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Abstract

We study the problem of assigning transmission ranges to radio stations placed arbitrarily in
a d-dimensional (d-D) Euclidean space in order to achieve a strongly connected communication
network with minimum total power consumption. The power required for transmitting in range r
is proportional to rα, where α is typically between 1 and 6, depending on various environmental
factors. While this problem can be solved optimally in 1D, in higher dimensions it is known to be
NP -hard for any α ≥ 1.

For the 1D version of the problem, i.e., radio stations located on a line and α ≥ 1, we propose
an optimal O(n2)-time algorithm. This improves the running time of the best known algorithm by
a factor of n. Moreover, we show a polynomial-time algorithm for finding the minimum cost range
assignment in 1D whose induced communication graph is a t-spanner, for any t ≥ 1.

In higher dimensions, finding the optimal range assignment is NP -hard; however, it can be
approximated within a constant factor. The best known approximation ratio is for the case α = 1,
where the approximation ratio is 1.5. We show a new approximation algorithm with improved
approximation ratio of 1.5 − ε, where ε > 0 is a small constant.

1 Introduction

A wireless ad-hoc network is a self-organized decentralized network that consists of independent radio
transceivers (transmitter/receiver) and does not rely on any existing infrastructure. The network nodes
(stations) communicate over radio channels. Each node broadcasts a signal over a fixed range and
any node within this transmission range receives the signal. Communication with nodes outside the
transmission range is done using multi-hops, i.e., intermediate nodes pass the message forward and
form a communication path from the source node to the desired target node. The twenty-first century
witnesses widespread deployment of wireless networks for professional and private applications. The field
of wireless communication continues to experience unprecedented market growth. For a comprehensive
survey of this field see [7].

Let S be a set of points in the d-dimensional Euclidean space representing radio stations. A range
assignment for S is a function ρ : S → R+ that assigns each point a transmission range (radius).
The cost of a range assignment, representing the power consumption of the network, is defined as
cost(ρ) =

∑
v∈S(ρ(v))α for some real constant α ≥ 1, where α varies between 1 and values higher than

6, depending on different environmental factors [7].
A range assignment ρ induces a directed communication graph Gρ = (S,Eρ), where Eρ = {(u, v) :

ρ(u) ≥ |uv|} and |uv| denotes the Euclidean distance between u and v. A range assignment ρ is valid if
the induced (communication) graph Gρ is strongly connected. For ease of presentation, throughout the
paper we refer to the terms ‘assigning a range |uv| to a point u ∈ S’ and ‘adding a directed edge (u, v)’
as equivalent.

We consider the d-D Minimum Cost Range Assignment (MinRange) problem, that takes as
input a set S of n points in Rd, and whose objective is finding a valid range assignment for S of
minimum cost. This problem has been considered extensively in various settings, for different values of
d and α, with additional requirements and modifications. Some of these works are mentioned in this
section.
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In [6], Kirousis et al. considered the 1D MinRange problem (the radio stations are placed arbitrarily
on a line) and showed an O(n4)-time algorithm which computes an optimal solution for the problem.
Later, Das et al. [5] improved the running time to O(n3). Here, we propose an O(n2)-time exact
algorithm, this improves the running time of the best known algorithm by a factor of n without increasing
the space complexity. The novelty of our method lies in separating the range assignment into two, left
and right, range assignments (elaborated in Section 2). This counter intuitive approach allows us to
achieve the aforementioned result and, moreover, to compute an optimal range assignment in 1D with
the additional requirement that the induced graph is a t-spanner, for a given t ≥ 1.

A directed graph G = (S,E) is a t-spanner for a set S, if for every two points u, v ∈ S there exists a
path in G from u to v of length at most t|uv|. The importance of avoiding flooding the network when
routing, was one of the reasons that led researchers to consider the combination of range assignment and
t-spanners, e.g., [1, 8, 9, 10], as well as the combination of range assignment and hop-spanners, e.g., [4, 6].
While bounded-hop spanners bound the number of intermediate nodes forwarding a message, t-spanners
bound the relative distance a message is forward. For the 1D bounded-hop range assignment problem,
Clementi et al. [4] showed a 2-approximation algorithm whose running time is O(hn3). To the best of
our knowledge, we are the first to show an algorithm that computes an optimal solution for the range
assignment with the additional requirement that the induced graph is a t-spanner.

While the 1D version of the MinRange problem can be solved optimally, for any d ≥ 2 and α ≥ 1,
it has been proven to be NP -hard (in [6] for d ≥ 3 and 1 ≤ α < 2 and later in [3] for d ≥ 2 and
α > 1). However, some versions can be approximated within a constant factor. For α = 2 and any d ≥ 2
Kirousis et al. [6] gave a 2-approximation algorithm based on the minimum spanning tree (although they
addressed the case of d ∈ {2, 3} their result holds for any d ≥ 2). The best known approximation ratio
is for the case α = 1, where the approximation ratio is 1.5 [2]. We show a new approximation algorithm
for this case1 with improved approximation ratio of 1.5 − ε, for a suitable constant ε > 0. We do not
focus on increasing ε but rather on showing that there exists an approximation ratio for this problem
that is strictly less than 1.5. This is in contrast to classic problems, such as metric TSP and strongly
connected sub-graph problems, for which the 1.5 ratio bound has not yet been breached.

2 Minimum Cost Range Assignment in 1D

In the 1D version of the MinRange problem, the input set S = {v1, ..., vn} consists of points located
on a line. For simplicity, we assume that the line is horizontal and for every i < j, vi is to the left of vj .
Given two indices 1 ≤ i < j ≤ n, we denote by Si,j the subset {vi, ..., vj} ⊆ S.

We present two polynomial-time algorithms for finding optimal range assignments, the first, in Sec-
tion 2.1, for the basic 1D MinRange problem, and the second, in Section 2.2, subject to the additional
requirement that the induced graph is a t-spanner (the 1D MinRangeSpanner problem). Our new
approach for solving these problems requires introducing a variant of the range assignment. Instead of
assigning each point in S a radius, we assign each point two directional ranges, left range assignment,
ρl : S → R+, and right range assignment, ρr : S → R+. A pair of assignments (ρl, ρr) is called a
left-right assignment. Assigning a point v ∈ S a left range ρl(v) and a right range ρr(v) implies that
in the induced graph, Gρlr , v can reach every point to its left up to distance ρl(v) and every point to
its right up to distance ρr(v). That is, Gρlr , contains the directed edge (vi, vj) iff one of the following
holds: (i) i < j and |vivj | ≤ ρr(vi), or (ii) j < i and |vivj | ≤ ρl(vi). The cost of an assignment (ρl, ρr),
is defined as cost(ρl, ρr) =

∑
v∈S(max{ρl(v), ρr(v)})α.

Our algorithms find a left-right assignment of minimum cost that can be converted into a range
assignment ρ with the same cost by assigning each point v ∈ S a range ρ(v) = max{ρl(v), ρr(v)}. Note
that any valid range assignment for S can be converted to a a left-right assignment with the same cost,
by assigning every point v ∈ S, ρl(v) = ρr(v) = ρ(v). To be more precise, either ρl(v) or ρr(v) should be
reduced to |vu|, where u is the farthest point in the directional range (for Lemma 1 to hold). Therefore,
a minimum cost left-right assignment, implies a minimum cost range assignment.

In addition to the cost function, we define cost′(ρl, ρr) =
∑
v∈S((ρl(v))α + (ρr(v))α), and refine the

term of optimal solution to include only solutions that minimize cost′(ρl, ρr) among all solutions, (ρl, ρr),
with minimum cost(ρl, ρr).

1Values of α smaller than 2 correspond to areas, such as, corridors and large open indoor areas [7].
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2.1 An Optimal Algorithm for the 1D MinRange Problem

Das et al. [5] state three basic lemmas regarding properties of an optimal range assignment. The following
three lemmas are adjusted versions of these lemmas for a left-right assignment.

Lemma 1. In an optimal solution (ρl, ρr) for every vi ∈ S, either ρl(vi) = 0 or ρl(vi) = |vivj | and
similarly, either ρr(vi) = 0 or ρr(vi) = |vivk| for some j ≤ i ≤ k.

Lemma 2. Given three indices 1 ≤ i < j < k ≤ n, consider an optimal solution for Si,k, denoted by
(ρl, ρr), subject to the condition that ρl(vj) ≥ |vivj | and ρr(vj) ≥ |vjvk|, then,
• for all m = i, ..., j − 1, ρr(vm) = |vmvm+1| and ρl(vm) = 0; and
• for all m = j + 1, ..., k, ρl(vm) = |vmvm−1| and ρr(vm) = 0.

Lemma 3. In an optimal solution (ρl, ρr), ρl(v1) = 0 and ρr(v1) = |v1v2|.
Lemma 1 allows us to simplify the notation ρx(vi) = |vivj | for x ∈ {l, r} and 1 ≤ i, j ≤ n, and write

ρx(i) = j for short. We solve the MinRange problem using dynamic programming. Given 1 ≤ i < n, we
denote by OPT (i) the cost of an optimal solution for the sub-problem defined by the input Si,n, subject
to the condition that ρr(i) = i + 1. Note that the cost of an optimal solution for the whole problem is
OPT (1).

In Section 2.1.1 we present an algorithm with O(n3) running time and O(n2) space (the same time
and space as in [5]). Then, in Section 2.1.2 we reduce the running time to O(n2).

2.1.1 A Cubic-Time Algorithm

Algorithm 1DMinRA (Algorithm 1) applies dynamic programming to compute the values OPT (i) for
every 1 ≤ i ≤ n and store them in a table, T . Finally, it outputs the value T [1]. In our computation

we use a 2-dimensional matrix, Sum, storing for every 1 ≤ i < j ≤ n the sum
∑j−1
m=i |vmvm+1|α. While

Algorithm 1 1DMinRA(S)

for i = n− 1 downto 1 do
for j = n downto i+ 1 do

Sum[i, j]←

 |vn−1vn|
α , i = n− 1

Sum[i+ 1, n] + |vivi+1|α , j = n
Sum[i, j + 1]− |vjvj+1|α , otherwise

for i = n− 1 downto 1 do

T[i]←


2|vivi+1|α , i = n− 1

min
i<k<n
k<k′≤n

{Sum[i, k′ − 1] + T[k′ − 1]− |vk′−1vk′ |α

+ max{|vivk|α, |vkvk′ |α}}
, otherwise

return T[1]

the table T maintains only the costs of the solutions, the optimal assignment can be easily retrieved by
backtracking the cells leaded to the optimal cost and assigning the associated ranges (described in the
proof of Lemma 4).

Correctness. We prove that for every 1 ≤ i ≤ n, the value assigned to cell T [i] by the algorithm equals
OPT (i). Trivially, OPT (n− 1) indeed equals 2|vivi+1|α. Assume, during the i-th iteration it holds that
T [i′] = OPT (i′) for every i < i′ < n, the correctness of the computation done during the i-th iteration
is given in Lemma 4.

Lemma 4. Given an index i with 1 ≤ i ≤ n− 1,

OPT (i) = min
i<k<n
k<k′≤n


k′−2∑
m=i

|vmvm+1|α +OPT (k′ − 1)− |vk′−1vk′ |α + max{|vivk|α, |vkvk′ |α}

 .
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Proof. Let Xi denote the right side of the equation, we prove OPT (i) = Xi.

OPT (i) ≤ Xi: We show that all costs that appear as min function arguments in Xi correspond to valid
assignments and thus infer, by the optimality of OPT (i), that the above inequality holds. Consider an
argument with parameters k and k′. We associate it with an assignment (ρl, ρr) defined as follows (see
Fig. 1(a)). For m ≥ k′− 1 the assignment is inductively defined by OPT (k′− 1). For every i ≤ m < k,
ρl(m) = m and ρr(m) = m + 1, for every k < m < k′, ρl(m) = m − 1 and ρr(m) = m (vk′−1 is
reassigned) and for k, ρl(k) = i, ρr(k) = k′. By the validity of OPT (k′ − 1), every two points among
Sk′−1,n are (strongly) connected. Our assignment for Si,k′−1 guarantees the connectivity between every
two points in Si,k′−1, and thus between every two points in Si,n.

OPT (i) ≥ Xi: Consider an optimal solution (ρl, ρr) for the points Si,n subject to the condition that
ρr(i) = i+ 1. Let vk be a point to the right of vi with ρl(k) = i and let ρr(k) = k′. Note that since vi
is the leftmost point and the induced graph is strongly connected, such a point necessarily exists.
Next we show that there is no edge directed either left or right connecting two points on different
sides of vk′ in Gρlr , except for possibly an edge (vj , vk′−1) with j > k′. Assume towards contradiction
that the former does not hold, i.e., there exists i < t < k′, with ρr(t) ≥ k′; then, reassigning ρr(k) =
max{t, k} maintains the connectivity, and reduces the value of cost′ without increasing the value of
cost in contradiction to the optimality of the solution. Now, let vj be a point to the right of vk′ with
ρl(j) = j′ ∈ [i, k′], we show that j′ ≥ k′−1. Consider a point j′ < t < k′, as we have shown, ρr(t) < k′.
By symmetric arguments we have ρl(t) > j′ (see Fig. 1(b)). Namely, there is no edge going out of
the interval (vj′ , vk′). Thus, connectivity can be achieved only if this interval is empty of vertices, i.e.,
either j′ = k′ − 1 or j′ = k′ (note that k′ − 1 > i).
The above observation allows us to divide the problem into two independent subproblems, one for
the points Si,k′−1 subject to the constraints ρl(k) = i and ρr(k) = k′, and the other for the points
Sk′−1,n subject to the artificial constraint ρr(k′ − 1) = k′ that guarantees the existence of a path
from k′ − 1 to k′, due to the solution of the first subproblem, but should not be paid for. Regarding
the first subproblem, by Lemma 2, in an optimal assignment, for every i ≤ m < k, ρl(m) = m and
ρr(m) = m + 1, and for every k < m ≤ k′ − 1, ρl(m) = m − 1 and ρr(m) = m. Thus, its cost is∑k′−2
m=i |vmvm+1|α + max{|vkvi|α, |vkvk′ |α}. The cost of an optimal solution to the second subproblem

is OPT (k′ − 1) − |vk′−1v′k|α. Hence, the cost of an optimal solution to the whole problem is the sum
of the above costs and the lemma follows.

vi vj vnvtvk vk′vj′vi vk vnvk′

(a) (b)

Figure 1: (a) An illustration of the assignment associated with OPT (i) with respect to given parameters
k and k′. In gray are range assignments associated with OPT (k′− 1). (b) An illustration of the proof of
Lemma 4. In dashed arrows, the impossible ranges of vt and in gray, the alternative assignment of lower
cost′.

Complexity. Obviously, Algorithm 1DMinRA requires O(n2) space. Regarding the running time,
O(n) iterations are performed during the algorithm, each iteration takes O(n2) time Therefore, the total
running time is O(n3) and Lemma 5 follows.

Lemma 5. Algorithm 1DMinRA runs in O(n3) time using O(n2) space.

2.1.2 A Quadratic-Time Algorithm

In this section we consider Algorithm 1DMinRA from previous section and reduce its running time to
O(n2). Consider the equality stated in Lemma 4. Observe that given fixed values i and k′, the value
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k that minimizes the argument of the min function with respect to i and k′ is simply the value k that
minimizes max{|vivk|α, |vkvk′ |α}. This value is simply the closest point to the midpoint of the segment
vivk′ , denoted by c(i, k′). Thus,

OPT (i) = min
i+1<k′≤n


k′−2∑
m=i

|vmvm+1|α +OPT (k′ − 1)− |vk′−1vk′ |α

+ max{|vivc(i,k′)|α, |vc(i,k′)vk′ |α}

 .

Consider Algorithm 1DMinRA after applying the above modification in the computation of T [i]. Since
there are only O(n) sub-problems to compute, each in O(n) time, the running time reduces to O(n2)
and the following theorem follows.

Theorem 6. The 1D MinRange problem can be solved in O(n2) time using O(n2) space.

2.2 An Optimal Algorithm for the 1D MinRangeSpanner Problem

Given a set S = {v1, .., vn} of points in 1D and a value t ≥ 1, the 1D MinRangeSpanner problem aims
to find a minimum cost range assignment for S, subject to the requirement that the induced graph is a
t-spanner. We present a polynomial-time algorithm which solves this problem optimally and follows the
same guidelines as Algorithm 1DMinRA.

We begin with providing the key notions required for understanding the correctness of the algorithm,
followed by its description. Due to space limitation, we do not supply a formal proof. The first and
most significant observation, is that the problem can still be divided into two subproblems in the same
way as in Algorithm 1DMinRA, by similar arguments to those of Lemma 4. In Lemma 4 we show
that any assignment that does not satisfy the conditions required for the division can be adjusted to a
new assignment with a lower value of cost′ that preserves connectivity. The new assignment, however,
preserves also the lengths of the shortest paths, which make the argument legitimate for this problem as
well.

The two problems (MinRange and MinRangeSpanner ) differ when it comes to solving each of
the above subproblems. Consider the left subproblem, i.e., of the form described in Lemma 2. The
optimal assignment for it is no longer necessarily the one stated in the lemma, since it does not ensure
the existence of t-spanning paths. Therefore, our algorithm divides problems of this form into smaller
subproblems handled recursively (see Fig. 2, right). Dealing with such subproblems, requires defining
new parameters: a rightmost input point vj , and the length of the shortest paths connecting vi to vj ,

vj to vi and vi to vi+1 not involving points in Si,j except for the endpoints, denoted by
−→
δ ,
←−
δ , and δi ,

respectively. Regarding the computation of a subproblem, since points may be covered now by vertices
outside the subproblem domain, we allow vk to have either a right or a left range equals 0 (in the terms
of Algorithm 1DMinRA, either k = i or k = k′).

Another key observation is that any directed graph G over S is a t-spanner for S iff for every 1 ≤ i < n
there exists a t-spanning path from vi to vi+1 and from vi+1 to vi. Moreover, given that G is strongly
connected implies that the addition of an edge between consecutive points does not effect the length of
the shortest path between any other pair of consecutive points. Therefore, for subproblems with j = i+1

we assign ρr(i) = i+ 1 (resp. ρl(i+ 1) = i) iff
−→
δ /|i, i+ 1| > t (resp.

←−
δ /|i, i+ 1| > t) and thus ensuring

that the induced graph is a t-spanner.
Our algorithm may consider solutions in which an assignment to a node is charged more than once

in the total cost; however, for every such solution, there exists an equivalent one in which the charging
is done properly and is preferred by the algorithm due its lower cost.

We denote by OPT (i, j,
−→
δ ,
←−
δ , δi) the cost of an optimal solution to the sub-problem defined by the

input Si,j subject to the parameters
−→
δ ,
←−
δ , and δi representing the lengths of the shortest external paths

as defined earlier in this section. Let ∆i,j = {2|vlvi|+ |vivj |, 2|vjvr|+ |vivj | : l ≤ i < j ≤ r}. We compute

OPT (i, j,
−→
δ ,
←−
δ , δi) for every 1 ≤ i < j ≤ n, and the corresponding

−→
δ ,
←−
δ , δi ∈ ∆i,j iteratively, while in

stage x all subproblems with j− i = x are solved. The computation is derived from the equalities below.
For simplicity of presentation, we overload notation and write |i, j| to mean |vivj |. In addition, we write
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∅ in place of δi where δi =
−→
δ .

OPT (i, i+ 1,
−→
δ ,
←−
δ , δi) = −→r +←−r ,where

−→r =

{
|i, i+ 1| (*assigning ρr(i) = i+ 1*) ,

−→
δ /|i, i+ 1| > t

0 , otherwise

and ←−r is defined symmetrically. For j > 1, we have

OPT (i, j,
−→
δ ,
←−
δ , δi) =

min
i≤k≤j
k≤k′≤j



|i, i+ 1|α +OPT (i, i+ 1, |i, i+ 1|, |i+ i, j|+←−δ , ∅)

+OPT (i+ 1, j, ∞, ←−δ − |i+ 1, i|, ∅)
, i = k

|i, i+ 1|α +OPT (i i+ 1, δi, |i, i+ 1|, ∅)

+OPT (i+ 1, j, |i, i+ 1|+−→δ , ←−δ − |i, i+ 1|, ∅)
, k = k′

max{|i, k|α, |k, k′|α}
+OPT (i, i+ 1, δi, |i+ 1, k|+ |k, i|, ∅)
+OPT (i+ 1, k, ∞, |k, i+ 1|, ∞)
+OPT (k, k′ − 1, |k, k′ − 1|, ∞, |k, k + 1|)
+OPT (k′ − 1, j, |k′ − 1, i|+−→δ , ←−δ − |i, k′ − 1|, |k′ − 1, k|+ |k, k′|).

, i 6= k 6= k′

We permit either i = k and then k′ = i+ 1 or k = k′ and then k′ = i+ 1 but not both.

vi vjvk vk′vi vjvi+1

i = k and k′ = i+ 1 k = k′ = i+ 1 i 6= k 6= k′
vi vjvi+1

Figure 2: An illustration of the algorithm for the MinRangeSpanner problem. The ranges are illus-
trated in black arrows and the division to subproblems in sashed lines.

Complexity. Let ∆ be the set of all distinct distances in S, then for every vi, vj ∈ S, |∆i,j | = |∆| =
O(n). We fill a table with O(n2|∆|3) cells, each cell is computed in O(n2) time, thus, the total running
time is O(n4|∆|3). As we have focused on presenting a simple and intuitive solution, rather than reducing
the running time, a more careful analysis achieves a better bound on the time complexity. For example,

the relevant domain of
−→
δ ,
←−
δ , and δi can be estimated more precisely with respect to t. Moreover,

Observation 7 allows reducing the running time by a factor of n. This is done by decreasing the number
of relevant combinations of i and k′ that have to be checked by the algorithm, for fixed indices j and k
with i < k < k′ < j, to O(n), using similar arguments to those in Lemma 4 (see Fig. 3).

Observation 7. Consider an optimal assignment (ρl, ρr) and a point vk ∈ S. Let ρl(k) = i and let ki

denote the minimal index with k < ki and |vkvki | ≥ |vkvi|, then ki+1 ≤ ρr(k) ≤ ki.

vi vnvk vki+1 vkivi+1

Figure 3: An illustration of Observation 7. Every pair of symmetric arcs indicates equal distances from
vk. The marked domains indicates the legal values of ρr(k) for different values of i.
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3 The MinRange Problem in Higher Dimensions

In this section we focus on the MinRange problem for dimension d ≥ 2 and α = 1. As all the versions
of the problem for d ≥ 2 and α ≥ 1, it is known to be NP -hard. Currently, the algorithm achieving the
best approximation ratio for α = 1 and ant d ≥ 2 is the Hub algorithm with a ratio of 1.5. This algorithm
was proposed by G. Calinescu, P.J.Wan, and F. Zaragoza for the general metric case, and analyzed by
Ambühl et al. in [2] for the restricted Euclidean case. We show a new approximation algorithm and
bound its approximation ratio from above by 1.5− ε for ε = 5/105. Although in some cases our phrasing
is restricted to the plane, all arguments hold for higher dimensions as well.

In our algorithm we use two existing algorithms, the Hub algorithm and the algorithm for the 1D
MinRange problem introduced by Kirousis et al. [6], to which we refer as the 1D RA algorithm. We
observe that the later algorithm outputs an optimal solution for any ordered set V = {v1, ..., vn} with
distance function h that satisfies the following line alike condition: for every 1 ≤ i ≤ j < k ≤ l ≤ n, it
holds that h(vi, vl) ≥ h(vj , vk). We use this algorithm for subsets of the input set that roughly lie on a
line.

3.1 Our Approach

Presenting our approach requires acquaintance with the Hub algorithm. The Hub algorithm finds the
minimum enclosing disk C of S centered at point hub ∈ S. Then, the algorithm sets ρ(hub) = rmin,
where rmin is C’s radius. Finally, it directs the edges of MST (S) towards the hub and for each directed
edge (v, u) sets ρ(v) = |vu|. The cost of this assignment is w(MST (S)) + rmin ≤ w(MST (S)) +
(w(MST (S))+w(eM ))/2, where eM is the longest edge in MST (S) and the weight function w is defined
with respect to Euclidean lengths.

To guide the reader, we give an intuition and a rough sketch of our algorithm. We characterize the
instances where the Hub algorithm gives a better approximation than 1.5, and to generalize these cases
we slightly modify it. Furthermore, we show an algorithm that prevails in the cases where the modified
Hub algorithm fails to give an approximation ratio lower than 1.5. Before we elaborate more on the
aforementioned characterization, another piece of terminology. Given a graph G over S and two points
p, q ∈ S, the stretch factor from p to q in G is δG(p, q)/|pq|, where δG(p, q) denotes the Euclidean length
of the shortest path between p and q in G. We use ∼large when referring to values greater than fixed
thresholds, some with respect to w(MST (S)), defined later.

Consider MST (S) and its longest path PM . If one of the following conditions holds, then the Hub
algorithm or its modification results in a better constant approximation than 1.5: (A1) there exists a
∼large edge in MST (S); (A2) a ∼large fraction of PM consists of disjoint sub-paths connecting pairs of
points with ∼large stretch factor, not dominated by one sub-path of at least half the fraction; or (A3)
the weight w(MST (S)\PM ) is ∼large.

Otherwise, there are three possible cases: (B1) the graph MST (S) is roughly a line; (B2) there are
two points in PM with ∼large stretch factor, i.e., there is a ∼large ‘hill’ in PM , and then either MST (S)
roughly consists of two 1D paths; or (B3) the optimal solution uses edges connecting the two sides of
the ‘hill’, covering ∼large fraction of it.

The last three cases are approximated using the following method. We consider every two edges
connecting the two sides of the ‘hill’ as the edges in the optimal solution that separates the uncovered
remains of the path to two independent sub-paths, i.e., not connected by an edge. (the points in both
sub-paths may be connected to the middle covered area.) Note that such two edges exist. We direct the
covered area to achieve a strongly connected sub-graph and solve each of the two sub-paths separately
in two techniques. The first, using the 1D RA algorithm with a distance function implied by the input,
satisfying the line alike condition, and applying adjustments on the output, and the second, using the
Hub algorithm. A (1.5− ε)-approximation is obtained for cases (B1) and (B2), using the first technique,
and for cases (B1) and (B2), using the second technique. The algorithm computed several solutions,
using the aforementioned methods, and returns the one of minimum cost.

3.2 The Approximation Algorithm

The algorithm uses the following three procedures that are defined precisely at the end of the algorithm’s
description.
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• The flatten procedure f - a method performing shortcuts between pairs of points on a given path P
resulting in a path without two points of stretch factor greater than cs.

• The distance function hS - a distance function defined for an ordered set P ⊆ S, satisfying the line
alike condition.

• The adjustment transformation g - a function adjusting an optimal range assignment for an ordered
set P ⊆ S with distance function h, to a valid assignment for P .

Let R be the forest obtained by omitting from MST (S) the edges of its longest path, PM . Given a
point v ∈ PM , let T (v) denote the tree of R rooted at v. For every u ∈ T (v) let r(u) denote the root of
the tree in R containing u, namely, v. For a set of points V ⊂ PM , let T (V ) denote the union

⋃
v∈V T (v).

For ease of presentation, we assume the path PM has a left and a right endpoints, thus, the left and
right relations over PM are naturally defined.

The main algorithm scheme:
Compute four solutions and return the one of minimal cost. In case of multiple assignments to a point
in a solution, the maximal among the ranges counts.
Solution (i): apply the Hub algorithm.
Solution (ii): apply a variant of the Hub algorithm - find a point c ∈ PM that minimizes the value
rc = max{|cp1|, |cpz|}, where p1 and pz are the endpoints of the path PM . Assign c the range rc, direct
PM towards rc and bi-direct all edges in R.

(* The rest of the algorithm handles cases (B1)-(B3) defined in Section 3.1 *)

For every edge e ∈ PM do :

Let Pel and Per be the two paths of PM\e, to the left and to the right of e, respectively.
Apply the flatten procedure f on Pel and Per to obtain the sub-paths
Pl′ = (p1, p2, ..., pm) and Pr′ = (pm+1, pi+2, ..., pz), respectively.
(* Note R has been changed during the flatten procedure *)
For every 4 points pl, pl′ , pr′ , pr with l ≤ l′ ≤ m < r′ ≤ r in the flattened sub-paths:

In both solutions (iii) and (iv) direct the path Px = (pl, ...pm, pm+1, ..., pr) towards pl and for
each point pi with 1 ≤ i ≤ z direct T (pi) towards pi and assign pi a range w(T (pi)). Perform
the least cost option among the following two, either add the edge (pl, pr), or add the two edges,
one from ul to ur′ for ul ∈ T (pl), ur′ ∈ T (pr′) of minimal length and the other from ul′ to ur for
ul′ ∈ T (pl′), ur ∈ T (pr) of minimal length. (see illustration in Fig. 4). As for the two sub-paths
Pl = (p1, p2, ..., pl) and Pr = (pr, pr+1, ..., pz), assign them ranges as follows:

Solution (iii): apply the Hub algorithm separately on each sub-path.
Solution (iv): apply the 1D RA algorithm separately on each sub-path with respect to the distance
function hS and perform the transformation g on the assignment received.

pm
pm+1

pr′

pr

pl′

pl
Pl

Pr

p1
pz

Figure 4: The two sub-paths Pl and Pr as defined in the algorithm.

The flatten procedure f . Let cs = 5/4. Given a path P = {vi, .., vn}, set QP = {}. Let j > i be
the maximal index such that δP (vi, vj) > cs|vivj |. If such index does not exist, let j = i+ 1. Else
(j > i + 1), add the edge (vi, vj) to P , remove the edge (vj−1, vj) from P , move the sub-path
(vi, .., vj−1) from P to the forest R, and update QP = QP ∪ {(vi, vj)}. Finally, repeat with the
sub-path (vj , .., vn) without initializing QP .

The definitions for hS and g are given with respect to the sub-paths Pl and Pl′ , the definitions for
the sub-path Pr and Pr′ are symmetric.
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The distance function hS. For every two points pj , pk with 1 ≤ j ≤ k ≤ l we define,

hS(pj , pk) = min
u∈T (pj′ ),1≤j′≤j
v∈T (pk′ ),k≤k′≤m

|uv|.

The adjustment transformation g. Given an assignment ρ′ : Pl → R+, we transform it into an
assignment g(ρ′) = ρ : Pl′ → R+. First, we assign ranges a follows:

ρ(pj) =

{
cs · ρ(pj) + ck · T (pj), 1 ≤ j ≤ l,

ck · T (pj), l < j ≤ m,

where ck = 1+8(1+cs) = 19. The multiplicity (by cs) handles the gaps caused by points breaking the
line alike condition with respect to the Euclidean metric. The role of the additive part, together with
the second stage of the transformation, elaborated next, is to overcome the absence of points outside the
path. In the second stage, for every pj with 1 ≤ j ≤ m, let 1 ≤ j− < j be the minimal index for which
there exists u ∈ T (pj−) with |pju| ≤ ck · w(T (pj)), and let j < j+ ≤ m be the maximal index for which
there exists u ∈ T (pj+) with |pju| ≤ ck ·w(T (pj)), direct the sub-path between pj− and pj+ towards pj .
See Fig. 5 for illustration.

pj
pj− pj+

T (pj−) T (pj)

T (pj+)

(ck − 1) · w(T (pj))

<

Figure 5: An illustration of the second stage in the adjustment transformation g.

The indexing of points in PM and notations introduced in the algorithm are used throughout this
section. The tree T (pi) ∈ R, for 1 ≤ i ≤ z, is sometimes denoted by Ti for short.

3.3 The Validity of the Output

We consider each solution separately and show it forms a valid assignment ρ.
Validity of Solution (i). Follows from the validity of the Hub algorithm
Validity of Solution (ii). The subgraph of Gρ induced by the points of PM is strongly connected due
to the validity of the Hub algorithm. All trees in R are bi-directed trees sharing a common point with
PM and therefore, the whole graph, Gρ, is strongly connected.
Validity of Solution (iii). Each tree in R induces a strongly connected subgraph of Gρ, thus, it
is suffices to show the connectivity of the minor obtained from Gρ by contracting all trees of R. The
subgraph of Gρ induced by the points of the middle sub-path Px forms either one directed cycle or two
directed cycles sharing common vertices. By the correctness of the Hub algorithm, each of the sub-paths
Pl and Pr induces a strongly connected subgraph of Gρ. In addition, each of them shares a common
vertex with the middle sub-path, thus, the whole graph, Gρ, is strongly connected.
Validity of Solution (iv). Since we already verified the validity of Solution (iii), we are only left to
show that each of Pl and Pr induce strongly connected subgraphs in Gρ. We consider the sub-path Pl,
while the case of Pr is symmetric.

Let ρl : Pl → R+ denote the assignments obtained by applying the 1D algorithm on the sub-path
Pl with respect to hS . Due to the validity of ρl, the graph induced by ρl with respect to hS is strongly
connected. Let (pi, pj) be an edge in this graph, we show that there exists a directed path from pi to pj
in Gρ. Assume w.l.o.g., 1 ≤ i < j ≤ l. By the definition of hS , there exist u ∈ T (pi′) and v ∈ T (pj′) with
1 ≤ i′ ≤ i < j ≤ j′ ≤ m, such that ρl(pi) ≥ hS(pi, pj) = |uv|. Since the final assignment ρ is obtained
after applying the adjustment transformation g, we have ρ(pi) ≥ cs|uv|.
Case 1: |uv| ≤ (ck − 1) · w(T (pi′)) or |uv| ≤ (ck − 1) · w(T (pj′)).

Assume, w.l.o.g., that the second condition holds, then |pj′u| ≤ ck · w(T (pj′)) and thus, by the
definition of transformation g, the directed path from pi′ to pj′ and the edge (pj′ , u) are contained
in Gρ. Together with the directed path in T (pi′) from u to the root pi′ they form a cycle containing
both pi and pj .
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Case 2: both |uv| > (ck − 1) · w(T (pi′)) and |uv| > (ck − 1) · w(T (pj′)).
Since pi′ , pj′ ∈ Pl′ , and Pl′ is the output sub-path after performing the flatten procedure, then
δPl′ (pi′ , pj′) ≤ cs|pi′pj′ |. Therefore, we have

|pipj | ≤ δPl′ (pi, pj) = δPl′ (pi′ , pj′)− (δPl′ (pi′ , pi) + δPl′ (pj′ , pj))

≤ cs|pi′pj′ | − (|pipj | − (w(Ti′) + w(Tj′) + |uv|))
≤ cs(w(Ti′) + w(Tj′) + |uv|)− |pipj |+ w(Ti′) + w(Tj′) + |uv|
≤ (cs + 1)(w(Ti′) + w(Tj′)) + (cs + 1)|uv| − |pipj |
≤ (cs + 1)(2|uv|/(ck − 1)) + (cs + 1)|uv| − |pipj |
≤ (cs + 1)(2|uv|/(8(1 + cs))) + (cs + 1)|uv| − |pipj |

⇒ |pipj | ≤ (
1 + cs

2
+

1

8
)|uv| = cs|uv|.

3.4 The Approximation Ratio

Let SOL denote the cost of the output of the algorithm for the input set S and let ρ∗ : S → R+ denote
an optimal assignment for S of cost OPT . We show that SOL ≤ (1.5− ε)OPT .

Let W = w(MST (S)), r = w(R)/W , eM denote the longest edge in MST (S) and l = w(eM )/W .
As shown in [2], OPT ≥ W + w(eM ) = W (1 + l). Next we show several upper bounds on the ratio
SOL/OPT , corresponding to the four solutions computed during the algorithms and finally conclude
that the minimum among them equals at most (1.5− ε).
Approximation bound for Solution (i). Due to the analysis of the Hub algorithm done in [2], we
have SOL ≤W + (w(PM ) + w(eM ))/2 = W (1.5− r/2 + l/2). Therefore,

SOL

OPT
≤ W (1.5− r/2 + l/2)

W (1 + l)
=

1.5− (r − l)/2
1 + l

. (1)

Assume SOL > (1.5− ε)OPT , then

1.5− ε < SOL

OPT
<

1.5− (r − l)/2
1 + l

< 1.5− r/2,

implies r < 2ε and the following corollary follows.

Corollary 8. One of the following holds, SOL ≤ (1.5− ε)OPT or r < 2ε.

The following lemma is crucial for introducing the bounds for Solutions (ii) and (iv).

Lemma 9. Let cs and the notation QP be defined as in procedure f . Given a constant δ,
1. there exist two pairs of points (u, v), (y, w) connecting two disjoint sub-paths in PM , each pair with

stretch factor greater than cs, that satisfy δPM
(u, v) ≥ δ and δPM

(y, w) ≥ δ; or
2. there exists an edge e ∈ PM defining Pel and Per (the two paths of PM\e, to the left and to the

right of e, respectively), such that for every (u, v) ∈ QP
el
∪QPer

, δPM
(u, v) < δ.

Proof. If the first condition holds, we are done. Otherwise, fix e to be the rightmost edge in PM . If the
second condition does not hold for e, then there exists exactly one pair (u, v) ∈ QP

el
with δPM

(u, v) ≥ δ.
Replace e with the consecutive edge to its left in PM . Continue the process until for every (u, v) ∈ QP

el
,

δPM
(u, v) < δ. Note that this condition hold when Pel contains a single edge. If the process ends with

a separating edge e for which there exists a pair (u, v) ∈ QPer
with δPM

(u, v) ≥ δ, then u is a common
endpoint with the preceding edge in the process and there exists a point w ∈ Pel such that the two pairs
(w, u), (u, v) satisfy the first condition.

Approximation bound for Solution (ii). Consider the value chW , where ch = 20ε. One of the two
conditions of Lemma 9, denoted by L9.1 and L9.2, respectively, must hold for δ = chW . We start by
assuming that condition L9.1 holds which leads to Lemma 10.

For every q ∈ PM , we have that the cost of Solution (ii) equals at most w(PM ) + max{|qp1|, |qpz|}+
2w(R). Consider the path ∼f(PM ) obtained from PM after applying the flatten procedure f on the sub-
paths Pel and Per . Note that the length of this path is at most w(PM )− 2chW (1− 1/cs) and it shares
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common endpoints with PM . Let c̃ be the point on ∼f(PM ) closest to its midpoint. The midpoint may
lie on an edge of PM or on a shortcut performed by f . If it lies on a shortcut, we undo it and only one
shortcut remains. Thus, the point c̃ is at Euclidean distance at most 1

2 [w(PM )− chW (1− 1
cs

) +w(eM )],
from both endpoints and we have

SOL ≤W (1− r +
1

2
[(1− r)− ch(1− 1

cs
) + l] + 2r) = W [1.5− 1

2
(ch(1− 1

cs
)− l − r)].

This implies,

SOL

OPT
≤

1.5− 1
2 (ch(1− 1

cs
)− l − r)

1 + l
. (2)

Lemma 10. If condition L9.1 holds for δ = chW then SOL ≤ (1.5− ε)OPT .

Proof. Assume towards contradiction that SOL > (1.5 − ε)OPT , then by Corollary 8, r < 2ε and to-
gether with equation (2) we receive

1.5− ε <
1.5− 1

2 (ch(1− 1
cs

)− l − r)
1 + l

< 1.5− 1

2
(ch(1− 1

cs
)− r)

< 1.5− 1

2
(20ε(

1

5
)− 2ε) < 1.5− ε ⇒ contradiction.

From now on, assume condition L9.2 holds for δ = chW and let e ∈ PM be the edge satisfying the
condition. Let t = (

∑
(u,v)∈QP

el
δPM

(u, v) +
∑

(u,v)∈QPer
δPM

(u, v)) / W , we give an additional bound

to the cost of Solution (ii) using the same arguments used for the case where condition L9.1 holds.
Let c̃ be the point on ∼f(PM ) closest to its midpoint. Since every pair (u, v) ∈ QP

el
∪ QPer

satisfies

δPM
(u, v) ≤ chW , the point c̃ is at Euclidean distance at most 1

2 [w(PM )− (t− ch) ·W (1− 1
cs

) +w(eM )]
from both endpoints, thus

SOL

OPT
≤

1.5− 1
2 ((t− ch)(1− 1

cs
)− l − r)

1 + l
. (3)

Note that although the analysis for equation 3 considers the path ∼f(PM ), the flatten procedure f is
performed after Solution (ii) is computed.

In the analysis of Solution (iii) and (iv) we have w(R) ≤ (r + t)W , since applying f on Pel and
Per moves portions of the paths connecting points in QP

el
∪ QPer

to R. Consider the iteration of the
algorithm for the edge e and a choice of 4 points pl, pl′ , pr′ , pr ∈ PM satisfying: pr is the rightmost point
in PM with ur ∈ T (pr) connected (at any direction) in Gρ∗ to a point in T (pl′) for pl′ to the left of
e and, symmetrically, pl is the leftmost point in PM with ul ∈ T (pl) connected (at any direction) to a
point in T (pr′) for pr′ to the right of e. Meaning, there is no edge in Gρ∗ connecting between a point in
T (p) for p ∈ Pl\{pl} and a point in T (q) for q ∈ Pr′ and no edge connecting between a point in T (p) for
p ∈ Pr\{pr} and a point in T (q) for q ∈ Pl′ . Let x denote the ratio w(Px)/W.

Approximation bound for Solution (iii). Preforming the Hub algorithm on Pl and Pr, separately,
result in two assignments with a total cost of at most 1.5(W − w(Px) − w(R)) + w(eM )/2 + w(eM )/2.
Directing the path Px and the trees in R, and assigning all roots in R their assignment, together
with adding the two edges, (ul, ur′) for ul ∈ T (pl), ur′ ∈ T (pr′) of minimal length and (ul′ , ur) for
ul′ ∈ T (pl′), ur ∈ T (pr) of minimal length (or the edge (pl, pr) instead if it is cheaper) costs at most
w(Px) + 2 · w(R) + |ulur′ | + |ul′ur|. Overall, we have a total cost of at most W + 1

2 (1 − x + (r + t)) ·
W + lW + |ulur′ |+ |ul′ur|.

Since there is an edge connecting a point in T (pl) with a point in T (pr′) (in some direction) and
an edge connecting a point in T (pl′) with a point in T (pr) in the optimal solution, we have OPT ≥
W + |ulur′ |+ |ul′ur| − w(eM ), hence,

SOL

OPT
≤ W (1− l + 1

2 (1− x+ (r + t)) + 2l) + |ulur′ |+ |ul′ur|
W (1− l) + |ulur′ |+ |ul′ur|

≤ 1 +
W ( 1

2 (1− x+ (r + t)) + 2l)

W (1− l) + |ulur′ |+ |ul′ur|
≤ 1 +

1

2
(1− x+ (r + t)) + 2l. (4)
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Approximation bound for Solution (iv). Let ρl : Pl → R+ and ρr : Pr → R+ denote the
assignments obtained by applying the 1D RA algorithm on Pl and Pr, respectively, with respect to the
distance function hS . Let ρ′ : Pl ∪ Pr → R+ denote the union of the two assignments and let OPT ′

denote the cost of ρ′, i.e., OPT ′ =
∑
v∈Pl∪Pr

ρ′(v).

Claim 1. OPT ′ ≤ OPT .

Proof. We show that the optimal assignment ρ∗ can be adjusted to an assignment
ρ : Pl ∪ Pr → R+, valid for Pl and Pr, separately, with respect to hS , of the same cost.
We define,

ρ(pl) = max
v∈T (pi),
l≤i≤m

{ρ∗(v)}, ρ(pr) = max
v∈T (pi),
m+1≤i≤r

{ρ∗(v)},

and for every pj with j ∈ {1, .., l − 1} ∪ {r + 1, .., z}, ρ(pj) = maxv∈T (pj){ρ∗(v)}.
Let u and v be two points in the same sub-path, w.l.o.g., Pl, and let (u = u1, u2, ..., uk = v) be the

path from u to v in Gρ∗ . Consider the sequence (u = y1, y2, ..., yk = v), obtained by replacing every
ui ∈ T (Pl) with yi = r(ui), and every ui ∈ T (Px ∪ Pr) with yi = pl, for 1 ≤ i ≤ k. We prove the above
sequence forms a path from u to v in the graph induced by ρ with respect to Pl and hS , and conclude
that ρ is valid and OPT ′ ≤ OPT . Consider a pair of consecutive nodes in the above sequence, (yi, yi+1).
Note that if ui = pj (resp. ui+1 = pj) for 1 ≤ j < l, than ui+1 = ph (resp. ui = ph) for 1 ≤ h ≤ m; thus,
for every 1 ≤ i < k, by the definition of ρ and hS we have, ρ(yi) ≥ ρ∗(ui) ≥ |uiui+1| ≥ hS(yi, yi+1) and
the claim follows.

Let∼g(ρ′) : Pl′∪Pr′ → R+ be the union of the assignments obtained after applying the transformation
g on each of Pl and Pr, separately. The following lemma bounds its cost.

Lemma 11. cost(∼g(ρ′)) ≤ [cs + (ck + 2cs(ck + 1))(r + t)]OPT.

Proof. Consider applying transformation g on Pl and Pr. By multiplying the range of every point in
Pl ∪ Pr by cs we obtain an assignment of cost cs · OPT ′. As for the additive part and the second
stage, we analyze the cost with respect to Pl′ , while the case for Pr′ is symmetric. Every pj ∈ Pl′ , is
responsible for an additional of at most Xj = ck · w(Tj) + δPl′ (pj− , pj+) ≤ ck · w(Tj) + cs|pj−pj+ | =
ck ·w(Tj) + cs[2ck ·w(Tj) +w(Tj−) +w(Tj+)] to the total cost, where pj− and pj+ are defined as in the
definition of g. The first element in the summation is the range added to pj itself, and the second is the
cost of directing the path between pj− and pj+ towards pj (depicted in Fig. 5 in black).

Allegedly, for computing cost(∼g(ρ′)) we should sum Xj over all pj ∈ Pl′ ∪Pr′ and add it to the cost
cs ·OPT ′, however, we observe that it is suffices to consider a point pi only once as pj− , for the rightmost
point pj such that i = j− and only once as pj+ , for the leftmost point pk such that i = k+. Thus, we
can charge pj− and pj+ themselves once on each of the elements cs ·w(Tj−) and cs ·w(Tj+) in the overall
summation. Namely, charge every point pj for a total range increase of Yj = w(Tj)[ck + cs(2ck + 2)].
Summing Yj over all pj ∈ Pl′ ∪ Pr′ and adding the cost cs ·OPT ′, using Claim 1 gives

cost(g(rho′)) ≤ cs ·OPT ′ +
∑

1≤j≤z
w(Tj)[ck + cs(2ck + 2)]

= cs ·OPT ′ + [ck + 2cs(ck + 1)](w(R))

≤ [cs + (ck + 2cs(ck + 1))(r + t)]OPT.

Note that g has already assigned to every pj ∈ Pl′ ∪ Pr′ an assignment greater than w(T (pj)).
Directing all trees in R towards their roots, directing the path Px and adding the edge (pl, pr), adds to
the cost at most (2x+ (r + t))W < (2x+ (r + t))OPT , and together with Lemma 11 we receive

SOL

OPT
≤ cs + (ck + 2cs(ck + 1) + 1)(r + t) + 2x (5)

Lemma 12. If condition L9.2 holds for δ = chW , then SOL ≤ (1.5− ε)OPT .
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Proof. Assume towards contradiction that SOL > (1.5 − ε)OPT . By Corollary 8, r < 2ε and together
with equation (3) we receive,

1.5− ε <
1.5− 1

2 ((t− ch)(1− 1
cs

)− l − r)
1 + l

< 1.5− 1

2
((t− 20ε)

1

5
− r)

< 1.5− t

10
+ 3ε ⇒ t < 40ε.

Replacing r and t with the above upper bounds in equation (5) gives,

1.5− ε < cs + (ck + 2cs(ck + 1) + 1)(r + t) + 2x

< 1
1

4
+ 70(42ε) + 2x ⇒ x >

1

8
− 1472ε,

and by equation (4) we have,

1.5− ε < 1 +
1

2
(1− x+ (r + t)) + 2l < 1 +

1

2
(1− (

1

8
− 1472ε) + 42ε) + 2l

< 1.5− 1

16
+ 757ε+ 2l ⇒ l >

1

32
− 380ε.

The upper bound on l together with equation (1) imply,

1.5− ε < 1.5− (r − l)/2
1 + l

<
1

2
+

1

1 + l
<

1

2
+

1

1 + 1
32 − 380ε

⇒ ε >
8

105

in contradiction to our choice of ε = 5
105 .

We conclude with Theorem 13, derived from Lemma 9 together with Lemmas 10 and 12.

Theorem 13. Given a set S of points in Rd for d ≥ 2, a minimum cost range assignment (1.5 − ε)-
approximation can be computed in polynomial time for S, where ε = 5

105 .

The reader can notice that our algorithm yields a better approximation bound than stated in the
above theorem. However, we preferred the simplicity of presentation over a more complicated analysis
resulting in a tighter bound.
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