Skip to main content

Bio-inspired Algorithms Applied in Multi-objective Vehicle Routing Problem: Frameworks and Applications

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Abstract

Multi-objective vehicle routing problem (MOVRP) is developed from vehicle routing problem (VRP). MOVRP is a classic multi-objective optimization problem. During the recent years, the MOVRPs had a progress in problem scales and complex level. As a result, to get better solutions of MOVRPs, Bio-inspired algorithms were introduced into this area. This article first analyses the MOVRP framework, and then reviews the bio-inspired algorithm frameworks that designed to solve MOVRPs. This analysis leads to the identification of bio-inspired algorithms which can get better solutions for MOVPRs and can be applied to real-life cases successfully.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dantzig, G.B., Ramser, J.H.: The truck dispatching problem. Manag. Sci. 6(1), 80–91 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Weise, T., Podlich, A., Gorldt, C.: Solving real-world vehicle routing problems with evolutionary algorithms. In: Chiong, R., Dhakal, S. (eds.) Natural Intelligence for Scheduling, Planning and Packing Problems, pp. 29–53. Springer, Heidelberg (2010)

    Google Scholar 

  3. Bodin, L., Golden, B.: Classification in vehicle routing and scheduling. Networks 11, 97–108 (2006)

    Article  Google Scholar 

  4. Min, W., Jean-Franois, C., Gilbert, L., Jesper, L.: The dynamic multi-period vehicle routing problem. Comput. Oper. Res. 37(9), 1615–1623 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Govindan, K., Jafarian, A., Khodaverdi, R., Devika, K.: Two-echelon multiple-vehicle location crouting problem with time windows for optimization of sustainable supply chain network of perishable food. Int. J. Prod. Econ. 152(2), 9–28 (2014)

    Article  Google Scholar 

  6. Jozefowiez, N., Semet, F., Talbi, E.-G.: Multi-objective vehicle routing problems. Eur. J. Oper. Res. 189(2), 293–309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sessomboon, W., Watanabe, K., Irohara, T., Yoshimoto, K.: A study on multi-objective vehicle routing problem considering customer satisfaction with due-time: the creation of Pareto Optimal solutions by hybrid genetic algorithm. Trans. Jpn. Soc. Mech. Eng. 64, 1108–1115 (1998)

    Article  Google Scholar 

  8. Lee, T.-R., Ueng, J.-H.: A study of vehicle routing problem with load balancing. Int. J. Phys. Distrib. Logistics Manag. 29, 646–648 (1998)

    Article  Google Scholar 

  9. Ageron, B., Gunasekaran, A., Spalanzani, A.: Sustainable supply management: an empirical study. Int. J. Prod. Econ. 140(1), 168–182 (2011)

    Article  Google Scholar 

  10. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl. Soft Comput. 10(4), 1096–1107 (2010)

    Article  Google Scholar 

  11. Yalcin, G.D., Erginel, N.: Fuzzy multi-objective programming algorithm for vehicle routing problems with backhauls. Expert Syst. Appl. 42, 5632–5644 (2015)

    Article  Google Scholar 

  12. Jozefowiez, N., Semet, F., Talbi, E.-G.: The bi-objective covering tour problem. Comput. Oper. Res. 34, 1929–1942 (2007)

    Article  MATH  Google Scholar 

  13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, Boston (1989)

    MATH  Google Scholar 

  14. Chiang, T.C., Hsu, W.H.: A knowledge-based evolutionary algorithm for the multiobjective vehicle routing problem with time windows. Comput. Oper. Res. 45(5), 25–37 (2014)

    Article  MATH  Google Scholar 

  15. Garcia-Najera, A., Bullinaria, J.A.: An evolutionary approach for multi-objective vehicle routing problems with backhauls. Comput. Indus. Eng. 81, 90–108 (2015)

    Article  Google Scholar 

  16. Banos, R., Ortega, J., Gil, C., Marquez, A.L., Toro, F.D.: A hybrid meta-heuristic for multi-objective vehicle routing problems with time windows. Comput. Indus. Eng. 65(2), 286–296 (2013)

    Article  Google Scholar 

  17. Yang, B., Hu, Z.H., Wei, C., Li, S.Q., Zhao, L., Jia, S.: Routing with time-windows for multiple environmental vehicle types. Comput. Indus. Eng. (2015)

    Google Scholar 

  18. Balseiro, S.R., Loiseau, I., Ramonet, J.: An ant colony algorithm hybridized with insertion heuristics for the time dependent vehicle routing problem with time windows. Comput. Oper. Res. 38(6), 954–966 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pullen, H., Webb, M.: A computer application to a transport scheduling problem. Comput. J. 10, 10–13 (1967)

    Article  Google Scholar 

  20. Knight, K., Hofer, J.: Vehicle scheduling with timed and connected calls: a case study. Oper. Res. Q. 19, 299–310 (1968)

    Article  Google Scholar 

  21. Kallehauge, B.: Formulations and exact algorithms for the vehicle routing problem with time windows. Comput. Oper. Res. 35(7), 2307–2330 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gendreau, M., Tarantilis, C.D.: Solving large-scale vehicle routing problems with time windows: the state-of-the-art. Technical report 04, CIRRELT, Montreal, QC, Canada (2010)

    Google Scholar 

  23. Kirby, D.: Is your fleet the right size? Oper. Res. Q. 10, 252–252 (1959)

    Article  Google Scholar 

  24. Baldacci, R., Battarra, M., Vigo, D.: Routing a heterogeneous fleet of vehicles. In: Golden, B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances and New Challenges, pp. 3–27. Springer (Operation Research/Computer Science Interfaces), New York (2008)

    Chapter  Google Scholar 

  25. Thibaut, V., Teodor, G.C., Michel, G., Christian, P.: Heuristics for multi-attribute vehicle routing problems: a survey and synthesis. Eur. J. Oper. Res. 231, 1–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sophie, N.P., Karl, F.D., Hartl, R.F.: A survey on pickup and delivery problems. J. für Betriebswirtschaft 58(2), 81–117 (2008)

    Article  Google Scholar 

  27. Beltrami, E.J., Bodin, L.D.: Networks and vehicle routing for municipal waste collection. Networks 4, 65–94 (1974)

    Article  MATH  Google Scholar 

  28. Montoya-Torres, J.R., Franco, J.L., Isaza, S.N., Jiménez, H.F., Herazo-Padilla, N.: A literature review on the vehicle routing problem with multiple depots. Comput. Indus. Eng. 79, 115–129 (2015)

    Article  Google Scholar 

  29. Lahyani, R., Khemakhem, M., Semet, F.: Rich vehicle routing problems: from a taxonomy to a definition. Eur. J. Oper. Res. 241, 1–14 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Derigs, U., Vogel, U.: Experience with a framework for developing heuristics for solving rich vehicle routing problems. J. Heuristics 20, 75–106 (2014)

    Article  Google Scholar 

  31. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  32. Mascato, P.: On evolution, search, optimization, genetic algorithms and martial arts: toward memetic algorithms. Technical report Caltech Concurrent Computation Program, California Institute of Technology, Pasadena California, USA (1989)

    Google Scholar 

  33. Labadi, N., Prins, C., Reghioui, M.: A memetic algorithm for the vehicle routing problem with time windows. RAIRO - Oper. Res. 42, 415–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ngueveu, S.U., Prins, C., Wolfler Calvo, R.: An effective memetic algorithm for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 37(11), 1877–1885 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Bin, S., Fu, Z.: An improved genetic algorithm for vehicle routing problem with soft time windows. Syst. Eng. 21(6), 12–15 (2003)

    Google Scholar 

  36. Jing, H.M., Zhang, L.J.: Modeling and simulation of multi-type vehicle scheduling problem. Comput. Simul. 23(4), 261–264 (2006)

    Google Scholar 

  37. Jozefowiez, N., Semet, F., Talbi, E.-G.: Target aiming pareto search and its application to the vehicle routing problem with route balancing. J. Heuristics 13(5), 455–469 (2007)

    Article  Google Scholar 

  38. Thibaut, V., Teodor, G.C., Michel, G., Christian, P.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu, R., Jiang, Z.: The close-open mixed vehicle routing problem. Eur. J. Oper. Res. 220(2), 349–360 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Keivan, G., Seyed, F.G.: Multi-objective vehicle routing problem with time windows using goal programming and genetic algorithm. Appl. Soft Comput. 10(4), 1096–1107 (2010)

    Article  Google Scholar 

  41. Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R.: A multi-objective vehicle routing and scheduling problem with uncertainty in customers request and priority. J. Comb. Optim. 28(2), 414–446 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Garcia-Najera, A.: Preserving population diversity for the multi-objective vehicle routing problem with time windows. In: Gecco Proceedings of Annual Conference Companion on Genetic and Evolutionary Computation, pp. 2689–2692 (2009)

    Google Scholar 

  43. Sherinov, Z., Unveren, A., Acan, A.: An evolutionary multi-objective modeling and solution approach for fuzzy vehicle routing problem. In: 2011 International Symposium on Proceedings of Innovations in Intelligent Systems and Applications (INISTA), pp. 450–454. IEEE (2011)

    Google Scholar 

  44. Neil, U., Emma, H., Cathy, S.: Building low CO2 solutions to the vehicle routing problem with time windows using an evolutionary algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 1–6 (2010)

    Google Scholar 

  45. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  46. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of 1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

    Google Scholar 

  47. Clerc, M., Kennedy, J.: The particle swarm: explosion, stability and convergence in a multi-dimensional complex space. Proc. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  48. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley, England (2007)

    Book  Google Scholar 

  49. Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)

    Google Scholar 

  50. Panagiotis, N.K., Grigorios, N.B.: Solving the urban transit routing problem using a particle swarm optimization based algorithm. Appl. Soft Comput. 21, 654–676 (2014)

    Article  Google Scholar 

  51. Voratas, K., Pandhapon, S., Siwaporn, K.: Two solution representations for solving multi-depot vehicle routing problem with multiple pickup and delivery requests via PSO. In: Computers and Industrial Engineering Scheduling Problem. Computer and Industry Engineering (2015)

    Google Scholar 

  52. Babak, F.M., Rubn, R., Seyed, J.S.: Vehicle routing problem with uncertain demands: an advanced particle swarm algorithm. Comput. Indus. Eng. 62, 306–317 (2012)

    Article  Google Scholar 

  53. Norouzi, N., Sadegh-Amalnick, M., Alinaghiyan, M.: Evaluating of the particle swarm optimization in a periodic vehicle routing problem. Measurement 62, 162–169 (2015)

    Article  Google Scholar 

  54. Xu, J., Yan, F., Li, S.: Vehicle routing optimization with soft time windows in a fuzzy random environment. Transp. Res. Part E Logistics Transp. Rev. 47(6), 1075–1091 (2011)

    Article  Google Scholar 

  55. The, J.A., Voratas, K.: A particle swarm optimization for the vehicle routing problem with simultaneous pickup and delivery. Comput. Oper. Res. 36, 1693–1702 (2009)

    Article  MATH  Google Scholar 

  56. Norouzi, N., Tavakkoli-Moghaddam, R., Ghazanfari, M., Alinaghian, M., Salamatbakhsh, A.: A new multi-objective competitive open vehicle routing problem solved by particle swarm optimization. Netw. Spat. Econ. 12(4), 609–633 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 1–13 (1996)

    Article  Google Scholar 

  58. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1, 53–66 (1997)

    Article  Google Scholar 

  59. Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener. Comput. Syst. 16, 889–914 (2000)

    Article  MATH  Google Scholar 

  60. Tan, X., Zhuo, X., Zhang, J.: Ant colony system for optimizing vehicle routing problem with time windows (VRPTW). In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS (LNBI), vol. 4115, pp. 33–38. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  61. Fuellerer, G., Doerner, K.F., Hartl, R.F., Iori, M.: Ant colony optimization for the two-dimensional loading vehicle routing problem. Comput. Oper. Res. 36(3), 655–673 (2009)

    Article  MATH  Google Scholar 

  62. Mavrovouniotis, M., Yang, S.: Ant colony optimization with memory-based immigrants for the dynamic vehicle routing problem. In: 2012 IEEE Congress on Proceedings of Evolutionary Computation (CEC), vol. 22, pp. 1–8. IEEE (2012)

    Google Scholar 

  63. Mullen, R.J., Monekosso, D., Barman, S., Remagnino, P.: A review of ant algorithms. Expert Syst. Appl. 36(6), 9608–9617 (2009)

    Article  Google Scholar 

  64. Donati, A.V., Montemannia, R., Casagrandea, N., Gambardellaa, R.L.M.: Time dependent vehicle routing problem with a multi ant colony system. Eur. J. Oper. Res. 185(3), 1174–1191 (2008)

    Article  MathSciNet  Google Scholar 

  65. Tang, J., Ma, Y., Guan, J., Yan, C.: A Max-Min ant system for the split delivery weighted vehicle routing problem. Expert Syst. Appl. 40(18), 7468–7477 (2013)

    Article  Google Scholar 

  66. Huang, S.H., Lin, P.C.: A modified ant colony optimization algorithm for multi-item inventory routing problems with demand uncertainty. Transp. Res. Part E Logistics Transp. Rev. 46(5), 598–611 (2010)

    Article  MathSciNet  Google Scholar 

  67. Gong, W., Fu, Z.: ABC-ACO for perishable food vehicle routing problem with time windows. In: Proceedings of 2012 Fourth International Conference on Computational and Information Sciences, pp. 1261–1264. IEEE (2012)

    Google Scholar 

  68. Liu, S., Huang, W., Ma, H.: An effective genetic algorithm for the fleet size and mix vehicle routing problems. Transp. Res. Part E: Logistics Transp. Rev. 45, 434–445 (2009)

    Article  Google Scholar 

  69. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60, 611–624 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Yu, B., Yang, Z.Z.: An ant colony optimization model: the period vehicle routing problem with time windows. Transp. Res. Part E: Logistics Transp. Rev. 47, 166–181 (2011)

    Article  Google Scholar 

  71. Lin, C., Choy, K.L., Ho, G.T.S., Chung, S.H., Lam, H.Y.: Survey of green vehicle routing problem: past and future trends. Expert Syst. Appl. 41(4), 1118–1138 (2014)

    Article  Google Scholar 

  72. Zhang, D.Z.: Towards theory building in agile manufacturing strategy: case studies of an agility taxonomy. Int. J. Prod. Econ. 131(1), 303–312 (2011)

    Article  Google Scholar 

  73. Altiparmak, F., Gen, M., Lin, L., Paksoy, T.: A genetic algorithm approach for multi-objective optimization of supply chain networks. Comput. Indus. Eng. 51, 196–215 (2006)

    Article  Google Scholar 

  74. Moncayo-Martnez, L.A., Zhang, D.Z.: Multi-objective ant colony optimization: a meta-heuristic approach to supply chain design. Int. J. Prod. Econ. 131(1), 407–420 (2011)

    Article  Google Scholar 

  75. Savas, E.: On equity in providing public services. Manag. Sci. 24, 800–808 (1978)

    Article  Google Scholar 

  76. Minocha, B., Tripathi, S.: Solving school bus routing problem using hybrid genetic algorithm: a case study. In: Advances in Intelligent Systems and Computing, vol. 236, pp. 93–103 (2014)

    Google Scholar 

  77. Huo, L., Yan, G., Fan, B., Wang, H., Gao, W.: School bus routing problem based on ant colony optimization algorithm. In: 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), pp. 1–5. IEEE (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lining Xing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., He, Y., He, L., Xing, L. (2015). Bio-inspired Algorithms Applied in Multi-objective Vehicle Routing Problem: Frameworks and Applications. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_39

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics