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Abstract

The Gromov-Hausdorff (GH) distance is a natural way to measure distance between two metric spaces.
We prove that it is NP-hard to approximate the Gromov-Hausdorff distance better than a factor of 3 for
geodesic metrics on a pair of trees. We complement this result by providing a polynomial time O(min{n,

√
rn})-

approximation algorithm for computing the GH distance between a pair of metric trees, where r is the ratio
of the longest edge length in both trees to the shortest edge length. For metric trees with unit length edges,
this yields an O(

√
n)-approximation algorithm.
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1 Introduction

The Gromov-Hausdorff distance (or GH distance for brevity) [10] is one of the most natural distance mea-
sures between metric spaces, and has been used, for example, for matching deformable shapes [3, 15], and
for analyzing hierarchical clustering trees [5]. Informally, the Gromov-Hausdorff distance measures the ad-
ditive distortion suffered when mapping one metric space to another using a correspondence between their
points. Multiple approaches have been proposed to estimate the Gromov-Hausdorff distance [3, 14, 15].

Despite much effort, the problem of computing, either exactly or approximately, GH distance has re-
mained elusive. The problem is not known to be NP-hard, and computing the GH distance, even approx-
imately, for graphic metrics1 is at least as hard as the graph isomorphism problem. Indeed, the metrics for
two graphs have GH distance 0 if and only if the two graphs are isomorphic. Motivated by this trivial
hardness result, it is natural to ask whether GH distance becomes easier in more restrictive settings such as
geodesic metrics over trees, where efficient algorithms are known for checking isomorphism [1].

Related work. Most work on associating points between two metric spaces involves embedding a given
high dimensional metric space into an infinite host space of lower dimensional metric spaces. However,
there is some work on finding a bijection between points in two given finite metric spaces that minimizes
typically multiplicative distortion of distances between points and their images, with some limited results
on additive distortion.

Kenyon et al. [13] give an optimal algorithm for minimizing the multiplicative distortion of a bijection
between two equal-sized finite metric spaces, and a parameterized polynomial time algorithm that finds
the optimal bijection between an arbitrary unweighted graph metric and a bounded-degree tree metric.

Papadimitriou and Safra [17] show that it is NP-hard to approximate the multiplicative distortion of any
bijection between two finite 3-dimensional point sets to within any additive constant or to a factor better
than 3.

Hall and Papadimitriou [11] discuss the additive distortion problem – given two equal-sized point sets
S, T ⊂ R

d, find the smallest ∆ such that there exists a bijection f : S → T such that d(x, y) − ∆ ≤
d( f (x), f (y)) ≤ d(x, y) + ∆. They show that it is NP-hard to approximate by a factor better than 3 in
R

3, and also give a 2-approximation for R
1 and a 5-approximation for the more general problem of embed-

ding an arbitrary metric space onto R
1. However, there setting differs from ours in two major ways – firstly,

they consider finite metric spaces of equal size, whereas in this paper the metric spaces may be uncountably
infinite; secondly, they consider bijections between metric spaces, whereas in our work we deal with corre-
spondences between metric spaces which are more general than bijections. Thus, their approach cannot be
easily extended to our setting.

The interleaving distance between merge trees [16] was proposed as a measure to compare functions
over topological domains that is stable to small perturbations in a function. Distances for the more general
Reeb graphs are given in [2, 7]. These concepts are related to the GH distance (Section 4), which we will
leverage to design an approximation algorithm for the GH distance for metric trees.

Our results. In this paper, we give the first non-trivial results on approximating the GH distance between
metric trees. First, we prove (in Section 3) that the problem remains NP-hard even for metric trees via a
reduction from 3-PARTITION. In fact, we show that there exists no algorithm with approximation ratio less
than 3 unless P = NP. As noted above, we are not aware of any result that shows the GH distance problem
being NP-hard even for general graphic metrics.

To complement our hardness result, we give an O(
√

n)-approximation algorithm for the GH distance
between metric trees with n nodes and unit length edges. Our algorithm works with arbitrary edge lengths
as well; however, the approximation ratio becomes O(min{n,

√
rn}) where r is the ratio of the longest edge

length in both trees to the shortest edge length. Even achieving the O(n)-approximation ratio presented
here for arbitrary r is a non-trivial task.

1A graphic metric measures the shortest path distance between vertices of a graph with unit length edges.
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Our algorithm uses a reduction, described in Section 4, to the similar problem of computing the inter-
leaving distance [16] between two merge trees. Given a function f : X → R over a topological space X, the
merge tree Tf describes the connectivity between components of the sublevel sets of f (see Section 2 for a
more formal definition). Morozov et al. [16] proposed the interleaving distance as a way to compare merge
trees and their associated functions2. We describe, in Section 5, an O(min{n,

√
rn})-approximation algo-

rithm for interleaving distance between merge trees, and our reduction provides a similar approximation
for computing the GH distance between two metric trees.

2 Preliminaries

Metric Spaces and the Gromov-Hausdorff Distance. A metric space X = (X, ρ) consists of a (potentially
infinite) set X and a function ρ : X × X → R≥0 such that the following hold: ρ(x, y) = 0 iff x = y;
ρ(x, y) = ρ(y, x); and ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Given sets A and B, a correspondence between A and B is a set C ⊆ A × B such that: (i) for all a ∈ A,
there exists b ∈ B such that (a, b) ∈ C ; and (ii) for all b ∈ B, there exists a ∈ A such that (a, b) ∈ C . We use
Π(A, B) to denote the set of all correspondences between A and B.

Let X1 = (X1, ρ1) and X2 = (X2, ρ2) be two metric spaces. The distortion of a correspondence C ∈
Π(X1, X2) is defined as:

Dist(C) = sup
(x,y),(x′,y′)∈C

|ρ1(x, x′)− ρ2(y, y′)|.

The Gromov-Hausdorff distance [14], dGH, between X1 and X2 is defined as:

dGH(X1,X2) =
1

2
inf

C∈Π(X1,X2)
Dist(C).

Intuitively, dGH measures how close can we get to an isometric (distance-preserving) embeddding be-
tween two metric spaces. We note that there are different equivalent definitions of the Gromov-Hausdorff
distance; see e.g, Theorem 7.3.25 of [4] and Remark 1 of [14].

Given a tree T = (V, E) and a length function l : E → R≥0, we associate a metric space T = (|T|, d)
with T as follows. |T| is a geometric realization of T. The metric space is extended to points in an edge
such that each edge of length l is isometric to the interval [0, l]. For x, y ∈ |T|, define d(x, y) to be the length
of the path π(x, y) ∈ |T| which is simply the sum of the lengths of the restrictions of this path to edges in
T. It is clear that d is a metric. The metric space thus obtained is a metric tree. We often do not distinguish
between T and |T| and write T = (T, d).

Merge Trees and the Interleaving Distance. Let f : X → R be a continuous function from a connected
topological space X to the set of real numbers. The sublevel set at a value a ∈ R is defined as f≤a = {x ∈
X | f (x) ≤ a}. A merge tree M f captures the evolution of the topology of the sublevel sets as the function

value is increased continuously from −∞ to +∞. Formally, it is obtained as follows. Let epi f = {(x, y) ∈
X × R | y ≥ f (x)}. Let f̄ : epi f → R be such that f̄ ((x, y)) = y. We may say f̄ ((x, y)) is the height of point
(x, y) ∈ X × R. For two points (x, y) and (x′, y′) in X × R with y = y′, let (x, y) ∼ (x′, y′) denote them
lying in the same component of f̄−1(y)(= f̄−1(y′)). Then ∼ is an equivalence relation, and the merge tree
M f is defined as the quotient space (X × R)/ ∼.

Since two components of f̄−1 at a certain height can only merge at a higher height and a component can
never split as height increases, we get a rooted tree where the internal nodes represent the points where two
components merge and the leaves represent the birth of a new component at a local minimum. Figure 1
shows an example of a merge tree for a 1-dimensional function. Note that the merge tree extends to a height

2In fact, our hardness result can be easily extended to the GH distance between graphic metrics for trees and the interleaving
distance between merge trees.
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of ∞, and our assumption that X is connected implies we have only one component in F≤∞. We define the
root of merge tree M f to be the internal node with the highest function value (if there are no internal nodes,
the only leaf is defined to be the root).

Figure 1. Merge tree M f (shown in red) for a function f : X → R, where X = R. epi f is shown in grey, and f̄−1(a) is the grey region
below the blue horizontal lines in epi f .

Since each point x ∈ M f represents a component of a sublevel set at a certain height, we can associate

this height value with x, denoted by f̂ (x). Given a merge tree M f and ε ≥ 0, an ε-shift map σε
f : M f → M f

is the map that maps a point x ∈ M f to its ancestor at height f̂ (x) + ε, i.e., f̂ (σε
f (x)) = f̂ (x) + ε. Given

ε ≥ 0 and merge trees M f and Mg, two continuous maps α : M f → Mg and β : Mg → M f are said to be
ε-compatible if they satisfy the following conditions :

ĝ(α(x)) = f̂ (x) + ε, ∀x ∈ M f ; f̂ (β(y)) = ĝ(y) + ε, ∀y ∈ Mg;

β ◦ α = σ2ε
f ; α ◦ β = σ2ε

g .
(1)

Figure 2. Part of trees M f and Mg showing α and β.

See Figure 2 for an example. The interleaving distance [16] is then defined as

dI(M f ,Mg) = inf{ε ≥ 0 | there exist ε-compatible maps α and β}.

Remark. We can relax the requirements on α and β from their normal definitions as follows.
(i) Instead of requiring exact value changes, we require

f̂ (x) ≤ ĝ(α(x)) ≤ f̂ (x) + ε, ∀x ∈ M f ; ĝ(y) ≤ f̂ (β(y)) ≤ ĝ(y) + ε, ∀y ∈ Mg.

(ii) If x1 is an ancestor of x2 in M f , then α(x1) is an ancestor of α(x2) in Mg. A similar rule applies for β.

(iii) β(α(x)) must go to an ancestor of x and α(β(y)) must go to an ancestor of y.
Any pair of maps satisfying the original requirements also satisfies the relaxed requirements for the

same value of ε. Conversely, for any pair of maps satisfying the relaxed requirements, we can stretch up the
images for each map as necessary so that the new maps satisfy the original requirements, without changing
the value of ε. Thus, both definitions of interleaving distance are equivalent. For convenience, when two
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ε-compatible maps are given to us we assume that they satisfy (1), but we construct ε-compatible maps that
satisfy the relaxed conditions mentioned, knowing that they can be “stretched” as just described to satisfy
(1).

If we know α(x) for a point x at height h, then we can compute α(y) for any ancestor y of x at height

h′ ≥ h by simply putting α(y) = σh′−h
f (α(x)). A similar claim holds for β. Thus specifying the maps for the

leaves of the trees suffices, because any point in the tree is the ancestor of at least one of the leaves. Hence,
these maps have a representation that requires linear space in the size of the trees.

As shown in [16], the interleaving distance is a metric and has the desirable properties of being both sta-
ble to small function perturbations and more discriminative than the popular bottleneck distance between
persistence diagrams [6].

3 Hardness of Approximation

We now show the hardness of approximating the GH distance by a reduction from the following decision
problem called balanced partition (or BAL-PART for brevity): given a multiset of positive integers X =
{a1, . . . , an}, and an integer m such that 1 ≤ m ≤ n, is it possible to partition X into m multisets {X1, . . . , Xm}
such that all the elements in each multiset sum to the same quantity µ = (∑n

i=1 ai) /m? We prove below that
BAL-PART is strongly NP-complete, i.e., it remains NP-complete even if ai ≤ nc for some constant c ≥ 1
for all 1 ≤ i ≤ n.

Lemma 3.1. BAL-PART is strongly NP-complete.

Proof. We reduce 3-PARTITION, a strongly NP-complete problem [9] to BAL-PART. Given a multiset
of positive integers Y = {a1, . . . , an} with n = 3m, 3-PARTITION asks to partition Y into m multisets
{Y1, . . . , Ym} of size 3 each so that the elements in each multiset sum to the same quantity. Given a 3-
PARTITION instance, we construct an instance of BAL-PART as follows.

Basically, we add a sufficiently large number to each ai so that if two multisets of the new numbers have
the same sum, they have the same number of elements. In particular, let ā = ∑

n
i=1 ai. Then set a′i = ai + ā

and X = {a′1, . . . , a′n}. This reduction takes polynomial time, and the new numbers are polynomially larger
than the original ones. We show that there exists an appropriate partition of Y iff there exists an appropriate
partition of X.

Suppose there exists an appropriate partition {Y1, . . . , Ym} of Y. Then setting Xi = {a′j | aj ∈ Yi} for

i = 1, . . . , m gives us the desired partition of X.
Conversely, suppose there exists an appropriate partition {X1, . . . , Xm} of X. Suppose |Xi| = n1 >

|Xj| = n2 for some i 6= j. We thus have

∑
a′k∈Xi

ak + n1 ā = ∑
a′k∈Xj

ak + n2 ā ⇒ (n1 − n2)ā = ∑
a′k∈Xj

ak − ∑
a′k∈Xi

ak ⇒ ∑
a′k∈Xj

ak − ∑
a′k∈Xi

ak ≥ ā, (2)

a contradiction since ∑a′k∈Xj
ak < ā. Thus, each partition Xi is of equal size. Since n = 3m, the size of each

Xi is 3.

We now reduce an instance of BAL-PART, in which each ai ≤ nc for some constant c ≥ 1, to GH-
distance computation. Given an instance X = {a1, . . . , an} and 1 ≤ m ≤ n of BAL-PART, we construct
two trees T1 and T2 as follows. Let λ > 6 and ρ < λ − 6 be two positive constants. Let Tl,k denote a star
graph having k edges, each of length l. T1 consists of a node r1 incident on an edge (r1, r′1) of length ρ
and on n edges {(r1, p1), . . . , (r1, pn)} of length 2, where pi is the center of a copy of Tλ,ai

. T2 consists of
a node r2 incident on an edge (r2, r′2) of length ρ and to m edges {(r2, q1), . . . , (r2, qm)} of length 2, where
each qi is the center of a distinct copy of Tλ+1,ā, and ā = (∑n

i=1 ai) /m. See Figure 3 for an illustration. We
refer to the edges of Tλ,ai

in T1 and copies of Tλ+1,ā in T2 as bottom edges. Let T1 and T2 denote the metric
trees associated with T1 and T2 respectively. Since λ, ρ are constants and ai ≤ nc for all 1 ≤ i ≤ n, this
construction can be done in polynomial time.
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Figure 3. The trees Tl,k, T1 and T2.

Lemma 3.2. If (X, m) is a yes instance of BAL-PART, then dGH(T1, T2) ≤ 1. Otherwise, dGH(T1, T2) ≥ 3.

Proof. Suppose X can be partitioned into m subsets X1, . . . , Xm of equal weight ā = (∑n
i=1 ai) /m. We

construct a correspondence C between T1 and T2 with distortion at most 2, implying that dGH(T1, T2) ≤ 1.
A linearly interpolated bijection between the points of edges (r1, r′1) and (r2, r′2), with r1 mapping to r2 and
r′1 mapping to r′2, is added to C . If ai ∈ Xj, the linearly interpolated bijection between edges (r1, pi) and
(r2, qj) is added to C . Also, the leaves of Tλ,ai

are each mapped to a distinct leaf of Tλ+1,ā attached to qj

such that there is a bijection between the leaves of T1 and T2 – this is possible since Tλ+1,ā has ā leaves, and

∑a∈Xj
a = ā. The interior points of these leaf edges are mapped using linear interpolation. Overall, the

distortion induced by C is at most 2 – this stems from the fact that C is piecewise linear, and the difference
between the length of any path in one tree and its image under C in the other tree is at most 2.

Suppose dGH(T1, T2) < 3, and let C be a correspondence between T1 and T2 with distortion < 6. Con-
sider two leaves l, m 6= r′2 in T2. Then d(l, m) ≥ 2λ + 2. Let l′, m′ be their corresponding images in T1 under
C . We argue that l′, m′ lie on distinct bottom edges of T1. Indeed, since Dist(C) < 6, the distance between l′

and m′ is d(l′, m′) > d(l, m)− 6 > 2λ − 4. If l′, m′ lie on the same edge of T1, then d(l′, m′) ≤ λ < 2λ − 4,
so they have to lie on distinct edges of T1. If either of l′, m′ lies on an edge r1 pi, for some i ≤ n, then by
construction and the choice of ρ, d(l′, m′) ≤ λ + 2 < 2λ − 4 (recall that λ > 6). Finally, if either of l′, m′

lies on (r1, r′1) then d(l′, m′) ≤ ρ + λ + 2 < 2λ − 4. Thus, both l′ and m′ lie on distinct bottom edges of
T1. Hence, C induces a bijection χ between the leaves of T1 and T2, where χ(l) = l′ for l ∈ T2 and l′ ∈ T1

is the leaf whose incident edge contains the image(s) of l under C . Note that if li, lj ∈ T2 are incident to
qi, qj with qi 6= qj, then χ(li) and χ(lj) are incident to pi′ , pj′ with pi′ 6= pj′ ; otherwise d(li, lj) = 2λ + 6

and d(χ(li), χ(lj)) ≤ 2λ, thereby incurring a distortion of at least 6. Hence, the bijection χ can be used to

partition X into m subsets X1, . . . , Xm of equal weight as follows : if χ(l) = l′ for l incident to qi and l′

incident to pj, then aj ∈ Xi. Thus, (X, m) is a yes instance of BAL-PART.

We may also apply the reduction to metric trees with unit edge lengths by subdividing longer edges
with an appropriate number of vertices. We thus have the following theorem.

Theorem 3.3. Unless P = NP, there is no polynomial-time algorithm to approximate the Gromov-Hausdorff distance
between two metric trees to a factor better than 3, even in the case of metric trees with unit edge lengths.

4 Gromov-Hausdorff and Interleaving Distances

In this section we show that the GH distance between two tree metric spaces T1 and T2, and the interleaving
distance between two appropriately defined trees incuded from Tis, are within constant factors of each
other.

Given a metric tree T = (T, d), let V(T) denote the nodes of the tree. Given a point s ∈ T (not necessarily
a node), let fs : T → R be defined as fs(x) = − d(s, x). Equipped with this function, we obtain a merge tree
Ts from T . Intuitively, Ts has the structure of rooting T at s, and then adding an extra edge incident to s
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with function value extending from 0 to +∞. If s is an internal node of T or an interior point of an edge of
T, s remains the root of Ts. But if s is a leaf of T, then s gets merged with the infinite edge and the node of
T adjacent to s becomes the root of Ts.

Let T1 = (T1, d1) and T2 = (T2, d2) be two metric trees. Define

∆ = min
u∈V(T1),v∈V(T2)

dI(Tu
1 , Tv

2 ). (3)

We prove that ∆ is within a constant factor of dGH(T1, T2). We first prove a lower bound on ∆.

Lemma 4.1. 1
2 dGH(T1, T2) ≤ ∆.

Proof. Suppose ∆ = dI(Ts
1 , Tt

2) for some s ∈ V(T1) and t ∈ V(T2). Set f := fs and g := ft. Let
α : Ts

1 → Tt
2, β : Tt

2 → Ts
1 be ∆-compatible maps. We define the functions α∗ : Ts

1 → Tt
2 and β∗ : Tt

2 → Ts
1 as

follows :

α∗(x) =

{

α(x) if g(α(x)) ≤ 0.

t otherwise.
β∗(y) =

{

β(x) if f (β(x)) ≤ 0.

s otherwise.

That is, if α(x) is an ancestor of t (resp. s) then x (resp. y) is mapped to the root t (resp. s). We note that

f (x) ≤ g(α∗(x)) ≤ f (x) + ∆,

g(y) ≤ f (β∗(y)) ≤ g(y) + ∆.
(4)

Indeed, if α∗(x) = α(x) then g(α∗(x)) = f (x)+∆. Otherwise g(α(x)) > 0 and g(α∗(x)) = 0. Since f (x) ≤ 0,
we obtain g(α∗(x)) < g(α(x)) = f (x) + ∆. The same argument implies the second set of inequalities.

Consider the correspondence C ∈ T1 × T2 induced by α∗ and β∗ defined as:

C := {(x, α∗(x)) | x ∈ T1} ∪ {(β∗(y), y) | y ∈ T2}.

We prove that Dist(C) ≤ 4∆.
Indeed, consider any two pairs (x1, y1), (x2, y2) ∈ C . Let u be the common ancestor of x1 and x2 in T1,

and w the common ancestor of y1 and y2 in T2. Note that since T1 and T2 are trees, there is a unique path
x1  u  x2 between x1 and x2, such that x1  u and u  x2 are each monotone in function f values.
This also implies that d1(x1, u) = d1(s, x1) − d1(s, u) = f (u) − f (x1); similarly, d1(x2, u) = f (u) − f (x2).
Symmetric statements hold for y1  w y2. Hence

d1(x1, x2) = d1(x1, u) + d1(u, x2) = 2 f (u)− f (x1)− f (x2),

d2(y1, y2) = d2(y1, w) + d2(w, y2) = 2g(w)− g(y1)− g(y2).

We then have,

|d1(x1, x2)− d2(y1, y2)| = |2 f (u)− f (x1)− f (x2)− 2g(w) + g(y1) + g(y2)|
≤ 2| f (u)− g(w)|+ | f (x1)− g(y1)|+ | f (x2)− g(y2)|
≤ 2| f (u)− g(w))|+ 2∆ (by (4)).

On the other hand, α∗(u) must be an ancester of w, and similarly, β∗(w) must be an ancester of u. Thus,
f (u)− ∆ ≤ g(w) ≤ f (u) + ∆ ⇒ | f (u)− g(w)| ≤ ∆. We thus have

|d1(x1, x2)− d2(y1, y2)| ≤ 4∆.

It then follows that Dist(C) ≤ 4∆. Since dGH(T1, T2) ≤ 1
2 Dist(C), the left inequality then follows.

Next, we prove an upper bound on ∆.
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Lemma 4.2. ∆ ≤ 14dGH(T1, T2).

Proof. Set δ = dGH(T1, T2) and let C∗ : T1 × T2 be an optimal correspondence that achieves dGH(T1, T2).
Note that in general dGH(T1, T2) may only be achieved in the limit. In that case, our proof can be modified
by considering a sequence of near-optimal correspondences (whose associated metric-distortion converges
to δ), and taking a certain limit under it.

Let s be one of the endpoints of a longest simple path in T1 (i.e, the length of this path realizes the
diameter of T1); s is necessarily a leaf of T1. Let (s, t) be a pair in C∗. Consider the merge trees Ts

1 and Tt
2

defined by the functions fs and ft, respectively. A result in [8] implies that

dI(Ts
1 , Tt

2) ≤ 6δ.

We prove below in Claim 4.3 that there is a vertex (in fact a leaf) z ∈ V(T2) such that d2(t, z) ≤ 8δ.
It is easy to verify that

‖ ft − fz‖∞ ≤ d2(t, z) ≤ 8δ.

On the other hand, by the stability theorem of the interleaving distance (Theorem 2 of [16]),

dI(Tt
2, Tz

2 ) ≤ ‖ ft − fz‖∞ ≤ 8δ.

By triangle inequality,

dI(Ts
1 , Tz

2 ) ≤dI(Ts
1 , Tt

2) + dI(Tt
2, tz

2)

≤6δ + 8δ

≤14δ.

This completes the proof of the lemma.

Claim 4.3. Let s be an endpoint of a longest simple path in T1, and let (s, t) be a pair in C∗. Then there is a vertex
z ∈ V(T2) such that d2(t, z) ≤ 8δ.

Proof. Assume that there is no tree node within 8δ distance to t. In this case, t must be in the interior of an
edge e ∈ E(T2). Let u1 and u2 be the two points in e from opposite sides of t such that d2(t, u1) = d2(t, u2) =
8δ + ν, where ν > 0 is an arbitrarily small value. Both u1 and u2 exist, as there is no tree node of T2 within
8δ distance to t, and

d2(u1, u2) = d2(t, u1) + d2(t, u2) = 16δ + 2ν.

Let ũ1, ũ2 ∈ T1 be any corresponding points for u1 and u2 under C∗, that is, (ũ1, u1), (ũ2, u2) ∈ C∗. Since
Dist(C∗) ≤ 2δ, we have

d1(ũ1, ũ2) ≥ 14δ + 2ν. (5)

On the other hand, since d2(t, u1) = d2(t, u2) = 8δ + ν, we have that

d1(s, ũ1), d1(s, ũ2) ∈ [6δ + ν, 10δ+ ν]. (6)

We now obtain an upper bound on d1(ũ1, ũ2). If ũ1 and ũ2 have ancestor/descendant relation in Ts
1 , then

d1(ũ1, ũ2) = |d1(s, ũ1)− d2(s, ũ2)| and by (6), we thus have that d1(ũ1, ũ2) ≤ 4δ, which contradicts (5).
Now, let w be the nearest common ancestor of ũ1 and ũ2 in Ts

1 (see Figure 4). Let c0 = d1(s, w). For
simplicity, set a = d1(s, ũ1) and b = d1(s, ũ2). It then follows that

d1(ũ1, ũ2) = a + b − 2c0 . Note, a ≥ c0, b ≥ c0 . (7)

Since s is an endpoint of the longest path in T1, it follows that c0 ≥ min{a − c0, b − c0} (if not, then without
loss of generality, suppose the other point s′ of the diameter pair is not in the subtree of Ts

1 rooted at ũ1; then
d1(ũ1, s′) > d1(s, s′), a contradiction). By (6), a, b ≥ 6δ + ν. Thus

c0 ≥ 6δ + ν − c0 ⇒ c0 ≥ 1

2
[6δ + ν] . (8)
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Figure 4. w is the nearest common ancestor of ũ1 and ũ2 in Ts
1 .

Combining (7) and (8), we have

d1(ũ1, ũ2) ≤ a + b − 6δ − ν ≤ 20δ + 2ν − 6δ − ν = 14δ + ν, (9)

contradicting (5). Thus, there exists z ∈ V(T2) such that d2(t, z) ≤ 8δ.

Remark. The proof of Claim 4.3 actually shows that t lies in the neighborhood of a leaf, as we never use the
fact that u1 and u2 lie on the same edge of T2. The only fact we use is that u1 and u2 lie on opposite sides of
t at distance 8δ + ν each.

From Lemmas 4.1 and 4.2, we get the following.

Theorem 4.4. Let ∆ = minu∈V(T1),v∈V(T2)
dI(Tu

1 , Tv
2 ). Then

1
2 dGH(T1, T2) ≤ ∆ ≤ 14dGH(T1, T2).

Corollary 4.5. If there is a polynomial time, c-approximation algorithm for the interleaving distance between two
merge trees, then there is a polynomial time, 28c-approximation algorithm for the Gromov-Hausdorff distance between
two metric trees.

5 Computing the Interleaving Distance

Let M f and Mg be merge trees of two functions f and g, respectively. For simplicity, we use f and g to
denote the height functions on M f and Mg as well. Let n be the total number of nodes in M f and Mg, and
let r ≥ 1 be the ratio between the lengths of the longest and the shortest edges in M f and Mg. We describe

a O(min{n,
√

rn})-approximation algorithm for computing dI(M f ,Mg).

Candidate values and binary search. We first show that a candidate set Λ of O(n2) values can be computed
in O(n2) time such that dI(M f ,Mg) ∈ Λ. Given Λ, we perform a binary search on Λ. At each step, we use

a c-approximate decision procedure, for c = c1 min{n,
√

rn} for some constant c1, that given a value ε > 0
does the following : if dI(M f ,Mg) ≤ ε, it returns a pair of cε-compatible maps between M f and Mg; if

dI(M f ,Mg) > ε, it will either return a pair of cε-compatible maps between M f and Mg or report that no such
maps exist. The binary search terminates when one of the following two conditions meet :

(i) We have two consecutive values ε−, ε+ ∈ ∆ with ε− < ε+ such that the decision procedure returned
YES for ε+ and NO for ε−; in this case we return ε+.

(ii) We have two (not necessarily consecutive) values ε−, ε+ ∈ ∆ with ε− < ε+ such that the decision
procedure returned NO for ε+ and YES for ε− (but with ε′-compatible maps for some ε′ > ε+), in
which case we return ε−.

It is clear that the procedure returns a value ε such that dI(M f ,Mg) ≤ ε ≤ cdI(M f ,Mg). We now describe
the candidate set Λ.
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Let Vf (resp. Vg) be the set of nodes in M f (resp. Mg). We define Λ = Λ11 ∪ Λ22 ∪ Λ12, where

Λ11 = { 1
2 | f (u)− f (v)| | u, v ∈ Vf },

Λ22 = { 1
2 |g(u)− g(v)| | u, v ∈ Vg},

Λ12 = {| f (u)− g(v)| | u ∈ Vf , v ∈ Vg}.

Lemma 5.1. dI(M f ,Mg) ∈ Λ.

Proof. Suppose to the contrary that dI(M f ,Mg) = ε /∈ Λ. Let α : M f → Mg and β : Mg → M f be ε-

compatible maps that realize dI(M f ,Mg) = ε. We will obtain a contradiction by choosing ε0 > 0 and

constructing (ε − ε0)-compatible maps α̂, β̂.
For any point x ∈ M f , we define α↓(x) = α(x) if α(x) is a node of Mg, otherwise α↓(x) is the lower

endpoint of the edge of Mg containing α(x). Similarly we define the function β↓ : Mg → M f .

Figure 5. Trees M f and Mg. Here δv = min{ 1
2 ε1, ε2}.

For every node v ∈ Vf , α(v) (resp. β(α(v))) lies in the interior of an edge of Mg (resp. M f ), because
ε /∈ Λ ⊇ Λ12 (resp. Λ11). We define

δv = min{ 1
2

(

f (β(α(v)))− f (β↓(α(v))), g(α(v))− g(α↓(v))
)

}.

See Figure 5. Similarly we define δw for all w ∈ Vg . We set

ε0 = min{ε, min
v∈Vf∪Vg

δv}.

Since ε /∈ Λ, we have ε0 > 0. We now construct (ε − ε0)-compatible maps α̂ : M f → Mg and β̂ : Mg →
M f . We describe the construction of α̂; β̂ is constructed similarly. By construction, for any node u ∈ Vf ,

g(α(u))− g(α↓(u)) ≥ ε0, so we set α̂(v) to be the point w on the edge of Mg containing α(u) such that
g(w) = f (u) + ε − ε0. Once we have defined α̂(u) and α̂(v) for an edge uv ∈ M f , with f (u) < f (v), we set

α̂(x), for a point x ∈ uv with f (x) = f (u) + γ, to be

α̂(x) = σ
γ
g (α̂(u)).

That is, we set α̂(x) to be the ancestor of α̂(u) at height f (u) + ε − ε0 + γ = f (x) + ε − ε0.
We claim that α̂, β̂ are (ε − ε0)-compatible. Indeed, by construction, g(α̂(x)) = f (x) + ε − ε0 for all

x ∈ M f , and f (β̂(y)) = g(y) + ε − ε0 for all y ∈ Mg. We now prove that

β̂ ◦ α̂ = σ
2(ε−ε0)
f .

Suppose to the contrary there is a point x ∈ M f such that y = β̂(α̂(x)) 6= σ
2(ε−ε0)
f (x). Since f (y) =

10



Figure 6. Figure showing u, v, x, y and y′.

f (x) + 2(ε − ε0), y must not be an ancestor of x. On the other hand, α, β are ε-compatible, so y′ = β(α(x)) is
the ancestor of x at height f (x) + 2ε. By construction of α̂ and β̂, y is a descendant of y′, in which case there
is a node u ∈ Vf that lies between y and y′. (If y and y′ lie on the same edge of M f , then y is also an ancestor

of x.) Let u = β↓(α(x)). Let v be the lower endpoint of the edge e containing x. See Figure 6. Since ε /∈ ∆,
f (u) 6= f (v) + 2ε (i.e., u 6= β(α(v))). There are two cases to consider :

(i) f (u) > f (v) + 2ε. Then let u = β(α(z)) for the point z lying between x and v at height f (z) =
f (u)− 2ε. Furthermore f (x) ≥ f (z) > f (x)− 2ε0 (if f (x)− f (z) ≥ 2ε0, then f (y′)− f (u) = f (x)−
f (z) ≥ 2ε0, contradicting the fact that f (y′)− f (y) = 2ε0). Therefore we can choose a point w 6= v
on e such that f (z) > f (w) > f (x) − 2ε0. Now, it’s not too hard to see that if x1 is an ancestor of
x2 in M f , then α̂(x1) is an ancestor of α̂(x2) (similarly for β̂). Further, β̂(α̂(x1)) is a descendant of

β(α(x1)) for all x1 ∈ M f (a similar result holds for α̂ ◦ β̂ and α ◦ β). Thus, β̂(α̂(w)) is a descendant of

y = β̂(α̂(x)) (since w is a descendant of x). Moreover, β(α(w)) is an ancestor of β̂(α̂(w)). However,
since f (β(α(w))) < f (u), β(α(w)) lies between y and u. Thus, β(α(w)) is not an ancestor of x (hence
w), i.e., β(α(w)) 6= σ2ε

f (w), contradicting the fact that α, β are ε-compatible.

(ii) f (u) < f (v) + 2ε. In this case

f (β(α(v)))− f (β↓(α(v))) ≤ f (β(α(v)))− f (u) < f (y′)− f (y) = 2ε0 ≤ 2δv,

which contradicts the definition of δv.

Hence we conclude that y is an ancestor of x, i.e., β̂ ◦ α̂ = σ
2(ε−ε0)
f . Similarly, we argue that α̂ ◦ β̂ = σ

2(ε−ε0)
g ,

implying that α̂, β̂ are (ε − ε0)-compatible maps as claimed.
Putting everything together, we conclude that ε ∈ ∆.

We now describe the decision procedure to answer the question “is dI(M f ,Mg) ≤ ε?” approximately.
We define the length of any edge in a merge tree (other than the edge to infinity) to be the height difference
between its two endpoints. Given a parameter ε > 0, an edge is called ε-long, or long for brevity, if its length
is strictly greater than 2ε. We first describe an exact decision procedure for the case when all edges in both
trees are long, and then describe an approximate decision procedure for the case when the two trees have
short edges.

Trees with long edges. We remove all degree-two nodes in the beginning. A subtree rooted at a point x in a
merge tree M, denoted M

x, includes all the points in the merge tree that are descendants of x and an edge
from x that extends upwards to height ∞. For a node u ∈ V, let C(u) denote the children of u and let p(u)
denote its parent. Assume dI(M f ,Mg) ≤ ε, and let α : M f → Mg and β : Mg → M f be a pair of ε-compatible
maps. As in the proof of Lemma 5.1, we define the functions α↓ and β↓ but restricted only to the vertices of
M f and Mg. That is, for a node v ∈ Vf , we define α↓(v) to be the lower endpoint of the edge containing α(v)
– if α(v) is a node, then α↓(v) is α(v) itself. Similarly we define β↓(w), for a node w ∈ Vg.

The following two properties of α↓ and β↓ will be crucial for the decision procedure.
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Lemma 5.2. (i) For a node v ∈ Vf , | f (v)− g(α↓(v))| ≤ ε, and (ii) for a node w ∈ Vg, |g(w)− f (β↓(w))| ≤ ε.

Proof. We will prove part (i); part (ii) is similar. By definition, g(α↓(v)) ≤ f (v) + ε. Suppose g(α↓(v)) <

f (v)− ε. Let v′ be a point in Mg lying on the edge containing α(v) and α↓(v) with height f (v)− ε − ε0, for
some sufficiently small ε0. Then β(v′) lies in one of the subtrees rooted at the children of v, say M1. Consider
a descendant u of v at height g(v′)− ε lying in a different subtree M2 rooted at v’s child. Since by definition
and our choice of v′ there does not exist any node in Mg between α(v) and v′, we have α(u) = v′. But then

β(α(u)) = β(v′) lies in M1, and hence is not an ancestor of u ∈ M2; in other words β(α(u)) 6= σ2ε
f (u). This

contradicts the fact that α and β are ε-compatible. Thus, g(α↓(v)) ≥ f (v)− ε, and the claim follows.

Lemma 5.3. If all edges in M f and Mg are ε-long, then α↓ and β↓ are bijections with β↓ = α−1
↓ (and α↓ = β−1

↓ ).

Proof. We will first show that β↓ = α−1
↓ . Suppose to the contrary there exists a vertex v ∈ Vf such that

β↓(α↓(v)) = w 6= v. Let α↓(v) = u, for u ∈ Vg. From Lemma 5.2 we have | f (v)− f (w)| ≤ 2ε. Since all
edges are longer than 2ε and v 6= w, v cannot be an ancestor/descendant of w in M f . By definition of α↓,

α(v) is an ancestor of α↓(v) = u. Thus β(α(v)) is an ancestor of β(u). Further, | f (v)− g(u)| ≤ ε (Lemma 5.2)

and β(α(v)) = σ2ε
f (v) (since α, β are ε-compatible). Hence, β(u) lies between v and β(α(v) on the edge e

whose lower endpoint is v as e is ε-long. Thus, β(u) is an ancestor of v. Also by definition of β↓, β(u) is an
ancestor of β↓(u) = w. Thus, w is a descendant of v, a contradiction since v cannot be an ancestor of w.

We thus have β↓ = α−1
↓ . Similarly, we can show that α↓ = β−1

↓ . This also implies that α↓ and β↓ are

bijections.

We define an indicator function Φ : Vf × Vg → {0, 1} such that

Φ(u, v) =

{

1, if dI(M
u
f ,Mv

g) ≤ ε,

0, otherwise.

The following lemma gives a recursive definition of Φ(u, v).

Lemma 5.4. Suppose all the edges in M f and Mg are ε-long. For a pair (u, v) ∈ Vf × Vg, Φ(u, v) = 1 if and only if

the following conditions hold : (i) | f (u)− g(v)| ≤ ε, (ii) |C(u)| = |C(v)|, and (iii) there exists a permutation π of
[1 : |C(u)|] such that Φ(ui, vπ(i)) = 1 for all i ∈ [1 : |C(u)|].

Proof. Suppose Φ(u, v) = 1, and let α, β be the corresponding ε-compatible maps. To see why (i) holds, for
contradiction, suppose property (i) does not hold, and let f (u) > g(v) without loss of generality. Thus, β(v)
maps to one of the multiple edges incident to u, and there exists at least one edge e = (u, w) with w ∈ C(u)
such that none of e’s points (other than u) is in the image of β. However, β(α(u)) = σ2ε

f (u) must lie in

the interior of e (since e is ε-long), a contradiction. To prove that (ii) holds, note that by Lemma 5.3, there
exist bijections α↓, β↓ between Vf , Vg such that if u1 ∈ C(u2) in Vf , then α↓(u1) ∈ C(α↓(u2)) (a symmetric

statement holds for β↓ and Vg). Thus, α↓, β↓ induce bijections between C(u) and C(v), and hence |C(u)| =
|C(v)|. Finally, for (iii), Let α↓(u′) = v′ for some u′ ∈ C(u), v′ ∈ C(v). Then by definition of α↓ and β↓,

α(Mu′
f ) ⊆ M

v′
g and β(Mv′

g ) ⊆ M
u′
f . This means that the restriction of the pair of ε-compatible maps α and β

to M
u′
f and M

v′
g respectively remain ε-compatible for Mu′

f and M
v′
g . Thus, Φ(u′, v′) = 1, and the permutation

π is defined by α↓, β↓.
We now prove the opposite direction. Suppose properties (i),(ii) and (iii) hold. Let (αi, βi) be the pair of

ε-compatible maps between M
ui
f and M

vπ(i)
g . Then, a pair of ε-compatible maps (α, β) between M

u
f and M

v
g is

obtained as follows : α(x) = {αi(x) | x ∈ M
ui
f } (β is defined similarly). Note that points on the infinite edge

from u (resp. v) upwards are shared among all M
ui
f (resp. M

v j
g ), whereas all other points in M

u
f (resp. Mv

g) are

present in only one M
ui
f (resp. M

v j
g ). However, since | f (u)− g(v)| ≤ ε, shared points are mapped to shared
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points and we have |α(x)| = 1 (resp. |β(y)| = 1|) for all x ∈ M
u
f (resp. y ∈ M

v
g). Thus, α and β are functions

and satisfy all the required properties. Hence, Φ(u, v) = 1.

Decision procedure. We compute Φ for all pairs of nodes in Vf × Vg in a bottom-up manner and return

Φ(r f , rg) where r f (resp. rg) is the root of M f (resp. Mg). Let (u, v) ∈ Vf × Vg.

Suppose we have computed Φ(ui, vj) for all ui ∈ C(u) and vj ∈ C(v). We compute Φ(u, v) as follows. If
(i) or (ii) of Lemma 5.4 does not hold for u and v, then we return Φ(u, v) = 0. Otherwise we construct the
bipartite graph Guv = {C(u) ∪ C(v), E = {(ui, vj) | Φ(ui, vj) = 1}} and determine in O(k5/2) time whether
Guv has a perfect matching, using the algorithm by Hopcroft and Karp [12]. Here, k = |C(u)| = |C(v)|. If
Guv has a perfect matching M = {(u1, vπ(1)), . . . , (uk, vπ(k))}, we set Φ(u, v) = 1, else we set Φ(u, v) = 0. If

Φ(u, v) = 1, we use the ε-compatible maps for M
ui
f ,M

vπ(i)
g , for 1 ≤ i ≤ k, to compute a pair of ε-compatible

maps between M
u
f and M

v
g, as discussed in the proof of Lemma 5.4.

For a node u ∈ Vf ∪ Vg, let ku be the number of its children. The total time taken for running Hopcroft
and Karp [12] is :

∑
u∈V(T1)

∑
v∈V(T2)

O
(

kukv

√

kv

)

= ∑
u∈V(T1)

ku ∑
v∈V(T2)

O
(

kv

√

kv

)

≤ O
(

n3/2
)

∑
u∈V(T1)

ku ≤ O
(

n5/2
)

.

Hence we obtain the following.

Lemma 5.5. Given two merge trees M f and Mg and a parameter ε > 0 such that all edges of M f and Mg are ε-long,

then whether dI(M f ,Mg) ≤ ε can be determined in O(n5/2) time. If the answer is yes, a pair of ε-compatible maps
between M f and Mg can be computed within the same time.

Figure 7. A naive map.

Trees with short edges. Given two merge trees, a naive map is to map the lowest among all the leaves in
both the trees to a point at height equal to the height of the higher root (see Figure 7). Thus, all the points in
one tree will be mapped to the infinitely long edge on the other tree. This map produces a distortion equal
to the height of the trees, which can be arbitrarily larger than the optimum. Nevertheless, this simple idea
leads to an approximation algorithm.

Here is an outline of the algorithm. After carefully trimming off short subtrees from the input trees,
the algorithm decomposes the resulting trimmed trees into two kinds of regions – those with nodes and
those without nodes. If the interleaving distance between the input trees is small, then there exists an
isomorphism between trees induced by the regions without nodes. Using this isomorphism, the points in
the nodeless regions are mapped without incurring additional distortion. Using a counting argument and
the naive map described above, it is shown that the distortion incurred while mapping the regions with
nodes and the trimmed regions is bounded.
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Figure 8. Trimming a tree : (left) original tree, red points have extent < 2(
√

2ns + 1)ε; (right) trimmed tree, nodes added at the bottom
(hollowed nodes).

More precisely, given M f , Mg and ε > 0, define the extent e(x) of a point x (which is not necessarily a
tree node) in M f or Mg as the maximum height difference between x and any of its descendants. Suppose

each edge is at most sε long. Let M′
f and M

′
g be subsets of M f and Mg consisting only of points with extent

at least 2(
√

2ns + 1)ε, adding nodes to the new leaves of M′
f and M

′
g as necessary. Note that M′

f and M
′
g

themselves are trees, however they might contain nodes of degree 2. See Figure 8 for an example.

Lemma 5.6. If dI(M f ,Mg) ≤ ε, then dI(M
′
f ,M′

g) ≤ ε.

Proof. Let α : M f → Mg and β : Mg → M f be ε-compatible maps. Let α′ and β′ be restrictions of the

functions’ domains to M
′
f and M

′
g respectively. We argue that the ranges of α′ and β′ lie in M

′
g and M

′
f

respectively. Suppose otherwise. Then without loss of generality, there is a point x ∈ M
′
f with y = α(x)

not in M
′
g. Because x ∈ M

′
f , its extent in M f is at least 2(

√
2ns + 1)ε. Therefore, there exists a descendant x′

of x in M f with f (x′) = f (x) − 2(
√

2ns + 1)ε. Because y is not in M
′
g, the extent of y must be less than

2(
√

2ns + 1)ε and there exists no descendant y′ of y with g(y′) = g(y)− 2(
√

2ns + 1)ε = f (x)− 2(
√

2ns +
1)ε + ε = f (x′) + ε. Since g(α(x′)) = f (x′) + ε, α(x′) is not a descendant of α(x), which contradicts the
assumption that α, β are ε-compatible maps.

The above lemma can be easily generalized to say that removing points in both trees with extent less
than or equal to any fixed value does not change the distance between them.

We now define matching points in M
′
f and M

′
g. A branching node is a node of degree greater than 2. A

point x in M
′
f is a matching point if there exists a branching node or a leaf x′ in M

′
f or y′ in M

′
g with function

value f (x) and there exist no branching nodes nor leaves in M
′
f or M

′
g with function value in the range

( f (x), f (x) + 2ε]. Matching points on M
′
g are defined similarly. By this definition, no two matching points

share a function value within 2ε of each other unless they share the exact same function value. Furthermore,
if x is a matching point, then all points with the same function value as x on both M

′
f and M

′
g are matching

points. There are O(n2) matching points.
Suppose dI(M

′
f ,M′

g) ≤ ε, and let α′ : M′
f → M

′
g and β′ : M′

g → M
′
f be a pair of ε-compatible maps. Call a

matching point x in M
′
f and a matching point y in M

′
g with f (x) = g(y) matched if α′(x) is an ancestor of y.

Lemma 5.7. Let x be any matching point in M
′
f . The matched relation between matching points in M

′
f at height f (x)

and matching points in M
′
g at height f (x) is a bijective function.

Proof. No two distinct matching points y1 and y2 on M
′
g with f (x) = g(y1) = g(y2) share the same ancestor

with function value f (x) + ε, because they have no branching node ancestors with low enough function
value. Therefore, a matching point in M

′
f can be matched to only one one matching point in M

′
g.

Let x1 and x2 be two distinct matching points from M
′
f with f (x) = f (x1) = f (x2). If α′(x1) and α′(x2)

are ancestors of a common matching point y, then α′(x1) = α′(x2) and thus x1 and x2 must have a common
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ancestor x′ at height f (x) + 2ε. However, x1 and x2 have no branching node ancestor with low enough
function value for x′ to exist. Hence, the matching relation must be injective from matching points in M

′
f to

M
′
g.

Finally, consider any matching point y on M
′
g with g(y) = f (x). Point x′1 = β′(y) is the ancestor of a

matching point x1 on M
′
f . (Note that by the same argument as the beginning of this proof, only one such

matching point x1 can exist.) Point y′ = α′(x′1) is an ancestor of y with g(y′) ≤ g(y) + 2ε. Point y is the
only descendant of y′ with function value f (x). Point α′(x1) must be an ancestor of y, meaning x1 and y are
matched. Thus, the matching relation is surjective.

Figure 9. The left tree shows matching points on tree M
′
f and the right tree shows M̃ f .

We now define a rooted tree M̃ f to be a rooted tree consisting of one node per matching point on M
′
f .

Let p(v) be the matching point for node v. M̃ f has node v as an ancestor of node u if p(v) is an ancestor of

p(u) (see Figure 9). Define m̃tg similarly. The size of M̃ f and M̃g is O(n2). Intuitively, M̃ f and M̃g represent

the trees induced by matching points. By the definition of interleaving distance and Lemma 5.7, M̃ f and M̃g

are isomorphic if M′
f and M

′
g satisfy that dI(M

′
f ,M′

g) ≤ ε.

Decision procedure. We are now ready to describe the decision procedure. We first construct the subtrees

M
′
f and M

′
g of M f and Mg, respectively, consisting of points with extent at least 2(

√
2ns + 1)ε. Next, we

compute matching points on M
′
f and M

′
g and construct the trees M̃ f and M̃g on these matching points, as

defined above.
Using the algorithm of [1, chap. 3, p. 85], we determine in time linear in the size of the trees whether

M̃ f and M̃g are isomorphic. If the answer is no, we return no. By Lemma 5.7, dI(M f ,Mg) > ε in this case.
Otherwise we construct the following functions α : M f → Mg and β : Mg → M f and return them. For each

pair of matching points x and y matched by the isomorphism, the algorithm sets α(x) = y and β(y) = x.
Now, let (ξ1, ξ2) be any maximal range of function values without any branching nodes or leaves in M

′
f or

M
′
g with ξ2 − ξ1 > 2ε. Let x′ be any point in M

′
f with f (x′) ∈ (ξ1, ξ2). Point x′ has a unique matching point

descendant x at height ξ1, by the definition of matching points. The algorithm sets α(x′) to the point y′ in
M

′
g where y′ is the ancestor of α(x) with g(y′) = f (x′), and it sets β(y′) = x′. For every remaining point x′′

in M
′
f , the algorithm sets α(x′′) to α(x) where x is the lowest matching point ancestor of x′′. β(y′′) is defined

similarly for remaining points y′′ in M
′
g. We call such points x′′ and y′′ lazily assigned. Finally, each point z

in M f −M
′
f has α(z) set to α(x) where x is the lowest ancestor of z in M

′
f . Similar assignments are done for

points in Mg −M
′
g.

Lemma 5.8. (i) For each lazily assigned point x′′ ∈ M
′
f ,

g(α(x′′)) ≤ f (x′′) + 2(
√

2ns + 1)ε.
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(ii) For each lazily assigned point y′′ ∈ M
′
g,

f (β(y′′)) ≤ g(y′′) + 2(
√

2ns + 1)ε.

Proof. We only prove (i); (ii) is symmetric. The higher of the two roots of M′
f and M

′
g is a matching point,

and so are all the points at that height. Thus, all lazily assigned points have a matching point ancestor. We
show that the nearest such ancestor cannot be too higher up.

Let x be a matching point. We show that there exists a region (ξ1, ξ2) as defined above with

f (x)− 2(
√

2ns + 1)ε ≤ ξ2 ≤ f (x).

Consider sweeping over the function values downward starting at f (x) and let ξ2 be the largest function
value possible for a region as defined above. If the sweep line ever goes a distance greater than 2ε without
encountering a branching node or leaf in M

′
f or M′

g, then an ξ2 is found. Therefore, there will be at least one

branching node or leaf x′ in M
′
f or M′

g per descent of 2ε until ξ2 is found. Suppose ξ2 < f (x)− 2(
√

2ns+ 1)ε.

Let l =
√

2ns + 1, and f ′ = f (x) − 2lε. Because each point in M
′
f and M

′
g has extent at least 2lε, each

branching node or leaf x′ ∈ M
′
f ∪M

′
g with height f (x′) ∈ [ f ′, f (x)) introduces at least one descendant in

M f or Mg at height f ′. Since each edge length is at most sε, we can uniquely charge at least ( f (x′)− f ′)/sε

nodes to each branching node x′ at height f (x′) ∈ [ f ′, f (x)). For each leaf node x′, we can still charge
( f (x′)− f ′)/sε nodes to x′; however these nodes can also be charged to at most one more branching node,
namely the lowest branching node ancestor of x′ with height in [ f ′, f (x)). Thus, each node can be charged
at most twice. Since there is at least one branching node or leaf per descent of 2ε, the total number of nodes
charged is at least

l

∑
i=1

(l − i)2ε

sε
=

l(l − 1)

s
.

Since each node is charged at most twice, we have

l(l − 1)

s
≤ 2n ⇒ l(l − 1) ≤ 2ns,

a contradiction since l =
√

2ns + 1. Therefore, either ξ2 ≥ f (x)− 2(
√

2ns + 1)ε, or the trees M′
f and M

′
g do

not extend below height f (x)− 2(
√

2ns + 1)ε. In either case, the lemma follows.

Lemma 5.9. Let M f and Mg be two merge trees and let ε > 0 be a parameter. There is an O(n2) time algorithm that

returns a pair of 4(
√

2ns+ 1)ε-compatible maps between M f and Mg, if dI(M f ,Mg) ≤ ε and the maximum length of

a tree edge is sε. If dI(M f ,Mg) > ε, then the algorithm may return no or return a pair of 4(
√

2ns + 1)ε-compatible
maps.

Proof. Constructing the trees M̃ f and M̃g, the corresponding isomorphism between them (if it exists), and

the maps α and β between M f and Mg (if they exist) takes time O(n2).

Except for the lazily assigned points, all the points in M
′
f and M

′
g are mapped by α and β resp. to points

at the same function value. By Lemma 5.8, each point in M
′
f and M

′
g has its function value changed by at

most 2(
√

2ns + 1)ε. Points in M f −M
′
f (resp. Mg −M

′
g) have their nearest ancestors in M

′
f (resp. M

′
g) at

function value at most 2(
√

2ns + 1)ε away. Since α and β map them to the images of their nearest ancestors,

their function values change by at most 2 · 2(
√

2ns + 1)ε.

Remark. (i) Since the minimum edge length is ≤ 2ε, the maximum edge length is sε, and the ratio between
the lengths of the longest and shortest edges is r; we have r ≥ s/2.
(ii) If s = Ω(n), we modify the above algorithm slightly – we skip the trimming step, but keep the rest same.
It can be shown, as in Lemma 5.8, that the height of a point and its image differ by at most 2nε.
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Putting it together. By Lemmas 5.5 and 5.9, the decision procedure takes O(n5/2) time. If it returns no, then
dI(M f ,Mg) > ε. If it returns yes, then it also returns O(min{n,

√
rn}ε)-compatible maps between them.

Hence, we conclude the following.

Theorem 5.10. Given two merge trees M f and Mg with a total of n vertices, there exists an O(n5/2 log n) time

O
(

min{n,
√

rn}
)

-approximation algorithm for computing the interleaving distance between them, where r is the
ratio between the lengths of the longest and the shortest edge in both trees.

Combining Theorem 5.10 with Corollary 4.5, we have:

Corollary 5.11. Given two metric trees T1 and T2 with a total of n vertices, there exists an O(n7/2 log n) time
O
(

min{n,
√

rn}
)

-approximation algorithm for computing the Gromov-Hausdorff distance between them, where r is
the ratio between the lengths of the longest and the shortest edge in both trees.

6 Conclusion

We have presented the first hardness results for computing the Gromov-Hausdorff distance between metric
trees. We have also given a polynomial time approximation algorithm for the problem. But the current gap
between the lower and upper bounds on the approximation factor is polynomially large. It would be very
interesting to close this gap. In general, we hope that our current investigation will stimulate more research
on the theoretical and algorithmic aspects of embedding or matching under additive metric distortion.
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