Skip to main content

The Design of Digital Circuit Based on DNA Strand Displacement Reaction

  • Conference paper
  • First Online:
Bio-Inspired Computing -- Theories and Applications (BIC-TA 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 562))

Included in the following conference series:

Abstract

Because of its outstanding advantages, DNA strand displacement (DSD) reaction has been widely used for signals processing and molecular logic circuit constructing. Two digital logic circuits are constructed in this paper. One is the encoder circuit with four inputs and two outputs, and the other is the decoder circuit with two inputs and four outputs. Finally, the circuits can be programmed and simulated with the software Visual DSD. The simulated results based on DSD show that the molecular circuits constructed in this paper is reliable and effective, which has wide prospects in logical circuits and nano electronics study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press Inc., Oxford (2010)

    Book  MATH  Google Scholar 

  2. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spikes consumption strategy. IEEE Trans. NanoBiosci. 14(1), 38–44 (2015)

    Article  Google Scholar 

  3. Zhang, X., Pan, L., Păun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015). doi:10.1109/TNNLS.2015.2396940

    Article  MathSciNet  Google Scholar 

  4. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. IEEE Trans. NanoBiosci. 14(4), 465–477 (2015)

    Article  Google Scholar 

  5. Tzn, B., Erko, S.: Structural and electronic properties of unusual carbon nanorods. Quantum Matter 13, 136–148 (2012)

    Google Scholar 

  6. Seeman, N.C.: DNA nanotechnology: novel DNA constructure. Ann. Rev. Biophys. Biomol. Struct. 27, 225–248 (1998)

    Article  Google Scholar 

  7. Mao, C., Sun, W., Seeman, N.C.: Designed two dimensional DNA holliday junction arrays vis-ualized by atomic force microscopy. J. Am. Chem. Soc. 121(23), 5437–5443 (1999)

    Article  Google Scholar 

  8. Mao, C., LaBean, T.H., Reif, J.H.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407(6803), 493–496 (2000)

    Article  Google Scholar 

  9. Stojanovic, M.N.: A deoxyribozyme-based molecular automaton. Biotechnology 21, 1069–1074 (2003)

    Google Scholar 

  10. Elbaz, J., Lioubashevski, O., Wang, F.: All-DNA finite-state automata with finite memory. Nanotechnology 107(51), 21996–22001 (2010)

    Google Scholar 

  11. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219, 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429(6990), 423–429 (2004)

    Article  Google Scholar 

  13. Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C.: A DNA-fuelled molecular machine made of DNA. Nature 406(6796), 605–608 (2000)

    Article  Google Scholar 

  14. Turberfield, A.J., Mitchell, J.C., Yurke, B.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

    Article  Google Scholar 

  15. Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Program. Evol. Mach. 4(2), 111–122 (2003)

    Article  Google Scholar 

  16. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

  17. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  18. Song, T., Pan, L., Wang, J., et al.: Normal forms of spiking neural P systems with anti-spikes. IEEE Trans. NanoBiosci. 11(4), 352–359 (2012)

    Article  Google Scholar 

  19. Qian, L., Winfree, E., Bruck, J.: Neural network computation with DNA strand displacement cascades. Nature 475(7356), 368–372 (2011)

    Article  Google Scholar 

  20. Qian, L., Winfree, E.: A simple DNA gate motif for synthesizing large-scale circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA Computing. LNCS, vol. 5347, pp. 70–89. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Zhang, D.Y., Andrew, J., Bernard, Y., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

    Article  Google Scholar 

  22. Zhang, D.Y., Winfree, E.: Control of DNA strand displacement kinetics using toehold exchange. Am. Chem. Soc. 131(47), 17303–17314 (2009)

    Article  Google Scholar 

  23. Wang, X., Miao, Y., Cheng, M.: Finding motifs in DNA sequences using low-dispersion sequences. J. Comput. Biol. 21(4), 320–329 (2014)

    Article  MathSciNet  Google Scholar 

  24. Yurke, B., Mills, A.P.: Using DNA to power nanostructures. Genet. Program. Evol. Mach. 4(2), 111–122 (2003)

    Article  Google Scholar 

  25. Song, T., Pan, L., Jiang, K., et al.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  26. Phillips, A., Cardelli, L.: A programming language for composable DNA circuits. Interface 6(4), 419–436 (2009)

    Google Scholar 

  27. Matthew, L., Simon, Y.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27(22), 3211–3213 (2011)

    Article  Google Scholar 

  28. Lakin, M.R., Youssef, S., Cardelli, L., Phillips, A.: Abstractions for DNA circuit design. J. Royal Soc. Interface 9(68), 470–486 (2012)

    Article  Google Scholar 

  29. Venkataraman, S., Dirks, R.M., Ueda, C.T., Pierce, N.A.: Selective cell death mediated by small conditional RNAs. PNAS 39(107), 16777–16782 (2010)

    Article  Google Scholar 

  30. Eckhoff, G., Codrea, V., Ellington, A.D., Chen, X.: Beyond allostery: catalytic regulation of a deoxyribozyme through an entropy-driven DNA amplifier. J. Syst. Chem. 1(1), 1–6 (2010)

    Article  Google Scholar 

  31. Su, Y., Pan, L.: Identification of logic relationships between genes and subtypes of non-small cell lung cancer. PLoS One 9(4), 94664 (2014)

    Article  Google Scholar 

  32. Wang, X., Miao, Y.: GAEM: a hybrid algorithm incorporating GA with EM for planted edited motif finding problem. Curr. Bioinf. 9(5), 463–469 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kim, V.N.: MicroRNA biogenesis: coordinated cropping and dicing. Nat. Rev. Mol. Cell Biol. 6(5), 376–385 (2005)

    Article  Google Scholar 

  34. Carthew, R.W., Sontheimer, E.J.: Origins and mechanisms of miRNAs and siRNAs. 136(4), 642-655 (2009)

    Google Scholar 

  35. Shi, X., Wang, Z., Deng, C., Song, T., Pan, L., Chen, Z.: A novel bio-sensor based on DNA strand displacement. PLoS One 9(10), e108856 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC (No. U1304620, 61472372, 61272022), Innovation Scientists and Technicians Troop Construction Projects of Henan (Grant No. 124200510017), and Innovation Scientists and Techni-cians Troop Construction Projects of Zhengzhou (Grant No. 131PLJRC648), Basic and Frontier technologies Research Program of Henan Province (132300410183), Innovation Scientists and Technicians Troop Construction Projects of Henan Province(154200510 012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangzhao Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Z., Cai, Z., Sun, Z., Wang, Y., Cui, G. (2015). The Design of Digital Circuit Based on DNA Strand Displacement Reaction. In: Gong, M., Linqiang, P., Tao, S., Tang, K., Zhang, X. (eds) Bio-Inspired Computing -- Theories and Applications. BIC-TA 2015. Communications in Computer and Information Science, vol 562. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49014-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49014-3_41

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49013-6

  • Online ISBN: 978-3-662-49014-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics