Skip to main content

Logic Gates Based on Circular DNA Strand Displacement and a Fluorescent Agent

  • Conference paper
  • First Online:
  • 1925 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Abstract

We constructed a three-input OR logic gate based on a single-strand DNA circle and a two-input AND logic gate measuring fluorescence signals produced by strand displacement to detect the outputs. The simple, cost effective OR and AND logic gates produced the expected results, demonstrating their feasibility for future use in DNA computing. Fluorescently labeled DNA oligonucleotide inputs were initially hybridized with a quencher strand, which was displaced when the input strands hybridized to circular DNA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zhang, C., Yang, J., Wang, S.: Development and application of fluorescence technology in DNA computing. Chin. J. Comput. 32, 2300–2310 (2009)

    Google Scholar 

  2. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9, e108856 (2014)

    Article  Google Scholar 

  3. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  4. Dong, Y., Wang, Y., Ma, J., Jia, L.: The application of DNA nanoparticle conjugates on the graph’s connectivity problem. Adv. Intell. Syst. Comput. 212, 257–265 (2013)

    Google Scholar 

  5. Herman, A.: Tip-based nanofabrication as a rapid prototyping tool for quantum science and technology. Rev. Theor. Sci. 1, 3–33 (2013)

    Article  Google Scholar 

  6. Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266, 1021 (1994)

    Article  Google Scholar 

  7. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  8. Saghatelian, A., Volcker, N.H., Guckian, K.M., et al.: DNA-based photonic logic gates: AND, NAND, and INHIBIT. J. Am. Chem. Soc. 125, 346–347 (2003)

    Article  Google Scholar 

  9. Yang, J., Zhang, C., Xu, J., Liu, X.R., Qiang, X.L.: A novel computing model of the maximum clique problem based on circular DNA. Sci. Chin. Inf. Sci. 53, 1409 (2010)

    Article  MathSciNet  Google Scholar 

  10. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  11. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, C., Yang, J., Xu, J.: Circular DNA logic gates with strand displacement. Langmuir 26, 1416 (2010)

    Article  Google Scholar 

  13. Cheng, Z., Jing, Y., Jin, X.: Molecular logic computing model based on self-assembly of DNA nanoparticles. Chin. Sci. Bull. 33, 3566 (2011)

    Google Scholar 

  14. Li, W., Yang, Y., Yan, H., Liu, Y.: Three-input majority logic gate and multiple input logic circuitbased on DNA strand displacement. Am. Chem. Soc. 13, 2980–2988 (2013)

    Google Scholar 

  15. Zhang, C., Ma, J.J., Yang, J., Dong, Y.F., Xu, J.: Control of gold nanoparticles based on circular DNA strand displacement. J. Colloid Interface Sci. 418, 31–36 (2014)

    Article  Google Scholar 

  16. Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: Modular multi-level circuits from immobilized DNA-based logic gates. J. Am. Chem. Soc. 129, 14875–14879 (2007)

    Article  Google Scholar 

  17. Ogasawara, S., Ami, T., Fujimoto, K.: Autonomous DNA computing machine based on photochemical gate transition. J. Am. Chem. Soc. 130, 10050–10051 (2008)

    Article  Google Scholar 

  18. Miyoshi, D., Inoue, M., Sugimoto, N.: DNA logic gates based on structural polymorphism of telomere DNA molecules responding to chemical input signals. Angew. Chem. Int. Ed. 45, 7716–7719 (2006)

    Article  Google Scholar 

  19. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  20. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. (2015). doi:10.1109/TNNLS.2015.2396940

  21. Voelcker, N.H., Guckian, K.M., Saghatelian, A., Ghadiri, M.R.: Sequence-addressable DNA logic. Small 4, 427–431 (2008)

    Article  Google Scholar 

  22. Jonathan, B., Turberfield, A.J.: DNA nanomachines. Nat. Nanotechnol. 2, 275–284 (2007)

    Article  Google Scholar 

  23. Wang, X., Song, T.: MRPGA: motif detecting by modified random projection strategy and genetic algorithm. J. Comput. Theor. Nanosci. 10, 1209–1214 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by National Natural Science Foundation of China (Grant Nos. 61272246) and National Natural Science Foundation of China (Grant Nos. 61173113) and Innovation Funds of Graduate Programs Fund of Shaanxi Normal University. The authors acknowledge the anonymous referees suggestion to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafei Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, F., Wang, Y., Li, M., Chen, X., Dong, Y. (2015). Logic Gates Based on Circular DNA Strand Displacement and a Fluorescent Agent. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_24

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics