone (see Figure 3). More
formally, we add an edge between two vertices u and v if v can see u, v ∈ Ci,j , and for
all vertices w ∈ Ci,j that can see u, |uv′| ≤ |uw′|, where v′ and w′ denote the orthogonal
projection of v and w on the bisector of Ci. Note that our general position assumptions
imply that each vertex adds at most one edge per subcone to the graph.

u

v
w

Figure 3: Three vertices are projected onto the bisector of a cone of u. Vertex v is the closest
vertex in the left subcone and w is the closest vertex in the right subcone.

Next, we define the constrained half-Θ6-graph. This is a generalized version of
the half-Θ6-graph as described by Bonichon et al. [2]. The constrained half-Θ6-graph is
similar to the constrained Θ6-graph with one major difference: edges are only added in
every second cone. More formally, its cones are categorized as positive and negative. Let
(C0, C2, C1, C0, C2, C1) be the sequence of cones in counterclockwise order starting from
the positive y-axis (see Figure 4). The cones C0, C1, and C2 are called positive cones and
C0, C1, and C2 are called negative cones. We add edges only in the positive cones (and
their subcones). Note that by using addition and subtraction modulo 3 on the indices, the
positive cone Ci has negative cone Ci+1 as clockwise next cone and negative cone Ci−1 as
counterclockwise next cone. A similar statement holds for negative cones. We use Cui and
C
u
i to denote cones Ci and Ci with apex u. For any two vertices u and v, we have v ∈ Cui

if and only if u ∈ Cvi (see Figure 4). Analogous to the subcones defined for the Θ6-graph,
constraints can split cones into subcones. We call a subcone of a positive cone a positive
subcone and a subcone of a negative cone a negative subcone (see Figure 5). We look at the
undirected version of these graphs, i.e. when an edge is added, both vertices are allowed to
use it. This is consistent with previous work on Θ-graphs.

Given a vertex w in a positive cone Cui of vertex u, we define the canonical triangle
Tuw to be the triangle defined by the borders of Cui (not the borders of the subcone of u
that contains w) and the line through w perpendicular to the bisector of Cui (see Fig. 6).
Note that for each pair of vertices there exists a unique canonical triangle.

Next, we define our routing model. A deterministic routing algorithm is k-local and
uses m-memory, if the vertex to which a message is forwarded from the current vertex u is a
function of s, t, Nk(u), and M , where s and t are the source and destination vertex, Nk(u)

http://jocg.org/

JoCG 8(1), 125–152, 2017 129

Journal of Computational Geometry jocg.org

C0

C1C2

C1

C0

C2

u

Figure 4: The cones having apex u in the
half-Θ6-graph.

C0,0

C2,0

C1,0

C0,0

C2,0

u

C0,1

C1,0

C1,1

C1,2

C1,1

Figure 5: The subcones having apex u in
the constrained half-Θ6-graph. Constraints
are shown as thick red line segments.

u

wa b

Figure 6: The canonical triangle Tuw.

is the k-neighborhood of u and M is a memory of size m, stored with the message. The
k-neighborhood of a vertex u is the set of vertices in the graph that can be reached from u
by following at most k edges. For our purposes, we consider a unit of memory to consist of
log2 n bits or a point in R2. Our model also assumes that the only information stored at
each vertex of the graph is Nk(u). Since our graphs are geometric, we identify each vertex
by its coordinates in the plane. Unless otherwise noted, all routing algorithms we consider in
this paper are deterministic 0-memory algorithms.

There are essentially two notions of competitiveness of a routing algorithm on a
subgraph of the visibility graph. One is to look at the Euclidean shortest path between the
two vertices, i.e. the shortest path in the visibility graph, and the other is to compare the
routing path to the shortest path in the subgraph. A routing algorithm is c-competitive with
respect to the Euclidean shortest path (resp. shortest path in the subgraph) provided that the
total distance traveled by the message is not more than c times the Euclidean shortest path
length (resp. shortest path length) between source and destination. The routing ratio of an
algorithm is the smallest c for which it is c-competitive.

Since the shortest path in the subgraph between two vertices is at least as long as

http://jocg.org/

JoCG 8(1), 125–152, 2017 130

Journal of Computational Geometry jocg.org

the Euclidean shortest path between them, an algorithm that is c-competitive with respect
to the Euclidean shortest path is also c-competitive with respect to the shortest path in the
subgraph. We use competitiveness with respect to the Euclidean shortest path when proving
upper bounds and with respect to the shortest path in the subgraph when proving lower
bounds.

Furthermore, we want to be able to talk about points at intersections of lines, thus
we distinguish between vertices and points. A point is any point in R2, while a vertex is part
of the input.

3 Lower Bound on Local Routing

We modify the proof by Bose et al. [3] (that shows that no deterministic routing algorithm is
o(
√
n)-competitive for all triangulations) to show the following lower bound.

Theorem 1. No deterministic 1-local routing algorithm is o(
√
n)-competitive with respect to

the shortest path on all pairs of vertices of the Θ6-graph of size n, regardless of the amount
of memory it is allowed to use.

Proof. The following construction is illustrated in Figure 7a-e. Consider a c × c grid of
vertices for an integer c and shift every second row to the right by half a unit. We stretch the
grid, such that each horizontal line segment has length 2c. Next, we replace each horizontal
line segment by a constraint to prevent vertical visibility edges and we remove all other line
segments. After that, we add two additional vertices, source s and destination t, centered
horizontally at one unit below the bottom row and one unit above the top row, respectively.

s

t

(a) (b) (c)

(d) (e) (f)

s

t

1

1 1 1

1/2 c c

Figure 7: Constructing the lower bound: (a) the gird, (b) after shifting, (c) after stretching
(d) adding the constraints, (e) adding s and t, (f) conforming to general position.

To conform to our general position assumption, we move all vertices by at most some
arbitrarily small amount ε, such that no two vertices define a line parallel to one of the rays
that define the cones and no three vertices are collinear (see Figure 7f). As part of this move,

http://jocg.org/

JoCG 8(1), 125–152, 2017 131

Journal of Computational Geometry jocg.org

we ensure that each vertex on the bottom row has s as its closest vertex in cone C2 or C4

(depending on whether it lies to the right or left of s), and that each vertex on the top row
has t as its closest vertex in cone C1 or C5 (again depending on whether it lies to the left
or right of t). This can be done e.g. by placing the bottom row on the upper hull of an
ellipse and placing the top row on the lower hull of an ellipse. On this point set and these
constraints, we build the constrained Θ6-graph G (see Figure 8). Note that vertical edges
only appear at the left and right grid boundaries.

s

t

Figure 8: The constrained Θ6-graph starting from a grid, using horizontal constraints to
block vertical edges, and the orange path of the routing algorithm.

Consider any deterministic 1-local ∞-memory routing algorithm and let π be the
path this algorithm takes when routing from s to t. We note that by construction, π consists
of at least c + 1 steps. If π consists of more than c

√
c non-vertical steps, we truncate it

after the first c
√
c non-vertical steps. Thus, in the remainder of this proof, we consider only

paths having at most k non-vertical steps for k ≤ c
√
c. The overall idea of the proof is to

reduce G to a Θ6-graph G′ of size Θ(c + k) in a way which does not change the path π
(up to its truncation point, if present) taken by the algorithm, and then to show that π
is not o(

√
c+ k)-competitive with respect to the shortest path in G′. This proves that no

deterministic 1-local ∞-memory routing algorithm can be o(
√
n)-competitive with respect to

the shortest path on all Θ6-graphs.

To construct G′, we define the surroundings of a vertex v on π to be v itself, the
vertices connected to it by either an edge or a constraint in G, and the constraints in G
between these vertices. Thus, for v in the interior of G, its surroundings are hexagonal in
shape and contain seven vertices and four constraints (see Figure 8). Informally, the union of
the surroundings of vertices of π can be seen as sweeping this hexagonal shape along π. For
v on the border of G, its surroundings are slightly smaller. For s and t, their surroundings
constitute the bottom and top row, including the constraints in these rows. We let G′ be
the Θ6-graph constructed on the union of the surroundings of all vertices of π ∪ {t} (the
inclusion of t is only relevant if π was truncated). This construction is illustrated in Figure 9.
Clearly, the graph G′ has O(c + k) vertices and constraints. It is easy to check that the
1-neighborhood of any vertex v on π is the same in G′ as in G, hence the routing algorithm
must follow π also in G′.

The bottom row contains c vertices. We now consider the 2
√
k horizontally most

central of these, that is, the first
√
k vertices to the left of s and the first

√
k vertices to

the right of s. Setting c ≥ 16, the bottom row does contain at least these 2
√
k vertices, by

http://jocg.org/

JoCG 8(1), 125–152, 2017 132

Journal of Computational Geometry jocg.org

u

s

t

Figure 9: The constrained Θ6-graph that looks the same from the orange path of the routing
algorithm, but has an mostly vertical dashed blue path.

k ≤ c
√
c. Setting c a bit higher, we can assume that it contains Ω(1) more vertices at each

end. Next, consider a vertical line through each of these 2
√
k vertices. Let π′ be π minus the

vertices s and t. We say that a vertex of π′ touches such a vertical line if its surroundings
contain a point on that line. Hence, any vertex along π′ touches O(1) vertical lines (see
Figure 8). Since the vertical lines are Ω(1) grid positions away from the left and right sides
of the grid, no vertical step of π′ can touch any of these lines. Hence, the total number of
line touches by the vertices along π′ is at most O(k). Hence, on average, a line is touched
O(k/

√
k) = O(

√
k) times. This implies that there exists a vertical line that is touched O(

√
k)

times. Let u be vertex on the bottom row whose vertical line is touched the fewest number
of times.

We now prove that a ‘mostly vertical’ path from u to the top row is contained in
G′, which will provide a path G′ between s and t much shorter than the path π which
the algorithm must follow. Assume first that the line of u is touched zero times. In the
remainder of the proof, we set c to be odd, such that vertices on the top and bottom row
align horizontally. Since the minimal horizontal distance between vertices in the grid is 2c,
while the maximal vertical distance is c, u can see exactly one vertex in C0, namely the
vertex it aligns horizontally with in the top row. Thus, there is a vertical edge between these
two vertices in G′. If the line of u is touched more than zero times, each touch covers a part
of the line with some parts of the hexagonal shape. The coverings may overlap, and they give
rise to a natural decomposition of the line into maximal covered segments with non-covered
segments in between. A core observation is that a covered segment vertically extending h
grid levels can be traversed by h zig-zag edges in G′, of total length O(ch). Some examples
of this are shown in Figure 10.

Another core observation is that for each uncovered segment of the line, there will
be a vertical edge in G′ from the top vertex of the covered segment below to the bottom
vertex of the covered segment above (again due to the vertex distances in the grid). Thus,
the vertical edge from the case of zero touches is broken up by zig-zag shaped detours (one
detour for each covered segment). The resulting path has length O(c

√
k), since the line

through u is touched by at most O(
√
k) vertices of π, each of which can cover only O(1) grid

levels of the line. Recalling that the edge from s to u has length at most c
√
k, we conclude

that G′ contains a path from s to t of length O(c
√
k): Follow the edge from s to u, follow

the above path from u to the top row of G′, and follow the edge to t.

http://jocg.org/

JoCG 8(1), 125–152, 2017 133

Journal of Computational Geometry jocg.org

u

v

u

v

(a) (b)

Figure 10: Two examples of covered segments and their zig-zag detours: (a) when π gets
close but does not meet the vertical line through u, (b) when π crosses the vertical line
through u once.

To complete the proof, we look at the number of non-vertical edges of π, i.e. k. If
k ≤ c, the routing path follows at least one vertical edge along the boundary of G. It follows
that π has length at least Ω(c2), as the left and right boundary of G are at distance Ω(c2)
from s. Since the length of the mostly vertical path is O(c

√
k), π is not o(c/

√
k)-competitive

on a graph of size Θ(c+ k), which for k ≤ c implies that π is not o(
√
c)-competitive on a

graph of size Θ(c). Hence, when we take n = c, the theorem is proven for this case.

If k > c, the length of π is dominated by the non-vertical edges of length c, leading to
a path length of Ω(ck). Since the length of the mostly vertical path is O(c

√
k), this implies

that π is not o(
√
k)-competitive on a graph of size Θ(k). Hence, when we take n = k, the

theorem is proven for this case.

Thus, since G′ can be constructed for any deterministic 1-local routing algorithm, we
have shown that no deterministic 1-local routing algorithm is o(

√
n)-competitive on all pairs

of vertices in a graph of size O(n).

4 Routing on the Constrained Θ6-Graph

In this section, we provide a 1-local routing algorithm on the constrained Θ6-graph for any
pair of visible vertices. Since the constrained Θ6-graph is the union of two constrained
half-Θ6-graphs, we describe a routing algorithm for the constrained half-Θ6-graph for the
case where the destination t lies in a positive subcone of the source s. After describing this
algorithm and proving that it is 2-competitive, we describe how to use it to route 1-locally
on the constrained Θ6-graph. Throughout this section, we use the following auxiliary lemma
proven by Bose et al. [4]. We say that a region is empty if it does not contain any vertices of
P .

Lemma 1. Let u, v, and w be three arbitrary points in the plane such that uw and vw are
visibility edges and w is not the endpoint of a constraint intersecting the interior of triangle
uvw. Then there exists a convex chain of visibility edges from u to v in triangle uvw, such
that the polygon defined by uw, wv and the convex chain is empty and does not contain any
constraints (see Fig 11).

http://jocg.org/

JoCG 8(1), 125–152, 2017 134

Journal of Computational Geometry jocg.org

u

v

w

x
y

Figure 11: A convex chain from u to v via x and y.

Recall that when working on upper bounds, we use the notion of competitiveness
with respect to the Euclidean shortest path: A routing algorithm is c-competitive with respect
to the Euclidean shortest path provided that the total distance traveled by the message is not
more than c times the Euclidean shortest path length between source and destination. The
routing ratio of an algorithm with respect to the Euclidean shortest path is the smallest c for
which it is c-competitive with respect to the Euclidean shortest path.

4.1 Positive Routing on the Constrained Half-Θ6-Graph

Before describing how to route on the constrained half-Θ6-graph when t lies in a positive
subcone of s, we first show that there exists a path in canonical triangle Tst.

Lemma 2. Given two vertices u and w such that u and w see each other and w lies in a
positive subcone Cui,j, there exists a path between u and w in the triangle Tuw in the constrained
half-Θ6-graph.

Proof. We assume without loss of generality that w lies in Cu0,j . We prove the lemma by
induction on the area of the canonical triangle Tuw. Formally, we perform induction on the
rank of the triangle in the ordering, according to their area, of the canonical triangles Txy of
all pairs of visible vertices x and y.

Base case: If Tuw is the smallest canonical triangle, then w is the closest visible
vertex to u in a positive subcone of u. Hence there is an edge between u and w and this
edge lies entirely inside Tuw.

Induction step: We assume that the induction hypothesis holds for all pairs of
vertices that can see each other and have a canonical triangle whose area is smaller than
the area of Tuw. If uw is an edge in the constrained half-Θ6-graph, the induction hypothesis
follows by the same argument as in the base case. If there is no edge between u and w, let
v0 be the vertex closest to u in the positive subcone that contains w, and let a0 and b0 be
the upper left and right corner of Tuv0 (see Figure 12). We assume without loss of generality
that v0 lies to the left of uw.

Let x be the intersection of uw and a0b0. By definition x can see u and w. Since v0
is the closest visible vertex to u, v0 can see x as well. Otherwise Lemma 1 would give us
a convex chain of vertices connecting v0 to x, all of which would be closer and able to see
u, contradicting that v0 is the closest visible vertex to u. By applying Lemma 1 to triangle

http://jocg.org/

JoCG 8(1), 125–152, 2017 135

Journal of Computational Geometry jocg.org

u

w

v0

v1

v2

a0 b0x

Figure 12: An example of a convex chain from v0 to w.

v0xw, a convex chain v0, v1, ..., vk = w of visibility edges connecting v0 and w exists and the
region bounded by x, v0, v1, ..., vk = w is empty (see Figure 12).

Since every vertex vi is visible to vertex vi+1, we can apply induction to each pair of
consecutive vertices along the convex chain. Depending on whether vi+1 ∈ Cvi0 or vi ∈ Cvi+1

1 ,
there exists a path between vi and vi+1 in Tvivi+1 or Tvi+1vi . Since each of these triangles is
contained in Tuw, this gives us a path between u and w that lies inside Tuw.

Positive Routing Algorithm for the Constrained Half-Θ6-Graph
Next, we describe how to route from s to t, when s can see t and t lies in a positive subcone
Csi,j (see Figure 13): When we are at s, we follow the edge to the closest vertex in the subcone
that contains t. When we are at any other vertex u, we look at all edges in the subcones
of Cui and all edges in the subcones of the adjacent negative cone Cu that is intersected by
st. An edge in a subcone of Cu is considered only if it does not cross st. For example, in
Figure 13, we do not consider the edge to v1 since it lies in Cu and crosses st. It follows that
we can cross st only when we follow an edge in Cui .

u

v1

v2

s

t

z

v3

Figure 13: An example of routing from s to t ∈ Cs0 . The dashed line represents the visibility
line between s and t.

Let z be the intersection of st and the boundary of Cu that is not a boundary of Cui .
We follow the edge uv that minimizes the unsigned angle ∠zuv. For example, in Figure 13,
when we are at vertex u we follow the edge to v2 since, out of the two remaining edges uv2
and uv3, ∠zuv2 is smaller than ∠zuv3. We note that edges in Cu are added by the vertices in

http://jocg.org/

JoCG 8(1), 125–152, 2017 136

Journal of Computational Geometry jocg.org

that cone, since u lies in their positive cone C. We also note that during the routing process,
t does not necessarily lie in Cui . Finally, since the algorithm uses only information about the
location of s and t and the neighbors of the current vertex, it is a 1-local routing algorithm.

We proceed by proving that the above routing algorithm can always perform a step,
i.e. at every vertex reached by the algorithm there exists an edge that is considered by the
algorithm.

Lemma 3. The routing algorithm can always perform a step in the constrained half-Θ6-graph.

Proof. Given two vertices s and t such that s and t can see each other, we assume without
loss of generality that t ∈ Cs0 . We maintain the following invariant (see Figure 14):

Invariant Let x be the last intersection of an edge of the routing path with st
(initially x is s), let v0, ..., vk denote the endpoints of the edges following x as
selected by the algorithm, and let x′ be the intersection of st and the horizontal
line through vk. The simple polygon defined by x, v0, ..., vk, x′ is empty and does
not contain any constraints.

vk

x

t

x′

v0

vk−1

Figure 14: By the invariant, the gray region is empty and does not contain any constraints.

When the routing algorithm starts at s, it looks at the subcone that contains t. Since
t is visible from s, this subcone contains at least one visible vertex. Hence, it also contains
a closest visible vertex v0 and by construction, s has an edge to v0. Therefore, when the
routing algorithm starts at s, it can follow an edge.

To see that the invariant is satisfied, we need to show that triangle sv0x′ is empty and
does not contain any constraints in its interior. By construction s cannot be the endpoint
of any constraints in the interior of sv0x′, hence since sx′ and sv0 are visibility edges, any
constraint has at least one endpoint in sv0x′. Thus, it suffices to show that sv0x′ is empty.
We prove this by contradiction, so assume that it is not empty. Since sv0 and sx′ are visibility
edges and by construction s is not the endpoint of a constraint intersecting the interior of
sv0x

′, Lemma 1 gives us a convex chain of visibility edges between v0 and x′. Since the
region bounded by sv0, sx′, and this chain is empty and does not contain any constraints,
the vertex along this chain that is closest to s is visible to s. However since every vertex in
sv0x

′ is closer to s than v0, this contradicts the fact that v0 is the closest visible vertex to s.
Hence, triangle sv0x′ must be empty and the invariant is satisfied.

http://jocg.org/

JoCG 8(1), 125–152, 2017 137

Journal of Computational Geometry jocg.org

When the routing algorithm is at vertex u (u 6= s), we assume without loss of
generality that u lies to the left of st. Let h be the halfplane below the horizontal line
through t and let h′ be the halfplane to the left of st. We need to show that u has at least
one edge in the union of Cu0 ∩ h and Cu1 ∩ h ∩ h′. We first show that there exists a vertex
that is visible to u in the union of Cu0 ∩ h and Cu1 ∩ h ∩ h′, by showing that such a vertex
exists in the union of Cu0 ∩ h∩ h′ and C

u
1 ∩ h∩ h′. Since t lies in this region, we know that it

is not empty. Consider all vertices in this region and let v be the vertex in this region that
minimizes ∠x′uv. Note that we did not require there to be an edge between u and v. Since
v minimizes ∠x′uv and no constraint can cross st or ux′, v is visible from u. We consider
two cases: v lies in a subcone of Cu0 and v lies in a subcone of Cu1 .

If v lies in Cu0 ∩ h ∩ h′, it follows from Lemma 2 and the fact that v is visible from
u that there exists a path between u and v that lies inside Tuv. Since Tuv is contained in
Cu0 ∩ h, there exists an edge in Cu0 ∩ h and the routing algorithm can perform a step.

If v lies in Cu1 ∩ h ∩ h′, it follows from Lemma 2 and the fact that v is visible from
u that there exists a path between u and v that lies inside Tvu. Canonical triangle Tvu
intersects three cones of u (see Figure 15): Cu0 , C

u
1 , and Cu2 . Since the routing algorithm

follows edges in Cu0 or Cu1 , the routing path reaches u by following edge vk−1u that lies in
either Cu0 or Cu1 . This implies that Tvu ∩ Cu2 is contained in the region of the invariant and
is therefore empty. Hence, the first edge on the path from u to v lies in either Cu0 ∩ h or
C
u
1 ∩ h ∩ h′ and the algorithm can perform a step.

u

x

t

x′

v0

vk−1

v

Figure 15: By the invariant, the gray region is empty, so the path between u and v lies inside
Tvu ∩ (Cu0 ∪ C

u
1).

It remains to show that after the algorithm takes a step, the invariant is satisfied
at the new vertex v. Let uv be the edge that the algorithm followed and let x′′ be the
intersection of st and the horizontal line through v. We consider three cases (see Figure 16):
(a) v lies in a subcone of Cu1 , (b) v lies in a subcone of Cu0 and uv does not cross st, and (c)
v lies in a subcone of Cu0 and uv crosses st.

Case (a): If v lies in a subcone of Cu1 , we need to show that the quadrilateral
uvx′′x′ is empty and does not contain any constraints (see Figure 16a). We first show that
u cannot be the endpoint of a constraint intersecting the interior of uvx′′x′. We prove this
by contradiction, so assume it is and let y be the other endpoint of the constraint. We first

http://jocg.org/

JoCG 8(1), 125–152, 2017 138

Journal of Computational Geometry jocg.org

u

x

t

x′

v0

vk−1

v x′′
u

x

t

x′

v0

vk−1

v x′′

x

t

x′

v0

vk−1

v

u

x′′

q

(a) (b) (c)

Figure 16: The three types of steps the algorithm can take: (a) v lies in a subcone of Cu1 , (b)
v lies in a subcone of Cu0 and uv does not cross st, and (c) v lies in a subcone of Cu0 and uv
crosses st.

note that ∠x′uy < ∠x′uv. We look at Cy1,j , the subcone of Cy1 that lies below uy, and let
z be the lowest vertex in this subcone. If u is the closest visible vertex in this subcone,
uy would be an edge, which contradicts that v minimizes ∠x′uv. Otherwise, since z is the
lowest vertex in Cy1,j , the visible region of Tzu is empty and uz is an edge. However, since
∠x′uz < ∠x′uy < ∠x′uv, we have a contradiction. Thus u cannot be the endpoint of a
constraint intersecting the interior of uvx′′x′.

Since u is not the endpoint of a constraint intersecting the interior of uvx′′x′, and uv,
ux′, and x′x′′ are visibility edges, any constraint intersecting the interior of uvx′′x′ has at
least one endpoint in uvx′′x′. Thus it suffices to show that uvx′′x′ is empty. We prove this by
contradiction, so assume that uvx′′x′ is not empty and let y be the lowest vertex in uvx′′x′.
Let Cy1,j be the subcone of Cy1 that contains u. Vertex u is visible to y, since any constraint
crossing uy has an endpoint in Cu1 below y, contradicting that y is the lowest vertex, or in
the region bounded by x, v0, ..., vk−1, u, x′ which contradicts the invariant. Hence y has an
edge in Cy1,j . This edge cannot be to u since ∠x′uy < ∠x′uv. Since y is the lowest vertex
in uvx′′x′, it cannot have an edge to a vertex in uvx′′x′. Since by the invariant the region
bounded by x, v0, ..., vk−1, u, x′ is empty, the edge of y in Cy1,j must cross uv. However, this
contradicts the fact that the constrained half-Θ6-graph is plane. Thus, uvx′′x′ is empty of
both vertices and constraints.

Case (b): If v lies in a subcone of Cu0 and uv does not cross st, we again need
to show that the quadrilateral uvx′′x′ is empty and does not contain any constraints (see
Figure 16b). We first show that uvx′′x′ is empty. We prove this by contradiction, so assume
that uvx′′x′ is not empty and let y be the lowest vertex in uvx′′x′. We consider two cases: y
lies in Cu1 and y lies in Cu0 . Since the case where y lies in Cu1 is analogous to the Case (a),
we focus on the case where y lies in a subcone of Cu0 .

If y lies in a subcone of Cu0 and y is visible to u, uy would be an edge and ∠x′uy <
∠x′uv. So, assume that y is not visible from u. This means that there is a constraint that
crosses uy. Since the line st and the edges of the region bounded by x, v0, ..., vk−1, u, x′ are
visibility edges, the lower endpoint of this constraint must lie in x, v0, ..., vk−1, u, v, x′′. By the

http://jocg.org/

JoCG 8(1), 125–152, 2017 139

Journal of Computational Geometry jocg.org

invariant, it cannot lie in x, v0, ..., vk−1, u, x′, so it must lie in uvx′′x′ and below y. However,
this contradicts that y is the lowest vertex in uvx′′x′. Since we arrived at a contradiction in
both cases, we conclude that quadrilateral uvx′′x′ is empty.

Next, we show that uvx′′x′ does not contain any constraints. Since uvx′′x′ is empty, a
the only way a constraint can intersect it, is when u is one of its endpoints. Hence, it remains
to show that u cannot be the endpoint of a constraint intersecting the interior of uvx′′x′. We
prove this by contradiction, so assume it is and let y be the other endpoint of the constraint.
Since uvx′′x′ is empty, uy crosses vx′′. Since st is a visibility edge, uy cannot cross it. Vertex
y cannot lie in Cu1 ∩ h′, since this would imply that either uy is an edge or there exists a
vertex z in the subcone of y below uy that contains u, which in combination with Lemma 2
implies that there exists a path between y and u that lies below uy. Since both alternatives
contradict that v minimizes ∠x′uv, y cannot lie in Cu1 ∩ h′. Hence, it remains to consider
the case where y lies in a subcone of Cu0 . Let Cu0,j be the subcone of Cu0 to the right of uy.

If y lies below t, Cu0,j contains a closest visible vertex whose angle with ux′ is less
than ∠x′uv, contradicting that the routing algorithm routes to v.

If y lies above t, let z be the lowest vertex in the union of Cu0,j and C
u
1 ∩ h′. Since

this region contains t, it is not empty and such a vertex z exists. If z ∈ Cu0,j , it is the
closest vertex in Cu0,j . If z ∈ Cu1 , u is the closest vertex to z. We note that in both cases
z is visible to u, since any constraint blocking it would have an endpoint below z. Hence,
both cases result in an edge uz. However, since ∠x′uz < ∠x′uv, this contradicts that the
routing algorithm routed to v. Thus, u cannot be the endpoint of a constraint intersecting
the interior of uvx′′x′.

Case (c): If v lies in a subcone of Cu0 and uv crosses st, let q be the intersection of
uv and st. We need to show that the triangles uqx′ and qx′′v are empty and do not contain
any constraints (see Figure 16c). The proof that uqx′ is empty and does not contain any
constraints is analogous to the previous case.

We prove that qx′′v is empty by contradiction, so assume that qx′′v is not empty.
Since qx′′ and qv are visibility edges, we can apply Lemma 1 and we obtain a vertex y in
qx′′v that is visible from q. If y is visible from u, v is not the closest vertex and edge uv
would not exist. If y is not visible from u, we note that uq is visible and apply Lemma 1
on triangle uyq. This gives us a vertex z that is visible to u and closer to u than v, again
contradicting the existence of edge uv. Hence, triangle qx′′v is empty.

Finally, we show that qx′′v does not contain any constraints. Since qx′′ and qv are
visibility edges and qx′′v is empty, any constraint intersecting the interior of qx′′v must
have q as an endpoint. However, since q is not a vertex, it cannot be the endpoint of a
constraint.

Finally, we show that the path followed by the routing algorithm is 2-competitive,
with respect to the Euclidean shortest path.

Theorem 2. Given two vertices s and t in the half-Θ6-graph such that s and t can see each
other and t lies in a positive subcone of s, there exists a 1-local routing algorithm that routes
from s to t and is 2-competitive with respect to the Euclidean distance.

http://jocg.org/

JoCG 8(1), 125–152, 2017 140

Journal of Computational Geometry jocg.org

Proof. We assume without loss of generality that t ∈ Cs0 . The routing algorithm will thus
only take steps in Cvi0 , Cvi1 , and Cvi2 , where vi is an arbitrary vertex along the routing path.
Let a and b be the upper left and right corner of Tst. To bound the length of the routing
path, we first bound the length of each edge. We consider three cases: (a) edges in subcones
of Cvi1 or Cvi2 , (b) edges in subcones of Cvi0 that do not cross st, (c) edges in subcones of Cvi0
that cross st. For ease of notation we use v0 and vk to denote s and t.

vi

vi+1

s

t

x

s

t

s

t

(a) (b) (c)

vi vi

vi+1

vi+1

ai

ai ai bi

Figure 17: Bounding the edge lengths: (a) an edge in a subcone of Cu1 , (b) an edge in a
subcone of Cu0 that does not cross st, and (c) an edge in a subcone of Cu0 that crosses st.

Case (a): If edge vivi+1 lies in a subcone of Cvi1 , let ai be the upper corner of Tvi+1vi

(see Figure 17a). By the triangle inequality, we have that |vivi+1| ≤ |viai|+ |aivi+1|. The
case where vivi+1 lies in Cvi2 is analogous.

Case (b): If edge vivi+1 lies in a subcone of Cvi0 and does not cross st, let ai and bi be
the upper left and right corner of Tvivi+1 (see Figure 17b). If vi lies to the left of st, we use that
|vivi+1| ≤ |viai|+ |aivi+1|. If vi lies to the right of st, we use that |vivi+1| ≤ |vibi|+ |bivi+1|.

Case (c): If edge vivi+1 lies in a subcone of Cvi0 and crosses st, we split it into two
parts, one for each side of st (see Figure 17c). Let x be the intersection of st and vivi+1. If vi
lies to the left of st, let ai be the upper left corner of Tvix and let bi be the upper right corner
of Txvi+1 . By the triangle inequality, we have that |vivi+1| ≤ |viai|+ |aix|+ |xbi|+ |bivi+1|. If
vi lies to the right of st, let ai be the upper left corner of Txvi+1 and let bi be the upper right
corner of Tvix. By triangle inequality, we have that |vivi+1| ≤ |vibi|+ |bix|+ |xai|+ |aivi+1|.

To bound the length of the full path, let x and x′ be two consecutive points where
the routing path crosses st and let vivi+1 be the edge that crosses st at x and let vi′vi′+1 be
the edge that crosses st at x′. Let ax and bx be the upper left and right corner of Txx′ . If
the path between x and x′ lies to the left of st, this part of the path is bounded by:

|xai|+
i′−1∑
j=i

|ajvj+1|+
i′∑

j=i+1

|vjaj |+ |ai′x′|.

Since xai and all vjaj are parallel to xax and all axvj+1 are horizontal, we have that:

|xai|+
i′∑

j=i+1

|vjaj | = |xax|.

http://jocg.org/

JoCG 8(1), 125–152, 2017 141

Journal of Computational Geometry jocg.org

Similarly, since ai′x′ and all ajvj+1 are parallel and have disjoint projections onto axx′, we
have that:

i′−1∑
j=i

|ajvj+1|+ |ai′x′| = |axx′|.

Thus, the length of a path to the left of st is at most:

|xax|+ |axx′|

If the path between x and x′ lies to the right of st, this part of the path is bounded by (see
Figure 18a):

|xbi|+
i′−1∑
j=i

|bjvj+1|+
i′∑

j=i+1

|vjbj |+ |bi′x′| = |xbx|+ |bxx′|.

s

t

s

(a) (b)

a b ta b

x

x′ax bx

x

x′ bx

Figure 18: Bounding the total length: (a) the bounds (solid lines) are unfolded (dotted lines)
and (b) the unfolded bounds (solid lines) are flipped to the longer of the two sides (dotted
lines) and unfolded again (dashed lines).

Next, we flip all unfolded bounds to the longer of the two sides at and bt: if |at| ≥ |bt|,
we replace all bounds of the form |xbx|+ |bxx′| by |xax|+ |axx′| and if |at| < |bt|, we replace
all bounds of the form |xax|+ |axx′| by |xbx|+ |bxx′| (see Figure 18b). Note that this can
only increase the length of the bounds. Finally, we sum these bounds and get that the sum
is equal to max{|sa|+ |at|, |sa|+ |bt|}, which is at most 2 · |st|.

4.2 Routing on the Constrained Θ6-Graph

To route on the constrained Θ6-graph, we split it into two constrained half-Θ6-graphs: the
constrained half-Θ6-graph oriented as in Figure 5 and the constrained half-Θ6-graph where
positive and negative cones are inverted. When we want to route from s to t, we pick the
constrained half-Θ6-graph in which t lies in a positive subcone of s, referred to as G+ in
the remainder of this section, and apply the routing algorithm described in the previous

http://jocg.org/

JoCG 8(1), 125–152, 2017 142

Journal of Computational Geometry jocg.org

section. Since this routing algorithm is 1-local and 2-competitive, we obtain a 1-local and
2-competitive routing algorithm for the constrained Θ6-graph, provided that we can determine
locally, while routing, whether an edge is part of G+. When at a vertex u, we consider the
edges in order of increasing angle with the horizontal halfline through u that intersects st.

Lemma 4. While executing the positive routing algorithm for two visible vertices s and t,
we can determine locally at a vertex u for any edge uv in the constrained Θ6-graph whether
it is part of G+.

Proof. Suppose we color the edges of the constrained Θ6-graph red and blue such that red
edges form G+ and blue edges form the constrained half-Θ6-graph, where t lies in a negative
subcone of s. At a vertex u, we need to determine locally whether uv is red. Since an edge
can be part of both constrained half-Θ6-graphs, it can be red and blue at the same time.
This makes it harder to determine whether an edge is red, since determining that it is blue
does not imply that it is not red.

If v lies in a positive subcone of u, we need to determine if it is the closest vertex in
that subcone. Since by construction of the constrained half-Θ6-graph, u is connected to the
closest vertex in this subcone, it suffices to check whether this vertex is v. Note that if uv is
a constraint, v lies in two subcones of u and hence we need to check if it is the closest vertex
in at least one of these subcones.

If v lies in a negative subcone of u, we know that if it is not the closest visible vertex
in that subcone, uv is red. Hence, it remains to determine whether the edge to the closest
vertex is red: If it is the closest visible vertex, it is blue, but it may be red as well if u is also
the closest visible vertex to v. Hence, we need to determine whether u is the closest vertex
in Cvi,j , a subcone of v that contains u. We consider two cases: (a) uv is a constraint, (b) uv
is not a constraint.

Case (a): Since uv is a constraint, we know that it cannot cross st. Since we are
considering uv, we also know that all edges that make a smaller angle with the horizontal
halfline through u that intersect st are not red. Hence, uv is either part of the boundary
of the routing path or the constraint is contained in the interior of the region bounded by
the routing path and st. However, by the invariant of Lemma 3, the region bounded by the
routing path and st does not contain any constraints in its interior. Thus, uv is part of the
boundary of the routing path and uv is red.

Case (b): If uv is not a constraint, let regions A and B be the intersection of Cvi
and the two subcones of u adjacent to Cui and let C be the intersection of Cvi,j and the
negative subcone of u that contains v (see Figure 19). We first note that since uv lies in a
negative subcone of u, the invariant of Lemma 3 implies that B is empty. Furthermore, since
v is the closest visible vertex to u, C does not contain any vertices that can see u or v.

Since C does not contain any vertices that can see u or v, any constraint in Cui that
has u as an endpoint and lies above uv, ensures that v cannot see A, i.e. it cannot block
visibility of this region only partially. Hence, if such a constraint exists, u is the closest
visible vertex to v in Cvi,j , since neither B nor C contain any vertices visible to v. Therefore,
uv is red.

If v can see A, we show that uv is red if and only if the closest visible vertex in the

http://jocg.org/

JoCG 8(1), 125–152, 2017 143

Journal of Computational Geometry jocg.org

u

v

A
C

B

Figure 19: The three regions A, B, and C when determining whether an edge is part of the
constrained half-Θ6-graph.

subcone of u that contains A does not lie in A. We first show that if the closest visible vertex
x in the subcone of u that contains A lies in A, then uv is not red. Since A is visible to v, u
is not the endpoint of a constraint in Cui above uv. Hence, we have two visibility edges uv
and ux and u is not the endpoint of a constraint intersecting the interior of triangle uxv.
Therefore, by Lemma 1, we have a convex chain of visibility vertices between x and v. Let y
be the vertex adjacent to v along this chain. Since the polygon defined by ux, uv, and the
convex chain is empty and does not contain any constraints, y lies in Cvi,j . Thus, u is not the
closest visible vertex in Cvi,j and uv is not red.

Next, we show that if the closest visible vertex x in the subcone of u that contains A
does not lie in A, then uv is red. We prove this by contradiction, so assume that uv is not
red. This implies that there exists a vertex y ∈ Cvi,j that is visible to v and closer than u.
Since B is empty and C does not contain any vertices that can see v, y lies in A. Since uv
and vy are visibility edges and v is not the endpoint of a constraint intersecting the interior
of triangle uyv, by Lemma 1 there exists a convex chain of visibility edges between u and
y. Furthermore, since C does not contain any vertices that can see u, the vertex adjacent
to u along this chain lies in A. Since any vertex in A is closer to u than x, this leads to a
contradiction, completing the proof.

Routing Algorithm for the Constrained Θ6-Graph
Hence, to route on the constrained Θ6-graph, we apply the positive routing algorithm on G+,
while determining which edges are part of this constrained half-Θ6-graph. The latter can
be determined as follows: If v lies in a positive subcone, we need to check whether it is the
closest vertex in that subcone. If v lies in a negative subcone and it is not the closest vertex,
it is part of the constrained half-Θ6-graph. Finally, if v is the closest vertex in a negative
subcone, it is part of the constrained half-Θ6-graph if it is a constraint or the intersection of
the cone of v that contains u and the subcone of Cui−1 adjacent to Cui is empty.

4.3 Negative Routing on the Constrained Half-Θ6-Graph

We note that the routing algorithm provided in the previous section does not suffice to also
route on the constrained half-Θ6-graph, since it assumes that the destination lies in a positive

http://jocg.org/

JoCG 8(1), 125–152, 2017 144

Journal of Computational Geometry jocg.org

subcone of the source. Therefore, in this section, we provide an O(1)-memory 1-local routing
algorithm for the case where the destination t lies in a negative subcone of the source s.

For ease of exposition, we assume that t lies in a subcone of Cs0. The O(1)-memory
1-local routing algorithm finds a path from s to t of length at most 2 · |st| and travels a total
distance of at most 18 · |st| to do so. We note that negative routing is harder than positive
routing, since there need not be an edge to a vertex in the cone of s that contains t. This
phenomenon also caused the separation between spanning ratio and routing ratio in the
unconstrained setting [6].

The remainder of this section is structured as follows: First, we identify a set of
conditions that edges need to meet in order to be considered by the routing algorithm.
Unfortunately, one of these conditions cannot be checked 1-locally. Therefore, we replace it
with a set of conditions that exclude edges that are guaranteed not to satisfy the original
condition and can be checked 1-locally.

We proceed to describe the edges considered by the negative routing algorithm. Given
a vertex v and all neighbors of v whose projection along the bisector of Ct0 is closer to t
than the projection of v, we number the neighbors u0, ..., uk of v in counterclockwise order,
starting from the horizontal half-line to the left of v (see Figure 20). We create k + 2 regions
around v:

• We create k triangular regions vuiui+1 for 0 ≤ i ≤ k − 1.

• We create one unbounded region using edge vu0 and the two horizontal half-lines
starting at v and u0 directed towards the left.

• We create one unbounded region using edge vuk and the two horizontal half-lines
starting at v and uk directed towards the right.

v

u4u3

u2
u1

u0

t

s

Figure 20: Triangle vu2u3 is the last region of v intersected by st.

The last region of v intersected by st is defined as the last of these regions that is
encountered when following st from s to t. In Figure 20, the region defined by v, u2, and u3
is the last region of v intersected by st.

We consider an edge uv for our routing algorithm when it satisfies the following three
conditions:

1. Vertices u and v lie inside or on the boundary of Tts.

http://jocg.org/

JoCG 8(1), 125–152, 2017 145

Journal of Computational Geometry jocg.org

2. Edge uv is part of the last region of v that is intersected by st.

3. Edge uv is the edge that the positive routing algorithm picks at u when routing from
t to s. Note that for this condition, we do not require that u is part of the positive
routing path, but only that should the positive routing path reach u, edge uv is the
edge it would select for its next step.

Given s and t, the first two requirements can be checked using only the location of s and t
and 1-local information, i.e. the neighbors of the current vertex. The last requirement, on
the other hand, may need 2-local information as it involves the neighbors of the neighbors of
v. Hence, instead of using this last requirement, we ignore the edges that can never satisfy it
and show that we can route competitively and 1-locally on the graph G formed by the edges
that meet the first two requirements.

Since t lies in a subcone of Cs0, the edges that define the last intersected region of a
vertex v can lie in three cones: Cv1 , C

v
0, and Cv2 . Since edges in Cv1 and Cv2 of the negative

routing algorithm correspond to edges in Cu1 and Cu2 of the positive routing algorithm (applied
from t to s), the positive routing algorithm never follows these edges if they intersect st.
Hence, these edges need not be considered by the negative routing algorithm (see Figure 21a).

v

t

s

u2

u1

v

t

s

u

(a) (b)

v

(c)

t

s

u2u1

Figure 21: The edges ignored by the negative routing algorithm: (a) edge u2v is ignored
since it intersects st, (b) edge uv is ignored since Cv2 is intersected by st, (c) edge u1v is
ignored since it lies in a subcone that is not intersected by st and u1vu2 is intersected by a
constraint that has v as an endpoint.

We also do not need to consider edges in Cv1 and Cv2 when that cone is intersected
by st (see Figure 21b): Assume Cv1 is intersected by st. Since we are considering edge uv,
it cannot cross st. Hence, st intersects cone Cu1 , but more importantly st intersects Cu2 .
Hence, if the positive routing algorithm reaches u, it continues by following an edge in Cu2
or Cu0 . Since Cv1 corresponds to Cu1 , no edge in this cone is followed by the positive routing
algorithm, and we can ignore it.

Finally, we ignore edges that lie in a subcone that is not intersected by st when v
is the endpoint of a constraint that intersects the interior of the last region of v that is
intersected by st (see Figure 21c): If v is the endpoint of a constraint that intersects the
interior of the last region of v that is intersected by st, we do not consider the edge that is
not intersected by st. We can ignore this edge, since by the invariant, the region between
the routing path and st does not contain any constraints.

http://jocg.org/

JoCG 8(1), 125–152, 2017 146

Journal of Computational Geometry jocg.org

Since these conditions can be checked using only s, t, v, the neighbors of v, and the
constraints incident to v, we can determine 1-locally whether to consider an edge. Hence,
the graph G on which we route is the graph formed by all edges uv such that:

1. Vertices u and v lie inside or on the boundary of Tts.

2. Edge uv is part of the last region of v that is intersected by st.

3. Edge uv does not meet any of the following three conditions:

(a) Edge uv lies in Cv1 or Cv2 and crosses st.

(b) Edge uv lies in Cv1 or Cv2 and this cone is intersected by st.

(c) Edge uv lies in a subcone that is not intersected by st and v is the endpoint of a
constraint that intersects the interior of the last region of v that is intersected by
st.

Note that every edge uv that lies in Cv1 or Cv2 and crosses st, the cone that contains
uv is intersected by st. Hence, condition 3a can be ignored as it is included in condition 3b.

In the remainder of this section, for ease of exposition, we consider each edge of G to
be oriented upward: Let u′ and v′ be the projections of u and v along the bisector of Ct0.
Edge uv is oriented from u to v if and only if |tu′| ≤ |tv′|. Note that this does not imply
that u lies in a negative cone of v. We proceed to prove that every vertex with two incoming
edges is part of the positive routing path when routing from t to s.

Lemma 5. Every vertex with in-degree 2 in G that is reached by the negative routing algorithm
is part of the positive routing path from t to s.

Proof. Let v be a vertex of in-degree 2 that is reached by the negative routing algorithm.
Let u and w be the other endpoints of these edges to v, such that the projection of u along
the bisector of Tts is closer to t than the projection of w (see Figure 22). Since both uv
and wv are part of the last intersected region of v, vertices u and w must lie on opposite
sides of st. This implies that the positive routing algorithm reaches at least one of them
when routing from t to s, since by the invariant the region between the routing path and st
is empty. Thus it suffices to show that from both u and w the positive routing algorithm
eventually reaches v.

If the positive routing algorithm reaches w, we show that it would follow the edge to
v. Let x be the intersection of uv and the horizontal line through w (see Figure 22). First,
we show that triangle vwx is empty. If w lies in a subcone of Cv1 or Cv2 , u lies in a subcone
of Cv0, since otherwise one of the two edges would cross st and be ignored. Since vw and vx
are visibility edges and v is not the endpoint of a constraint intersecting the interior of vwx,
it follows from Lemma 1 that if vwx is not empty, there exists a convex chain of visibility
edges between w and x and the region bounded by this chain, vw, and vx is empty. Let
y be the topmost vertex along this convex chain and note that y is visible to v. If y lies
in the same cone of v as w, it also lies in the same subcone of v as w, since v is not the
endpoint of a constraint intersecting the interior of vwx. However, this implies that w is

http://jocg.org/

JoCG 8(1), 125–152, 2017 147

Journal of Computational Geometry jocg.org

v

u

w

t

s

x

Figure 22: Vertex v has in-degree 2.

not the closest visible vertex to v in this subcone, contradicting that vw is an edge. If y
lies in Cv0, y has an edge in its subcone that contains v, since v is a visible vertex in that
subcone. This edge cannot cross vw and vu, since the constrained half-Θ6-graph is plane,
and it cannot be connected to a vertex in the region bounded by the convex chain, vw, and
vx, since it is empty. Finally, since y is the topmost vertex along the convex chain, the edge
cannot connect y to another vertex of the convex chain. Hence, y would have an edge to v,
contradicting that vu and vw are consecutive edges around v. We conclude that triangle
vwx is empty.

Using an analogous argument, it can be shown that if u lies in a subcone of Cv1 or
Cv2 , w lies in Cv0 and the existence of a vertex in vwx would contradict that uv is an edge
or that u and w are consecutive edges around v. If both u and w lie in a subcone of Cv0,
the argument reduces to the case where y lies in Cv0, again contradicting that u and w are
consecutive edges around v. Hence, since vwx is empty, the positive routing algorithm routes
to v when it reaches w, since it minimizes angle ∠xwv.

Next, we look at the case where the positive routing path reaches u. If it follows
edge uv, we are done. If it does not follow edge uv, let z be the other endpoint of the edge
the positive routing algorithm follows at u. By construction of the positive routing path, we
know that the projection of z on the bisector of Ct0 lies further from t than the projection of
u. Since the constrained half-Θ6-graph is plane, the path from z to s cannot cross uv or wv,
and since the positive routing path is monotone with respect to the bisector of Ct0, it cannot
go down and around or through u. Furthermore, since the region enclosed by the positive
routing path and st is empty, the path also cannot go around w without passing through w.
Finally, since uv and wv are consecutive edges around v, the path from z to s cannot reach
v by arriving from an edge between uv and wv. Hence, w must lie on the path from z to
s. Thus, since we previously showed that when the positive routing algorithm reaches w, it
routes to v, vertex v is also reached when the positive routing path reaches u.

http://jocg.org/

JoCG 8(1), 125–152, 2017 148

Journal of Computational Geometry jocg.org

Negative Routing Algorithm for the Constrained Half-Θ6-Graph
Routing from s to t now comes down to searching for a vertex that has in-degree 2 on
one of the two paths leaving s. When such a vertex v is found, we need to find the next
vertex that has in-degree 2 on one of the two paths leaving v. This process is repeated until
we reach t. A single instance of this problem, i.e. finding the next vertex has in-degree 2
from another vertex can be viewed as searching for a specific point on a line. This problem
has been studied extensively and a search strategy that is 9-competitive was presented by
Baeza-Yates et al. [1]: We start by following the shorter of the two edges connected to s and
call this distance 1. If we reached a vertex with in-degree 2, we are done. Otherwise, we go
back to s and follow the other path up to distance 2 from s. Again, if we reached a vertex
with in-degree 2, we are done. Otherwise, we go back to s and follow the first path up to
distance 4 from s. This process of backtracking and doubling the allowed travel distance is
repeated until a vertex with in-degree 2 is reached. Since this strategy needs to keep track
of the distance traveled, it uses O(1)-memory. Hence, we apply this search strategy and
perform the following actions when we reach an unvisited vertex v:

• If v has in-degree 2, v is part of the positive routing path and we restart the searching
strategy from v.

• If v has in-degree 1, we proceed to its neighbor u if we have enough budget left to
traverse the edge. At u we check whether the positive routing algorithm would follow
edge uv. If this is not the case, we know that v was a dead end and the path on the
opposite side of st is part of the positive routing path. Hence, we backtrack and follow
the path on the opposite side of st to the last visited vertex on that side.

• If v has in-degree 0, it is a dead end and we backtrack like in the previous case.

We conclude this section by showing that the above O(1)-memory 1-local routing
algorithm has a routing ratio of at most 9 times the length of the positive routing path, which
implies an 18-competitive 1-local routing algorithm for negative routing in the constrained
half-Θ6-graph.

Theorem 3. There exists an O(1)-memory 1-local 18-competitive routing algorithm for
negative routing in the constrained half-Θ6-graph between vertices that can see each other.

Proof. Let p be the last vertex where the search strategy was restarted — initially p is s.
We prove the theorem by showing that when we restart the search strategy at vertex q,
we traveled at most 9 times the distance along the positive routing path between p and q.
If we restart the search strategy because we reached a vertex of in-degree 2, this follows
directly from the fact that the search strategy is 9-competitive, i.e. we found the vertex we
are looking for and we spent at most 9 times the distance along the positive routing path
between p and q.

If we reach a vertex v with in-degree 0 or we traverse an edge vu and the positive
routing algorithm would not have routed from u to v, we backtrack to p and traverse the path
on the opposite side of st. We follow this path until we reach w, the last vertex traversed on
this side of st. Unfortunately, w is too close to p to prove that the total length traveled is

http://jocg.org/

JoCG 8(1), 125–152, 2017 149

Journal of Computational Geometry jocg.org

at most 9 times the distance along the positive routing path between p and w. However, w
must have in-degree 1: Since w is part of the positive routing path, it cannot have in-degree
0, and since we did not restart the search strategy when we reached w the previous time, it
cannot have in-degree 2. Hence, it has in-degree 1 and it follows that the vertex q to which
w is connected is also part of the positive routing path. Since the distance along the positive
routing path between p and v is at most 2 times the distance along the positive routing path
between p and q, an argument analogous to the one used by Baeza-Yates et al. [1] shows
that we traversed at most 9 times the distance along the positive routing path between p
and q to reach q.

4.4 Lower Bound on the Negative Routing Algorithm

In this section we show that the negative routing algorithm described in the previous section
cannot be guaranteed to reach t while traveling less than 2

√
39 · |st| ≈ 12.48 · |st|. This

situation is shown in Figure 23: We place a vertex r1 almost horizontally to the right of s at
distance 1, followed by a vertex l1 almost horizontally to the left of s at distance 2, followed
by a vertex r2 almost horizontally to the right of s at distance 4. Once we reach the corners
of Tts at l2 and r3, we proceed down along the boundary of Tts and place vertices l3 and r4
such that the distance between s and l3 via l2 is 8 and the distance between s and r4 via r3
is 16. Finally, we place vertices l4 and r5 arbitrarily close to t. The positive routing path
from t to s would route to r5, r4, r3, r2, r1, and finally s.

s

t

r1 r2 r3

r4

r5

l1l2

l3

l4

Figure 23: The situation where the negative routing algorithm uses 2
√

39 · |st| to reach t.

The negative routing algorithm on the other hand would try both sides, going back
through s each time it switches sides: go to r1, go to l1, go to r2, go to l3 (via l2), go to r5
(via r3), go to l4 (via l2), and finally go to t (via s and r5). We can pick the edge lengths
between the vertices in such a way that each time the next vertex along one of the two sides
is reached (other than l4), the negative routing algorithm runs out of budget and needs to
backtrack to try the other side. The total length traveled this way is the sum of:

• 2 · δ(s, r5), for going back and forth from s until the step before r5 is reached for the
first time,

http://jocg.org/

JoCG 8(1), 125–152, 2017 150

Journal of Computational Geometry jocg.org

• 2 · δ(s, r5), for going to r5 and back to s when the negative routing algorithm almost
reaches t,

• 2 · δ(s, l4), for going down the wrong path (and back up) after reaching r5,

• δ(s, t), for finally reaching t,

where δ(x, y) is the distance along the negative routing path between x and y. Since r5 can
be arbitrarily close to t, this sums up to 5 · δ(s, t) + 2 · δ(s, l4).

Let α be the angle between the bisector of Tts and ts. Using the law of sines, we can
express δ(s, t) and δ(s, l4) as follows:

δ(s, t) = |sr3|+ |r3t|

=

(
sin
(
π
6 + α

)
sin
(
π
3

) +
sin
(
π
2 − α

)
sin
(
π
3

))
· |st|

=
(√

3 · cosα+ sinα
)
· |st|

δ(s, l4) = |sl2|+ |l2l4|

=

(
sin
(
π
6 − α

)
sin
(
π
3

) +
sin
(
π
2 − α

)
sin
(
π
3

))
· |st|

=
(√

3 · cosα− sinα
)
· |st|

Thus, the total distance traveled by the negative routing algorithm becomes:

5 · δ(s, t) + 2 · δ(s, l4)

= 5 ·
(√

3 · cosα+ sinα
)
· |st|+ 2 ·

(√
3 · cosα− sinα

)
· |st|

=
(

7
√

3 · cosα+ 3 sinα
)
· |st|

When maximizing this function over α, with 0 ≤ α ≤ π/6, we find the maximum at
α ≈ 0.2425, where the function has value 2

√
39 · |st| ≈ 12.48 · |st|.

5 Conclusion

We showed that no deterministic 1-local routing algorithm is o(
√
n)-competitive on all pairs

of vertices of the constrained Θ6-graph, regardless of the amount of memory it is allowed
to use. Following this negative result, we showed how to route between any two visible
vertices of the constrained Θ6-graph using only 1-local information by routing on one of
the two constrained half-Θ6-graphs. This routing algorithm guarantees that the returned
path has length at most 2 times the Euclidean distance between the source and destination.
Additionally, we provided a 1-local 18-competitive routing algorithm for visible vertices in
the constrained half-Θ6-graph. To the best of our knowledge, this is the first 1-local routing
algorithm in the constrained setting with guarantees on the length of the returned path.

http://jocg.org/

JoCG 8(1), 125–152, 2017 151

Journal of Computational Geometry jocg.org

There remain a number of open problems in the area of local competitive routing
in the constrained setting. For example, though we showed that no deterministic 1-local
routing algorithm is o(

√
n)-competitive on all pairs of vertices of the Θ6-graph, it would still

be interesting to construct a routing algorithm that reaches any vertex.

Furthermore, we showed how to route on a specific constrained Θ-graph. It would
be very nice if there exists a local routing algorithm that is competitive on all constrained
Θ-graphs. In the unconstrained setting, the Θ-routing algorithm (which repeatedly follows
the edge to the closest vertex in the cone that contains the destination) is such an algorithm,
provided that at least 7 cones are being used. In the constrained setting, however, this
particular algorithm need not reach the destination, since even if the source can see the
destination, this does not necessarily hold for every vertex along the path. Because of this,
there need not be any edge in the cone that contains the destination, meaning that this
Θ-routing algorithm can get stuck.

Finally, constrained Θ-graphs are not the only graphs that are known to be spanners
in the constrained setting. For example, constrained Yao-graphs and constrained (generalized)
Delaunay graphs have also been shown to be spanners [13, 14]. As was the case for constrained
Θ-graphs prior to our work, no routing algorithms are known to exist for those graphs.

References

[1] Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J.E. Rawlins. Searching in
the plane. Information and Computation, 106(2):234–252, 1993.

[2] Nicolas Bonichon, Cyril Gavoille, Nicolas Hanusse, and David Ilcinkas. Connections
between theta-graphs, Delaunay triangulations, and orthogonal surfaces. In Proceedings
of the 36th International Conference on Graph Theoretic Concepts in Computer Science
(WG 2010), pages 266–278, 2010.

[3] Prosenjit Bose, Andrej Brodnik, Svante Carlsson, Erik D Demaine, Rudolf Fleischer,
Alejandro López-Ortiz, Pat Morin, and Ian J Munro. Online routing in convex subdi-
visions. International Journal of Computational Geometry & Applications (IJCGA),
12(04):283–295, 2002.

[4] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. On
plane constrained bounded-degree spanners. In Proceedings of the 10th Latin American
Symposium on Theoretical Informatics (LATIN 2012), volume 7256 of Lecture Notes in
Computer Science, pages 85–96, 2012.

[5] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Competi-
tive local routing with constraints. In Proceedings of the 26th International Symposium on
Algorithms and Computation (ISAAC 2015), volume 9472 of Lecture Notes in Computer
Science, pages 23–34, 2015.

[6] Prosenjit Bose, Rolf Fagerberg, André van Renssen, and Sander Verdonschot. Optimal
local routing on Delaunay triangulations defined by empty equilateral triangles. SIAM
Journal on Computing (SICOMP), 44(6):1626–1649, 2015.

http://jocg.org/

JoCG 8(1), 125–152, 2017 152

Journal of Computational Geometry jocg.org

[7] Prosenjit Bose and J. Mark Keil. On the stretch factor of the constrained Delaunay
triangulation. In Proceedings of the 3rd International Symposium on Voronoi Diagrams
in Science and Engineering (ISVD 2006), pages 25–31, 2006.

[8] Prosenjit Bose and André van Renssen. Upper bounds on the spanning ratio of con-
strained theta-graphs. In Proceedings of the 11th Latin American Symposium on Theo-
retical Informatics (LATIN 2014), volume 8392 of Lecture Notes in Computer Science,
pages 108–119, 2014.

[9] Ken Clarkson. Approximation algorithms for shortest path motion planning. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC 1987),
pages 56–65, 1987.

[10] Gautam Das. The visibility graph contains a bounded-degree spanner. In Proceedings of
the 9th Canadian Conference on Computational Geometry (CCCG 1997), pages 70–75,
1997.

[11] Sudip Misra, Subhas Chandra Misra, and Isaac Woungang. Guide to Wireless Sensor
Networks. Springer, 2009.

[12] Harald Räcke. Survey on oblivious routing strategies. In Mathematical Theory and
Computational Practice, volume 5635 of Lecture Notes in Computer Science, pages
419–429, 2009.

[13] André van Renssen. On the spanning ratio of constrained Yao-graphs. In Proceedings
of the 26th Canadian Conference on Computational Geometry (CCCG 2014), pages
239–243, 2014.

[14] André van Renssen. Theta-Graphs and Other Constrained Spanners. Phd thesis, Carleton
University, 2014.

http://jocg.org/

	Introduction
	Preliminaries
	Lower Bound on Local Routing
	Routing on the Constrained 6-Graph
	Positive Routing on the Constrained half-6-graph
	Routing on the Constrained 6-Graph
	Negative Routing on the Constrained half-6-graph
	Lower Bound on the Negative Routing Algorithm

	Conclusion

