Skip to main content

Cops and Robbers on String Graphs

  • Conference paper
  • First Online:
Algorithms and Computation (ISAAC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9472))

Included in the following conference series:

Abstract

The game of cops and robber, introduced by Nowakowski and Winkler in 1983, is played by two players on a graph. One controls k cops and the other a robber. The players alternate and move their pieces to the distance at most one. The cops win if they capture the robber, the robber wins by escaping indefinitely. The cop number of G is the smallest k such that k cops win the game.

We extend the results of Gavenčiak et al. [ISAAC 2013], investigating the maximum cop number of geometric intersection graphs. Our main result shows that the maximum cop number of string graphs is at most 15, improving the previous bound 30. We generalize this approach to string graphs on a surface of genus g to show that the maximum cop number is at most \(10g+15\), which strengthens the result of Quilliot [J. Combin. Theory Ser. B 38, 89–92 (1985)]. For outer string graphs, we show that the maximum cop number is between 3 and 4. Our results also imply polynomial-time algorithms determining the cop number for all these graph classes.

P. Gordinowicz and V. Jelínek—Supported by CE-ITI (P202/12/G061 of GAČR). For the full version, see [5].

T. Gavenciak, P. Klavík and J. Kratochvíl—Supported by Charles University as GAUK 196213.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aigner, M., Fromme, M.: Game of cops and robbers. Discrete Appl. Math. 8(1), 1–12 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)

    Book  MATH  Google Scholar 

  3. Esperet, L., Joret, G.: Boxicity of graphs on surfaces. Graphs and Combinatorics 29(3), 417–427 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fomin, F.V., Golovach, P.A., Kratochvíl, J., Nisse, N., Suchan, K.: Pursuing a fast robber on a graph. Theor. Comput. Sci. 411(7–9), 1167–1181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gavenčiak, T., Gordinowicz, P., Jelínek, V., Klavík, P., Kratochvíl, J.: Cops and robbers of intersection graphs (in preparation, 2015)

    Google Scholar 

  6. Gavenčiak, Tomás, Jelínek, Vít, Klavík, Pavel, Kratochvíl, Jan: Cops and robbers on intersection graphs. In: Cai, Leizhen, Cheng, Siu-Wing, Lam, Tak-Wah (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 174–184. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Goldstein, A.S., Reingold, E.M.: The complexity of pursuit on a graph. Theor. Comput. Sci. 143(1), 93–112 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kinnersley, W.B.: Cops and robbers is exptime-complete. J. Comb. Theor. Ser. B 111, 201–220 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kratochvíl, J.: String graphs. II. recognizing string graphs is NP-hard. J. Comb. Theor. Ser. B 52(1), 67–78 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mamino, M.: On the computational complexity of a game of cops and robbers. Theor. Comput. Sci. 477, 48–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mohar, B., Thomassen, C.: Graphs on Surfaces. The John Hopkins University Press, Baltimore (2001)

    MATH  Google Scholar 

  12. Nowakowski, R., Winkler, P.: Vertex-to-vertex pursuit in a graph. Discrete Math. 43, 235–239 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Prasolov, V.: Elements of Combinatorial and Differential Topology. Graduate Studies in Mathematics. American Mathematical Soc., Providence (2006)

    Book  MATH  Google Scholar 

  14. Quilliot, A.: A short note about pursuit games played on a graph with a given genus. J. Combin. Theory Ser. B 38, 89–92 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schroeder, B.S.W.: The copnumber of a graph is bounded by 3/2 genus(g) + 3. Trends Math., pp. 243–263. Birkhäuser, Boston (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Klavík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gavenčiak, T., Gordinowicz, P., Jelínek, V., Klavík, P., Kratochvíl, J. (2015). Cops and Robbers on String Graphs. In: Elbassioni, K., Makino, K. (eds) Algorithms and Computation. ISAAC 2015. Lecture Notes in Computer Science(), vol 9472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48971-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48971-0_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48970-3

  • Online ISBN: 978-3-662-48971-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics