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Abstract. A family of hash functions is called “correlation intractable”
if it is hard to find, given a random function in the family, an input-
output pair that satisfies any “sparse” relation, namely any relation
that is hard to satisfy for truly random functions. Indeed, correlation
intractability is a strong and natural random-oracle-like property. How-
ever, it was widely considered unobtainable. In fact for some parameter
settings, unobtainability has been demonstrated [26]. We construct a
correlation intractable function ensemble that withstands all relations
with a priori bounded polynomial complexity. We assume the existence
of sub-exponentially secure indistinguishability obfuscators, puncturable
pseudorandom functions, and input-hiding obfuscators for evasive cir-
cuits. The existence of the latter is implied by Virtual-Grey-Box obfus-
cation for evasive circuits [13].

1 Introduction

To what extent can we construct efficient function families that “behave like
random functions”? This is an intriguing question in cryptography. One of the
most elusive properties of random functions is correlation intractability, proposed
by Canetti, Goldreich and Halevi [26]. Roughly speaking, correlation intractable
functions guarantee that it is infeasible to find input-output pairs that satisfy
some “rare” relation. A bit more precisely, a binary relation R is called sparse,
if for each value x, only a negligible fraction of y values satisfy (z,y) € R.
A function family F is correlation intractable if, for any sparse relation R, it
is infeasible for the adversary to find, given the full description of a random
function f in F, a value x such that (z, f(z)) is in the relation.

The only known results regarding the existence of correlation intractable
functions are negative. Specifically, for some settings of the parameters (e.g. when
the key is shorter than the input), correlation intractable functions were shown
not to exist. This observation was used in [26] to demonstrate the uninstantia-
bility of the random oracle model [9]. However, whether correlation intractable
functions exist for other settings of the parameters, and based on what assump-
tions, remains open.
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Beyond the foundational appeal, correlation intractability is desirable in real
world applications. For example, consider the hash function used to build the
block chain in the Bitcoin protocol [47]. Its main security property, needed to
obtain proofs of work, can be stated as correlation intractability with respect
to a specific set of relations, which come from protocol-defined constraints on
the input and the output. (Specifically, the input needs to contain appropriate
transaction information and the output needs to begin with the correct number of
zeros.) It should be noted that we do not claim that our result directly applies to
the Bitcoin protocol: in this paper we consider only relations that are negligibly
sparse, while for Bitcoin and other proof-of-work applications, it is necessary to
consider relations that are moderately sparse and to define a more precise analog
of correlation intractability (in which the difficulty of finding (x, f(z)) € R is
closely related to the density of R).

More generally, consider a multi-party game which uses the value returned
by a random oracle, applied to the previous moves of players, as a substitute for
public randomness. Correlation intractable functions can potentially be used to
instantiate the random oracle in such a game without significant change in the
properties of the game.

Alternative Approaches to Obtaining Hash Functions with Random Oracle Like
Properties. Several alternative notions have been proposed in attempt to capture
random-oracle-like properties of hash functions. These notions include entropy
preservation [7], seed incompressibility [41], perfect one-wayness [23,28], non-
malleability [16], correlation robustness [43], correlated input security [38], and
universal computational extractors [8]. Their relations to correlation intractabil-
ity will be discussed later in Sect. 1.4. Still, to the best of our knowledge, none
of the known results regarding these notions shed light on the question of the
existence of correlation intractable functions.

Obfuscated Pseudorandom Functions. A natural approach to constructing func-
tions with random-oracle-like properties is to obfuscate pseudorandom functions
(PRFs). Indeed, if the obfuscation was perfect, then the adversary would be
unable to take advantage of the code any more than by merely having oracle
access to the function. This would render the function random-oracle-like. Strong
security definitions of obfuscation are formalized in the work of Hada [39] and
Barak et al. [6], e.g. Virtual-black-box (VBB) Obfuscation. However, they also
show that VBB obfuscation is impossible for many function families. In particu-
lar, Barak et al. [6] explicitly construct a PRF such that given any program (no
matter how obfuscated) that computes the PRF, the adversary can find an input
which evaluates to a fixed value. This certainly breaks correlation intractability.

We also know that no pseudorandom function family can be VBB obfuscated
with respect to auxiliary inputs [12,37]. However, these results do not rule out
the possibility that there exist pseudorandom functions whose obfuscated version
is correlation intractable.

A reasonable next step may thus be to consider PRFs with additional
properties, such as constrained or puncturable PRFs [18,19,44]. Indeed, as
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demonstrated by multiple works, starting with the ingenious work of Sahai and
Waters [51], puncturable PRFs are an extremely powerful tool when combined
with obfuscation of general programs. In particular, puncturable PRF's have been
used together with iO to instantiate some random-oracle-like hash functions,
including universal hardcore functions [10], universal computational extractors
[22], and functions used for the full-domain-hash construction [42]. Furthermore,
the constructions of [10,22] are simply obfuscating puncturable PRFs. It is thus
natural to ask:

Are obfuscated puncturable PRFs correlation intractable?
If so, under what assumptions?

1.1 Owur Results

We make progress towards answering the above questions. Specifically, we show
that puncturable pseudorandom functions, obfuscated using an indistinguishabil-
ity obfuscator, satisfy bounded correlation intractability. Here “bounded” means
that there is a polynomial upper bound on the computational complexity of the
sparse relations considered, and the complexity of the function family depends on
that bound. (We stress that this bound applies only to the relation. The adver-
sary runs in arbitrary polynomial time.) Bounded correlation intractability is
indeed a qualitatively weaker property than full correlation intractability (see
definitions in Sect. 3). Still, even in its bounded form, correlation intractability
is a very strong notion that has not been constructed before. In particular, in
many specific applications, such as Bitcoin, an upper bound on the complexity
of the sparse relation is known.

Our result holds under the assumption of sub-exponentially secure general iO
and puncturable PRF's, and also requires the existence of Input-Hiding Obfus-
cation (IHO) for evasive circuit families, which we now explain. Recall that a
boolean circuit family is evasive if for any input, only negligibly many circuits
in the family evaluate to a non-zero value. An obfuscator on evasive circuits
achieves the “input-hiding” property, if it is infeasible for a polytime adversary
to find, given an obfuscated version of a random function in the family, a preim-
age of non-zero output for that function. (Note that no subexponential hardness
is assumed here.) Candidate THOs for general evasive circuits are proposed by
Bitansky et al. [13] and Badrinarayanan et al. [3] (see Sect. 1.3). Our main the-
orem is thus the following:

Theorem 1 (Bounded correlation intractable function ensembles,
informal). Assume existence of input-hiding obfuscation for evasive circuits,
subexponentially secure indistinguishability obfuscation, and suberponentially
secure puncturable pseudorandom functions. Then there is a p(n)-bounded cor-
relation intractable function ensemble for any polynomial p(n).

Note that if we only consider relations R where for any z, there are only very
few y values in the range satisfy R(x,y), and allow the range to be larger than
the domain, then correlation intractability becomes easy to obtain. Indeed, for
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such a R and a l-universal function f there will with high probability not exist
inputs x such that R(z, f(z)) holds. However, we argue that this case is of less
interest. Rather, we are interested in general sparse relations where the “bad
inputs” exist, but are hard to find. Our solution is able to handle the general
case. For further discussions of the parameters and other special relations, we
refer the readers to the end of Sect. 3.

1.2 Our Techniques

Our goal is to prove correlation intractability of certain function family. At a
high level, our approach is to show, given a relation R, that a function f sam-
pled randomly from the initial function family is indistinguishable from another
function, f¥, that is constructed specifically so as to make it hard to find “bad
inputs” with respect to the given relation R.

However, the definition of this function ff, and moreover showing that it
is indistinguishable from the original function f, needs to be done with care.
In particular, the “naive” methodology of simply puncturing f at all the bad
points, so as to obtain a function where no bad points for relation R exist, fails.
We start by briefly explaining this failure.

Failure of the “Standard” Puncturing Methodology. Recall that a PRF is punc-
turable if for any key K and input value z it is possible to generate a key
K{x} that is “punctured” at z, such that Fg(x) remains pseudorandom even
given K{z}, and yet K{z} allows evaluating Fi at all points other than z. To
prove security of constructions that use puncturable PRFs obfuscated with iO,
the “standard” methodology proceeds in two steps to get an indistinguishable
game that an adversary cannot win (thus showing, by indistinguishability, that
the adversary also fails in the original game). In the first step (whose indistin-
guishability is proven via i0), one typically punctures the key at the bad inputs
that threaten the security of the scheme, and hardwires the output values for the
punctured inputs. In the second step (whose indistinguishability is proven via
the puncturable PRF), the output values at the punctured inputs are changed
to ensure the adversary can’t exploit them.

In our scenario, given a relation R, the “bad” inputs are those x values
that satisfy R(x, Fx(x)) = 1, where K is randomly sampled after R is fixed.
However, it is not clear how puncturing at these bad points helps here, since
it is not clear how to argue that changing the output values so as to avoid R
is indistinguishable. (In fact, it can be seen from our analysis that such change
may well be distinguishable overall.)

Said otherwise, the “standard” puncturing technique is geared toward the
case where the bad input values are fixed before the PRF key K is chosen,
whereas for correlation intractability, the bad points are determined by K.

A “Counterintuitive” Puncturing Strategy. To get around this difficulty, we start
from the following observation: for any sparse relation, the “bad” inputs z (i.e.,
those for which R(z, Fi(x)) = 1) are rare—in fact, they can be recognized by
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a circuit from an evasive circuit family. All we need to do in order to prove
correlation intractability is show an indistinguishable function in which those
rare inputs are hidden from the adversary. We do so by decomposing the PRF
into two branches: one defined on the bad inputs, which form an evasive set,
the other defined on the “innocent” inputs. Then we apply an input-hiding
obfuscator to the bad branch. However, the input-hiding obfuscator cannot work
in the presence of auxiliary information given by the innocent branch: the value
of the function on the innocent inputs may permit the adversary to find the
evasive inputs. We therefore puncture the key and change the function at every
input that belongs to the innocent branch. To avoid increasing the circuit size
beyond polynomial as we puncture at exponentially many points, we build an
alternative function family F% that is designed to avoid R. The details of the
key-switching strategy form the technical heart of the proof.

The Proof in a Nutshell. To better illustrate the main idea, we present an
overview of the proof. The analysis goes through 3 hybrids, as will be presented
by the games between the adversary and the challenger. Hybrid 0 represents the
original game. Hybrid 1, 2, and 3 are intermediate games that are indistinguish-
able by the adversary. Finally we will show that the adversary cannot break
correlation intractability in hybrid 3, therefore concluding that the adversary
also fails in hybrid 0, since hybrids 0 and 3 are indistinguishable.

We note that the circuits being iOed shall be padded to the same size, which is
possible in our construction if an a priori bound on the size of the relation is given.
Under this limitation, our techniques suffice to prove only a bounded version of
correlation intractability. For the simplicity of the overview, we postpone the
details of padding to the formal proof and now present the hybrids.

For any sparse relation R that is recognizable by some bounded polynomial
sized circuit:

0. The challenger samples a key K of puncturable PRF F and obfuscates it:
hi(-) = i0(Fk (")

The adversary wins if it outputs x such that (z,h?(z)) € R. This is the
original game. The only thing that changes in subsequent games is the circuit
obfuscated iO.
1. The challenger samples a key K of puncturable PRF F, and embeds the
relation R into the description of the function:
hl(z) = i0 <if R(z, Fx(z)) =1, return Fg(x) ; the “bad” branch >
k else, return F(z) ; the “innocent” branch

Note that h! has the same functionality as h°, and therefore it is indistinguish-
able from the original function by iO. (Recall that an iO scheme iO guarantees
that i0(C') ~ i0(C") for any two circuits C,C" that have the same size and
functionality.) This is a preparation step, which enables us to partition the
function as described above.
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2. Replace the key that is evaluated on the innocent branch with a freshly gen-
erated key K’ for a different puncturable PRF F* parameterized by R:
h2(z) = 0 if R(x, Fx(z)) =1, return Fg(x) ; the “bad” branch
RS else, return F (z) ; the “innocent” branch

where F% is designed such that there is no x such that (z, FE (x)) € R
with high probability. To generate a key K’ for FT, we sample a set of
independent puncturable PRF keys K7, ..., K7y from F. The function F’ n,
executes in a “rejection sampling” fashion, such that for input x, it goes
through the keys Kj, ..., K7(,) one by one, evaluates on the first key K; for
which (x, Fg,(z)) is not in the relation. Setting T to be linear in ! (in fact,
even slightly sublinear) is enough to make sure that « not in the relation is
found except with exponentially small probability. A similar construction was
proposed in [49] (the results are included in [26]) to achieve “relation-specific”
correlation intractable functions.

To prove the indistinguishability of h' and h?, we show that both of them
are subexponentially secure puncturable PRFs, based on the subexponential
security assumption on the underlying puncturable PRF F. We then use the
following lemma (derived from the proof methodology in the work of Canetti
et al. [27]) to show that, h! and h? are indistinguishable after being obfuscated
by subexponentially secure iO.

Lemma 1 (Informal). If hy and hy are subexponentially secure punctured
PRFs and i0 is subezponentially secure, then iO(hy) and iO(he) are indistin-
gquishable.

3. Wrap the first “if-trigger”, together with the underlying evasive function, by
input-hiding obfuscation. The function hj is then generated as:

y — IHO if R(xz, Fx(z)) =1, return Fg(z)\ “ad”
B3 (z) = i0 else, return L '
R =1 ify=_1, y— F&(z) ; “innocent”

return y

h? is indistinguishable from h2? because they are functionally equivalent and
obfuscated by iO.

Finally, we note that finding the z values that trigger the non-zero values
on the “input-hiding-box” is hard, given R and an “innocent” function F%,
generated independently (even if not obfuscated). Since the adversary cannot
distinguish whether she is given the original function h® or the function h3,
and finding an input on h® that satisfies the relation is hard, it should also be
infeasible for the adversary to break correlation intractability on the original
function.
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1.3 More on Input-Hiding Obfuscation for Evasive Functions

Our result depends on the existence of input-hiding obfuscation (IHO) for evasive
circuits. In this section we survey the state of the art regaring the existence of
such obfuscation.

THO for the class NC' can be obtained as follows. Start with a primitive called
strong indistinguishability obfuscation (si0), which guarantees that if two circuits
Cy and C7 are drawn from two distributions that are concentrated on the same
function, then siO(Cp) is indistinguishable from siO(C}). We show in Sect. 2.1
that siO for evasive circuit class C implies input-hiding obfuscation for C. Thus,
it is enough get siO for NC'. Bitansky et al. [13] show that siO is equivalent to
worst-case VGB obfuscation, and that si0/VGB for NC' circuits can be obtained
under the assumptions that certain graded encoding schemes satisfy a strong
form of semantic security [50]. Therefore, under the same assumption as made
in [13] plus the assumption that puncturable PRFs exist in NC' [17], we obtain
correlation intractable functions w.r.t. relations recognizable by NC* circuits.

THO for larger circuit classes is currently is not known to follow from simpler
primitives. Still, one can simply assume (similarly to [13]) that existing candidate
obfuscators for P/poly are THO. This assumption is not contradicted by known
impossibility results: for evasive (as opposed to general [6]) circuits, there are
no impossibility results known even for such a strong notion as average-case
VBB [4].

Alternatively, IHO can be built in idealized models. In fact, both VBB obfus-
cation and THO for P/poly were shown possible in a model with idealized graded
encodings [2,5,20,54]. Furthermore, IHO for P/poly was shown possible by Badri-
narayanan et al. [3] in a more relaxed idealized model, which avoids the devas-
tating zeroing attack [29] on the candidate graded encodings [30,34].

Proposing simpler constructions of IHO without going through the full-
fledged VGB, or basing THO on simpler assumptions is an interesting open
problem.

1.4 More on Related Work

Correlation Intractability and Constant-Round Public-Coin Zero-Knowledge
Proofs. Hada and Tanaka show that the existence of correlation intractable
hash functions (w.r.t. relations that are not necessarily efficient) implies 3 round
public-coin auxiliary-input zero-knowledge proofs exist only for languages in BPP
[40]. The key observation is based on the relation Ry, defined as

(z|la, B) € Rgp < x & LA Ty, Pr[Ver(z,a, 3,7) = Accept] > non.negl.

where z is the instance, «, 8,y are the 3 messages in the protocol. The relation
is sparse due to the statistical soundness of the underlying proof. Given the fact
that the bounded simulator cannot break the correlation intractability, it should
be able to decide the membership of the instance.

However, deciding the membership in the relation Rg, requires (at least)
an auxiliary string - in addition to the instance z, input «, and output [,
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whereas the construction of correlation intractable function proposed in this
paper can only handle relations that takes exactly one input and one output.
An alternative way of describing the relation is proposed by Halevi et al. [41]
who define the relation with multiple invocations, and set v as part of the inputs
of the additional invocations. Our construction hasn’t been proved to work for
relations with multiple invocations.

Entropy-Preserving Hashing. The notion of “entropy-preserving hashing”, for-
malized by Barak, Lindell and Vadhan [7] as being sufficient to achieve Fiat-
Shamir heuristics for proofs [32], is closely related to correlation intractability.
Roughly speaking, the definition requires that after the adversary is given the
key and chooses the input, the output conditioned on the input has high entropy.

We show (in Appendix A) that entropy preservation and correlation
intractability implies each other. However, the connections are shown w.r.t. rela-
tions that are not necessarily decidable by poly-size circuits. Therefore, our
construction is not necessarily entropy-preserving. The existence of entropy-
preserving hash functions remains open. In fact Bitansky et al. show that
entropy preservation is impossible to prove from black-box reduction to falsi-
fiable assumptions [14]. As a corollary, correlation intractability w.r.t. possibly
inefficient relations is impossible to obtain from black-box reduction to falsifi-
able assumptions. We don’t know if the same impossibility holds for CI w.r.t.
efficiently recognizable relations.

Alternative Approaches to Instantiating Random Oracles. Several alternative
definitions have been proposed in order to capture the random-oracle-like prop-
erties. These notions include perfect one-wayness [23,28], non-malleability [16],
seed incompressibility (SI) [41], correlation robustness [43], correlated input secu-
rity (CIH) [38], and universal computational extractors (UCE) [8]. These defi-
nitions are quite different from correlation intractability. In particular, SI, CTH
and UCE model the security game in two stages, where the adversary in the
first stage doesn’t get full access to the description of the function, to avoid
the impossibility results in [26]. It turns out that one can separate correlation
intractability and each of these notions. An example is given in Appendix A that
separates CIH/UCE and correlation intractability.

Separations, of course, do not show incompatibility: indeed, a construction
may naturally satisfy many security definitions simultaneously. For example,
essentially the same construction as in this paper (obfuscated puncturable PRFs)
was shown to also satisfy a subclass of UCE by Brzuska and Mittelbach [22].
Further exploring constructions that satisfy multiple definitions simultaneously
(and, in particular, gaining a better understanding of puncturable PRFs) is an
interesting future direction.

Additional Related Work. A canonical construction of a PRF from a pseudoran-
dom generator (PRG), now known as the GGM PRF, was given by Goldreich,
Goldwasser and Micali [36]. Suppose we simply publish a GGM PRF seed in
the clear to allow public evaluation, without any obfuscation. Is such a function
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correlation intractable? This questions was posed in the 1990s and answered
negatively by Goldreich [35]. He constructed a specialized PRG, such that the
GGM PRF built on this PRG is not correlation intractable. In fact one can find
a preimage of 0™ with non-negligible probability.

Correlation intractability is a natural criterion for designing efficient ciphers
and hash functions. For example, it is used by Mandal et al. [46] to analyze the 6-
round Feistel construction. In particular, they show that the 6-round Feistel con-
struction is sequentially indifferentiable from a random invertible permutation,
which implies that it is correlation intractable under an idealized assumption on
the Feistel round function.

2 Preliminaries

Many experiments and probability statements in this paper contain randomized
algorithms (such as obfuscators or adversaries) within them. The probability
of success of an experiment is always taken over the random coins used by
the relevant randomized algorithms; therefore, we do not mention these coins
explicitly.

A function ensemble F has a key generation function g : S — K; on seeds
s of length o(n), g produces a key k of length x(n) for a function with input
length I(n) and output length m(n):

F={fr:{0,1}'™ — {0,1}™ k = g(s),5 € {0,1}7 ™} e

By default we denote k EF, (sometimes abbreviated as k in the equations) as
sampling a key k uniformly random from F,,.

For any definition based on computational indistinguishability, we will say
that the relevant security notion is subexponential if for every distinguisher there
exists € > 0 such that the distinguisher’s advantage is 2=™°, where n is the
security parameter.

2.1 Obfuscation

In this work we use indistinguishability obfuscation for all circuits, and input-
hiding obfuscation for all evasive circuit collections. Both obfuscators considered
in this paper perfectly preserve the functionality, and cause a polynomial blow-
up on the size of the function description. To be precise, for the circuit family
F o= {f : {0,1}{" — {0,1}™™M};cx . a probabilistic algorithm Obf is an
obfuscator, if

1. The string Obf(f) describes a circuit that computes the same function as f;
2. There is a polynomial B(-) such that |Obf(f)| < B(|f]).

The difference lies in the security properties: indistinguishability obfuscation
guarantees that the obfuscation of any functionally equivalent circuits cannot be
distinguished; whereas input-hiding obfuscation only applies on evasive circuits,
and promises to hide all the inputs which lead to non-zero outputs.
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Definition 1 (Indistinguishability Obfuscation [6]). Obf is an indistin-
guishability Obfuscator (i0) for F if for any feasible adversary A, there is a
negligible function negl(-) such that for all circuits fo and fi that have identical
functionalities, and are of the same size, it holds that

[Pr{A(i0(fo)) = 1] = Pr[A(iO(f1)) = 1]| < negl(n)

Definition 2 (Evasive circuit collections). Let F = {f; : {0,1}}®® —
{0,1}™™}, oy be a circuit collection, we say F, is evasive if there is a neg-
ligible function negl(-) such that for all z € {0,1}/");

Pr(fi(w) # 0] < negl(n)

Definition 3 (Input-hiding Obfuscation for evasive circuits [4]). An
obfuscator for a evasive circuit collection F is input-hiding (IHO) if for every
p.p-t. adversary A there exist a negligible function negl(-) s.t. for every auxiliary
input z € {0, 1}PY(™);

Prifu(A(IHO(fx), 2)) # 0] < negl(n)

The notion of THO (unlike i0) is inherently average-case, i.e., the function fj is
random and independent of the auxiliary input z (see [4, Sect. 2] for a discussion
of this issue). In particular, impossibility results, such as [21], for notions of
obfuscation that allow a related auxiliary input, do not apply.

Remark 1. The original definitions of evasive circuit collections and the corre-
sponding obfuscators proposed by Barak et al. [4] are stated for circuits with
1-bit output; whereas our definition of evasive circuit collections is for multi-
bit output. For the case of input-hiding obfuscation, the existence of THO for
all evasive circuits with 1-bit output implies the existence of IHO for all eva-
sive circuits with multi-bit output: for circuit C(x) with m-bit output, we can
obfuscate the circuit C(z;i) = C(2)® that returns the i-th output bit, and run
IHO(C(x;¢)) with ¢ € [m]. This transformation is mentioned by Bitansky et al.
[13] for VGB obfuscation for all circuits. We note that the transformation also
works for certain restricted circuit classes including NC'.

Throughout this paper, we will assume the existence of THO for all evasive cir-
cuits with 1-bit output, and use IHO for evasive circuits with possibly multi-bit
output without loss of generality.

Input-Hiding Obfuscation from VGB Obfuscation. We introduce one of
the known approaches to designing input-hiding obfuscation for evasive circuits.
As a corollary of the result from [13], IHO is implied by Virtual-Grey-Box (VGB)
obfuscation, or equivalently, strong indistinguishability obfuscation (siO).

Definition 4 (Concentrated/Evasive function distribution). Let F =

{fe : {0,130 — {0,1}}en be a function ensemble, F, be a distribution on
Fn. Let majg () =E;_z f(z) be the common output on z for functions drawn

from F,.
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1. F, is concentrated if there is a negligible function negl(-) that

max  Pr [f(z) # majz («)] < negl(n)
2e{0,1}1M) fF, "

2. (Rephrasing Definition 2 for 1-bit output) F, is evasive if it is concentrated,
and Vz € {0,1}'™, maj; (z) = 0.

Definition 5 (Strong indistinguishability Obfuscator [13]). An obfuscator
is a strong indistinguishability Obfuscator (si0) for F if for any two concentrated
distribution ensembles }:2, }:ﬁ on Fpn s.t. majzo = majz, and for any p.p.t.
adversary A, there is a negligible function negl(y: !

Pr_[A(siO(fo)) = 1] = Pr_[A(siO(f1)) =1]| < negl(n)
foe—=F) f1e=F}

Definition 6 (Virtual-Grey-Box Obfuscation [11]). Obf is a Virtual-Grey-
Box (VGB) Obfuscator for F if for any feasible adversary A, there is a simulator
S, and a negligible function negl(-) such that for all f € F:

| Pr[A(Obf(f)) = 1] — Pr[S7 (1) = 1]| < negl(|/])

where the running time of S is computationally unbounded, but only sends poly-
nomially many queries to f (such a simulator is usually called “semi-bounded”).

Theorem 2 ([13]). An obfuscator is siO for F iff it is worst-case VGB obfus-
cator for F.

Theorem 3 (SiO implies IHO for evasive functions). Let F = {fy :
{0, 1} — {0,1}}nen be an evasive function ensemble, Obf be a strong iO
for F, then Obf is an input-hiding obfuscator for F.

Proof. Let F2 be the uniform distribution on F and F! be the one-element
distribution consisting of the zero function. Then majz, = majz = 0. Therefore

Pr_[fo(A(siO(fo),2)) =1] < Pr_[fi(A(siO(f1),2)) = 1]+ negl(n) = negl(n).
fo—=F3 fieF)

2.2 Puncturable Pseudorandom Functions

Definition 7 (Puncturable PRF [18,19,44,51]). Let I(n) and m(n) be the
mput and output lengths. A family of puncturable pseudorandom functions
F = {Fk} is given by a triple of efficient functions (Gen, Eval, Puncture), where
Gen(1™) generates the key K, such that Fx maps from {0,1}(") to {0,1}™");
Eval(K,x) takes a key K, an input x, outputs Fi (x); Puncture(K,z*) takes a
key and an input x*, outputs a punctured key K{x*}.

It satisfies the following conditions:
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Functionality Preserved Over Unpunctured Points: For all z* and
keys K, if K{z*} = Puncture(K,z*), then for all x # z*, Eval(K,xz) =
Eval(K{z*},x).

Pseudorandom on the Punctured Points: For every input x*, the value of
F on z* is indistinguishable from random in the presence of the key punctured
at x*. That is, the following two distributions are indistinguishable for every x*:

(", K{x"}, Fx(z¥)) and (™, K{z"},r"),

where K is output by Gen(1™), K{z*} is output by Puncture(K,z*), and r* is
uniform in {0,1}™(),

Theorem 4 ([18,19,36,44]). If one-way function exists, then for all length para-
meters l(n), m(n), there is a puncturable PRF family that maps from l(n) bits
to m(n) bits.

3 Correlation Intractability

We recall the definitions of correlation intractability, initially proposed in [25,26].

Definition 8 (Sparse relations'). A binary relation R is sparse with respect
to length parameters l(n), m(n), if there is a negligible function §(-) such that
for every x € {0,1}!(™);

Pr [R(z,y) =1] < 6(n)
y€{0,1}m(n)

In some cases, we quantitatively describes the relations as §(n)-sparse, and even
more precisely, d,(n)-sparse when specifying the density on the input x.

Definition 9 (Correlation intractability). A family of functions H = {hy :
{0,131 — 0,1} }, e is correlation intractable (CI) if for all (nonuniform,
p.p.t.) adversary A, for all sparse relations R, there’s a negligible function negl(-)
such that:
fr [z «— A(k) : R(x, hi(z)) = 1] < negl(n)
k—H,

! This is called (I(n), m(n))-restricted sparse relation in [26], as opposed to the “unre-
stricted” version where the input length is not prescribed. In this paper we remove
the “restriction” in the term, since the case where the input length is unbounded
is shown to be impossible (cf. Claim 3), and the “restricted” definition is indeed a
natural and interesting setting. Also, in [26] and subsequently in [40,41,46], they
also define “evasive” relations, which is equivalent to sparse for relations with 1-
invocation, and with non-uniform adversaries. Throughout this paper, we only define
and use “sparse” relations, since we focus on 1-invocation relations. The term “eva-
sive” only serves the definition of “evasive circuit collections” [4] (cf. Definition 2) to
avoid confusion.
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In the definition above, the sparse relations may not be efficiently recognizable. A
reasonable weakening on Definition 9 is to restrict the relations to be recognizable
by poly-size circuits:

Definition 10 (CI-P/poly?). The definition is same as Definition 9 except that
we restrict the relations to be recognizable by poly-size circuits

C : {0, 1}m+m) _, 10,1}

s.t. Clz,y) =1 4ff R(z,y) = 1.

This definition can be further weakened by giving an a priori bound p(n) on
the size of the circuit that defines the relation, instead of allowing circuits of
arbitrary polynomial size.

Definition 11 (Bounded correlation intractability). Given a polynomial
p(). A family of functions H = {hy : {0,1}™) — {0,1}™™}, cy is p(n)-
bounded correlation intractable (bounded CI, or p(-)-CI) if for all (non-uniform,
p.p-t.) adversary A, for all sparse relations R that can be recorgnized by a circuit
of size smaller or equal to p(n), there’s a negligible function negl(-) such that:

fr [ — A(k) : R(z, hi(x)) = 1] < negl(n)
k—Hn

On the Length Parameters. It is shown in [26] that a function family cannot
be correlation intractable when the key length x(n) of the function is short
compared to the input length I(n):

Claim ([26]). H,, is not correlation intractable w.r.t. poly-size relations when
k(n) < l(n).

Proof. Consider the diagonalization relation R = {(k, hy(k))|k € K} (pad k
with Os to get length I(n) if k(n) < I(n)). The attacker outputs k¥ (padded with
0s to length I(n) as the x).

If k(n) > I(n), then there is no way to pad k to get z. However, some extensions
of the impossibility result are still possible; we refer the readers to [26] for the
details.

As opposed to the relation between input and key lengths, the relation
between input and outputs lengths is not restricted. The only requirement is
that the output length m(n) shall be super-logarithmic, i.e. m(n) > w(log(n)).
Although CI is meant to model cryptographic hash functions (which have short
outputs), the definition of CI is also meaningful for the functions whose output
is longer than their input. In fact, our construction works for both cases.

We note that a function family that is correlation intractable against a more
general class of sparse relations captures an essential feature of random oracles
better. However, if one is interested in defending against certain restricted types

2 This notion is called “weak correlation intractability” in [26].
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of sparse relations, we may have simpler constructions based on standard crypto-
graphic assumptions. For example, Ajtai’s function [1], based on the hardness of
approximating the Short Independent Vector Problem for Lattice in the worst
case, suffices to prevent the adversary from finding the preimage of any fixed
output. We also note that any l-universal hash function family is correlation
intractable, if one only considers very sparse relations — more specifically rela-
tions where, for any x, the number of y’s that stand in the relation with x is at
most a negligible fraction of the ratio between the size of the range and the size
of the domain of functions in the family. Indeed, in this case with high probabil-
ity a random function from the 1-universal hashing family has no input-output
pairs in the relation. (We note that in this case the output is inherently longer
than the input.)

4 Bounded Correlation Intractability from Obfuscating
Puncturable PRF

In this section we give the construction of correlation intractable function ensem-
bles with respect to all the sparse relations recognizable by circuits of size up to
a given polynomial p(-).

Construction 5 (Bounded CI). Let F = {Fk : {0,1}/(™) — {0,1}™("},
be a puncturable pseudorandom function. Let the function ensemble H = {hy :
{0,131 — {0,1}™(M},en be constructed as

hi(-) = iO(Fk(-), padding(n))
where K <& Fn, for some length of padding.

Theorem 6 (Bounded CI). Let p(n) be a polynomial in the security parame-
ter n. Assuming the existence of input-hiding obfuscation for all evasive cir-
cuits, sub-exponentially secure indistinguishability obfuscation for P/poly, and
sub-exponentially secure puncturable PRF, there is an appropriate polynomial
size of padding such that the family H is p(n)-bounded correlation intractable.

The size of padding (which represents arbitrary gates that do not change the
functionality of the circuit) will be discussed at the end of the proof (see
Remark 2). In short, it depends on p and the blow-up due to input-hiding obfus-
cation. In the proof below, we drop the explicit mention of padding from the
construction in order to simplify notation.

Proof of Theorem 6: The proof in this section follows the outline presented in
Sect. 1.2. The proof goes through 3 hybrids. From the original game which cap-
tures the security definition of correlation intractability, we move to intermediate
games 1, 2, and 3 that are indistinguishable by the adversary. Finally we will
show that the adversary cannot win in game 3 except for negligible probability.
We conclude that the adversary also fails in game 0, since the adversary cannot
distinguish game 0 and game 3.

More specifically, fix an adversary and a §(n)-sparse relation R. Then:
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Game 0: The Original Game. The adversary receives the key of the function h
constructed by the challenger:

hi(-) = i0(Fk (") (0)

The adversary wins if he outputs an z such that R(z,hd(z)) = 1. The win-
ning condition is the same in each subsequent game; what changes is that h°
is replaced by h', h2, and h3, which are computed as obfuscations of different
circuits, each described in the corresponding game below.

Game 1: Embed the Relation into the Description Without Changing the Func-
tionality. The challenger samples a puncturable key K, then generates h,l6 which
has the relation R embedded:

(1)

1,y .~ [if R(z, Fr(x)) =1, return Fg(x)
hip(z) =10 (else7 return Fi (z)
The hybrids A and hj, have identical functionality. Therefore, because both h{

and h}, are obfuscated by i0, they are indistinguishable for any p.p.t. adversary.

Game 2: Switch to a Function Where the “Innocent” Branch is Generated Inde-
pendently from the “Bad” Branch and Avoids R. The challenger constructs a
new function family F% that always avoids R, as described below, and generates
h% as:

(2)

h%(x) =i0 (if R(z, Fx(z)) = 1, return Fg(x) >

else, return F&, (z)

where Fi & F, and FE, & FR. The function family F is constructed as
follows:

Construction 7 (FF). Let F& = {FE : {0,1}/") — {0,1}™™},, be a func-
tion family, where each FE, is constructed as follows:

K/ = (K17 K27 ey KT(n))
fori=1to T'(n):
Fi(x) = 2.el
() if R(x, Fk,(z)) =0, return F, (z) (2-else)

return L

where T'(n) = 155(?1)' The functions Fr,, ..., Fr,,, are sampled independently

from any puncturable PRF family F.

The functionality of F’ }g, is to output, given an input x, the pseudorandom value
Fr,(v), where Kj; is the first key among K1, ..., Kp(,) s.t. R(z, Fi,(x)) = 0 (if
no such K; exists, output L). The iteration bound T'(n) is set large enough to
make sure that Ff, outputs | with probability less than 27/ . negl(n) (we
prove and use this fact in Lemma 2).
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To prove that h? is indistinguishable from h}, let g7 be the same as hi but
without the iO:

gi(z) = {if R(zx, Fg(r)) = 1, return Fi (x)

else, return FE, (z) (2-inner)

First, using subexponential security of Fx, we show in Lemma?2 that the g,%
is also a subexponentially secure puncturable PRF. Then, in Lemma3 (whose
proof methodology is derived from the work of Canetti et al. [27]), we show
that any two subexponentially secure puncturable PRFs are indistinguishable
after being obfuscated by subexponentially secure iO. This makes h5 = iO(g?)
indistinguishable from hf = iO(Fk), and therefore also indistinguishable from
h%. (Note that technically h¥ is not needed at all—we can move directly from
hE to h%; but we believe that moving to h¥ first clarifies presentation.)

Lemmas 2 and 3 below are based on the sub-exponential hardness of punc-
turability and 10, respectively. Let epyncture be the adversary’s advantage of win-
ning the puncturability game of F and €jo be the advantage of distinguishing
the 10 of two identical functions. We need to set

€Puncture = €0 = 27l(n) : negl(n)

This level of security can always be achieved from subexponential hardness by
setting the security parameter A for the puncturable PRF and for iO sufficiently
high, but still polynomial in n: if the security of these two objects is 272" for
security parameter ), then setting A = (21(n))'/¢ is sufficient.

Lemma 2. Assume that F is a subexponentially secure puncturable PRF with
the advantage of distinguishing being €puncture = 2™ -negl(n). Then the function
g,% (i.e., the function being obfuscated in hi) is also a subexponentially secure
puncturable PRF with the advantage of distinguishing at most 2~ . negl(n).

Proof. To puncture gi on input x*, we puncture all the inner PRF keys K, Kj,
oy Kp(yy on 2%, and construct the punctured function as follows:

kav} = (B, K{z"}, K'{a"} = (Kuf2"}, . Ky {27}))

_ (if R(z, Fr(e=y (7)) = 1, return Fg g,y () (2.p)
Iifa=y () = (else, return F};”,{x*}(x)

R . .
where F, (o*} 18 constructed as:

K’{x*} = (Kl{a:*}, ceey KT(TL){-T'*})
for i =1 to T'(n) :

if R(z, Fg,{z+1(7)) =0, return Fi, 5+ (2)
return L

F[?,{m*}(x) = (2.else.p)

By the puncturability of F, the outputs of Fi (.~} and F,,+} on the punctured
points are indistinguishable from random even given k{z*}. More precisely,

(k{l‘*},FK(Z‘*),FKl (l'*), cory FKT(n) (l'*)) ~ (kj{l‘*}, Uo, Ul, ey UT(n))
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(where (Ug, Ui, ..., Up(n)) & {0, 1}(T()+1)-m(n))  The advantage of any p.p.t.
adversary to distinguish these two tuples is

(T(n) +1) - epuncture = (T(n) +1) - 2707 - negl(n) = 271 . negl(n)
Construct the distribution V.« by sampling random Uy, . . ., Up(,) and computing
if R(z*,Uy) =1, return Uy
else: fori=1to T(n):

Ver = if R(z*,U;) =0, return U;

return L

From the indistinguishability of Fk(z*) and F,(z*) from uniform, it follows
that V- is indistinguishable from g7 (z*):

(k{z"}, gi (")) = (k{z"}, Va-)
and the advantage of any p.p.t. adversary to distinguish these two pairs is 271
negl(n). To complete the proof, we will show that V.« is very close to uniform
over {0,1}™(™): it differs from uniform by the probability that V- = L. Indeed,
— For all y € {0,1}™™ such that R(z*,y) = 1,

Pr[Vy = y] = Pr[Uy = y] = 27 ™™
— Pr[Vpr = L] = (1 = 8 (0)) G (n) TV
— For all y € {0,1}(" such that R(z*,) = 0 (note that there are 2"(") (1 —

dz+(n)) such values)

= Pr[Vye = y|R(z*, Vi) # 1A Ve % L] Pr[R(z*, Vipe ) % 1A Vi 1]
1 . B -

= 9 (1 = 6,- (n)) (1 —Pr[Vp+ # L AR(z*, V) = 1] = Pr[V,. = 1])
1

(1= 80 (n) = (1 = &g (1)) 8- (n) 7))

~ 2 (1~ 6, (n))
T(n
_ g (1 =0 ()dar TN ey (1= b0 (m)7™)
Thus, the statistical difference between V.- and the uniform distribution on
{0,1}™™) (which is a bound on any distinguisher’s advantage) is

1
= Z | Pr[V,- =y] — Pr[U =y]| (U is uniform over {0,1}™(™)

ye{L}iu{0,1}"

=5 | 1= e g 7

n 3 (Q—mm) _g—m(n) (1 — 5, (n)T(n)>)

y S.t. R(z*,y)=0
(1= 8y (1)) ()T < 6, ()T
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We thus obtain that V.« can be distinguished from uniform with advantage at

most §, (n)7") = 274" .negl(n), because T'(n) = 1(5;?7)1) and §,,(n) is a negligible

function.

Ve« is independent of k{x*}. Therefore, the advantage of any adversary in
distinguishing (k{z*}, Vi) from (k{z*},U) is 27!") - negl(n). And we already
know the same is true for distinguishing (k{z*}, gZ(z*)) from (k{z*}, Vy+). Thus,
even given k{z*}, g7 cannot be distinguished from uniform with advantage better
than 24" . negl(n), which concludes the proof.

Next we show that for arbitrary puncturable PRF families F, F, : {0, 1}/(™)
— {0,1}™™) that are 27/") . negl(n)-secure, the pseudorandom functions sam-
pled independently from these families are indistinguishable after being obfus-
cated by 271" . negl(n)-secure indistinguishability obfuscation. The following
lemma is derived from the “piO” proof methodology developed in the work of
Canetti et al. [27].

Lemma 3. Let Fy, Fp : {0,111 — {0,1}™™) be 274" . negl(n)-secure punc-
turable PRF families, iO be eio = 27'") . negl(n)-secure indistinguishability
obfuscation. Let F, & Fi, Fr, & Fa, then iO(Fk,) and iO(Fk,) are indis-
tinguishable.

Proof. We prove the indistinguishability via 2!(") + 1 intermediate hybrids, one
for each input. More precisely, for z* € {0,1,...,2!" — 1,21 we construct
Jor as

if x = z*, return Fk, (z)
if x > z*, return Fk, ()
else, return F, (x)

for (@) = else, return (

Note that fo is functionally equivalent to F, , therefore, they are 2-/(") - negl(n)
indistinguishable after being obfuscated by iO. Likewise, foin) is functionally
equivalent to Fl,, hence being 27" . negl(n)-indistinguishable following iO.

Next we show that each intermediate pairs f.- and f.-,1, z* € {0,1,..., 2! —
1}, are 271" . negl(n)-indistinguishable. We introduce 3 more sub-hybrids:

if @ = 2*, return y*

return if x> 2%, return Fg, .« ()
else, return Fe, .y ()

fZ*,y* (33) =i0

else,

where y* equals to Fik, (z*), U & {0,1}™()  and Fp, (2*) respectively.

Note that fZ*’FK1 (=+) is functionally equivalent to f.«; fZ*,FK2 (=) 1s func-
tionally equivalent to f.-, . They are 27!(") . negl(n)-indistinguishable following
iO. In between, fz*7FK1(Z*) is indistinguishable from f,« and f,« ¢ is indis-
tinguishable from f.- g, (.-), following the 21" . negl(n)-puncturability of K;
and Ks.

To conclude, f,« and f,«y1 are 4 -2 negl(n)-indistinguishable following
the 271" . negl(n) security of Fi, Fs, and i0. Summing up all the 2! + 1

—l(n) .
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intermediate hybrids, the total advantage of distinguishing iO(F, ) and iO(Fk,)
is negligible.

Combining Lemmas 2 and 3, h,1C is indistinguishable from hz.

Game 3: Wrap the “Bad” Branch by Input-Hiding Obfuscation, Without Chang-
ing the Functionality. The challenger generates hz that is functionally equiv-
alent to h7 but is computed differently. The difference is that in game 3, the
challenger first wraps the if statement together with the true branch with input-
hiding obfuscation (the challenger also applies iO to the entire function, just like
in the previous games, which ensures that h% is indistinguishable from hi)

— IHO it R(z, Fx(z)) =1, return Fg(x)
13 (z) = i0 Y else, return L 3)
R =ity =1,y — FR(x)

return y

Let Ef(z) denote (lf R(z, Fie(x)) = 1, return Fi(z) >

else, return L

Proposition 1. €% = {EE : {0,1}/") — {0,1}™"},cn is an evasive circuit
family.

Proof. Assume, for contradiction, that there is an input 2’ € {0,1}®) on which
there are non-negligibly many keys that evaluate to a value other than 1. We can
then build a (non-uniform) adversary that distinguishes the PRF Fg(x) from
a truly random function with non-neglible advantage. The adversary simply
queries input 2’ to the function and checks if the output y satisfies R(z’,y).

Note that h? and h} are functionally equivalent. Therefore, by indistinguisha-
bility obfuscation, the adversary cannot distinguish game 2 and game 3.

Finally, in Game 3: Suppose that there is a p.p.t. adversary A who gets h3,
finds an input z such that R(x,h}(z)) = 1 with non-negligible probability n(n),
we build an adversary A’ that breaks IHO for evasive circuit family £%: A’
gets IHO(FE(-)), samples F# independently, and creates hi as described in
construction (3), sends it to A. For adversary A, finding an input = to h® such
that R(x,h}(z)) = 1 is equivalent to finding such an input to IHO(E£(-)) that
evaluates to an non-bottom value, because F'%, is independently generated and
always avoids R (F# outputs L rather than hit R).
The advantage of adversary A’ is thus the following:

Pr[A (IHO(ER k() — 7+ Epxc(e) # 1]
= K]S)IE/[A(IHO(ERVK())’ R, F}?,) — T ER’K(.’E) 75 J_]
> Pr{AGRL() = @+ R(w, hi(2)) = 1] = n(n)

which forms the contradiction.
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If a p.p.t. adversary could find = such R(z,hY(x)) = 1, then she could dis-
tinguish h° from h3 (because testing R is polynomial-time). Thus, we complete
the proof that H is correlation intractable. a

Remark 2 (The size of padding). Let kz(n) be the key size of F,,, k%(n) be the
punctured key size of F,,, B(:) be the maximum blow-up of the input-hiding
obfuscation. The size of F£, is T'(n) - (p(n) + 2 - kx(n)). The maximum size of
IHO(ER, i) is B(p(n) + 2 - kx(n)). The size of padding is bounded by

[padding(n)|
< B(p(n)+2-kxn))+T(n)-(p(n)+2-kx(n))+ (T(n)+2) - kx(n)
= poly(n)
As the analysis suggests, the key size of the function inherently exceeds the
maximum size of R. The existence of correlation intractable functions with a

prescribed description size that works for all poly-size relations (i.e. CI-P/poly)
remains an open problem.
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Appendix

A Correlation Intractability Versus Other Notions

We explore the relation between correlation intractability and other security
definitions for cryptographic hash functions.

A.1 Relations with Entropy-Preserving Hashing
Recall the definition of Entropy Preserving (EP) from [7]:
Definition 12 (Entropy preservation). A family of hash function H = {hy :

{0, 1} — {0, 1}k = g(s),5 € {0,1}7™}, ey ensures conditional entropy®
greater than §(n) if for all (non-uniform, p.p.t.) adversary A:

H(hi(A(k))[A(K)) > 6(n)

3 The entropy of a random variable X is defined as H(X) = E X[log m]. For
jointly distributed random variables (X,Y"), the conditional entropy of X given Y is

defined to be E ¢ Y[H(X|y:y)}, where X|y—, denotes the conditional distribution
"l
of X given that Y = y.
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Equivalently:
Ex a[H (hi(X)|x=a(k))] > 0(n)

Notice that in order to get meaningful (i.e. non-zero) conditional entropy, the
length of the key k(n) must be bigger then the length of the input I(n), oth-
erwise the adversary could always output the key (i.e. A(k) — k) so that the
conditional entropy will be zero (same to the diagonalization attack of correla-
tion intractability [26]). In other words, we hope that there are multiple choices
of keys that could lead the adversary to return the same input, and hx(x) on
these candidate seeds and fixed input has different values.
[7] proposed 3 bounds for d(n), each being interested on its own:

— (Best possible) §(n) > m(n) — O(logn). If achievable, would imply that
constant-round public-coin auxiliary-input zero-knowledge proofs exist only
for languages in BPP.

— (Somewhat) §(n) > 1/poly(n), also interesting. If achievable, would imply that
3-round public-coin auxiliary-input optimally sound zero-knowledge proofs
exist only for languages in BPP.

— (Minimum/Weakest) d(n) > 0, still interesting. Even the existance of the
weakest entropy-preserving hash functions implies that the parallel composi-
tion of some classic protocols (e.g. Blum’s protocol [15]) is not auxiliary-input
zero-knowledge.

An equivalent formalization of the minimum/weakest notion:

Congecture 1 ([7]). There is a polynomial p(-) such that the following holds: For
every non-uniform deterministic polynomial-time algorithm A and all sufficiently
large n, there are circuits C1,Cs of size at most p(n) such that « = A(Cy) =

A(OQ) but 01(06) 7& OQ(O[).

Note that even the construction of the weakest notion of entropy-preservation is
unknown. In fact it is shown by Bitansky et al. to be impossible to obtain from
black-box reduction to falsifiable assumptions [14].

Connections with CI. We show that correlation intractability (where the sparse
relations are not necessarily efficiently recognizable) impies entropy preservation;
and entropy preservation implies a weaker variant of correlation intractability in
which if the adversary exists, it breaks correlation intractability with probability 1.

Theorem 8. If a function family H is correlation intractable, then it is also
entropy-preserving, i.e. for all p.p.t. adversary A:

H{(hi(A(K))|A(K)) > m(n) — O(log(n))

Proof. Assume by contradiction that H is not entropy-preserving, then there’s
an Adv A, such that

H(hy(A(K))[A(F)) < m(n) — w(log(n))
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We define a relation by enumerating the keys, and query A on each key to get x,
and the corresponding y = hy(z), then adding (x,y) into the relation. Formally,
let R be:

R={(z,hi(2)) | & = A(k), k= g(s). s €{0,1}°"}

R is sparse since the adversary can always break entropy-preservation, which
means the portion of the possible outputs conditioned on the adversary’s choice
of the input is negligible.

Notice that this relation is not likely to be efficiently recognizable, which means
our construction of bounded correlation intractable functions is not necessarily
entropy-preserving.

Definition 13 (Weak correlation intractability?). A family of functions
H = {hy : {0,1}}(™) — {0,1}™M}, oy is weak correlation intractable (wCI) if
for all (non-uniform, p.p.t.) adversary A, for all sparse relations R, there’s a
non-negligible function non.negl(-) such that:

fr [ — A(k) : R(z, hi(z)) = 1] < 1 — non.negl(n)
k—Hn,

Theorem 9. If a function family H guarantees the best possible entropy preser-
vation, i.e. for all p.p.t. adversary A:

H(hi(A(k))[A(k)) > m(n) — O(log(n))
then it is weakly correlation intractable.

Proof. If 'H is not weakly correlation intractable, which means there is a sparse
relation R, an adversary A that:

]?]’cr[:t — A(k) : (z,hi(z)) e Rl =1

Since R is sparse, which means for all z, the possible y values form a negligibly
small subset of the range. Therefore the conditional entropy is:

H(hi(A(K))|A(F)) < m(n) — w(log(n))

which forms a contradiction.

A.2 Separations Between Correlation Intractability and Other
Notions

Several random-oracle-like notions are defined in an “indistinguishability” fash-
ion. These definitions attempt to capture the intuition that, given only limited

* This notion is different from the “weak correlation intractability” in [26]. The
“weak correlation intractability” in [26] is redefined as CI-P/poly in this article,
cf. Definition 10.
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access to or partial information from the function, it is hard for the adversary
to distinguish whether the information is obtained from the hash function or
a truly random function. The notions defined in this way include correlation
robustness® [43], seed-incompressibility® [41], correlated input security (CIH)
[38], and universal computational extractor (UCE) [8].

These notions are quite different from correlation intractability. In the next
few paragraphs, we demonstrate the difference by showing that a simple version
of correlated-input hash function (defined by [38], rephrased by [8] as a sub-
class of UCE and by [22] as ¢-CIH) is separated from correlation intractability.
We emphasize that the purpose of showing separations is to demonstrate the
properties of these definitions on their own, rather than showing incompatibil-
ity. In fact, there is evidence that these notions are compatible with correlation
intractability: the same construction that we show to be correlation intractable
(iO of puncturable PRFs with appropriate padding) was shown to satisfy a sub-
class of UCE by Brzuska and Mittelbach [22].

Definition 14 (¢-CIH [8,22,38]). Let q be a polynomial. For a hash function
family H = {hy : {0,1}}™ — {0,1}™M},cn, consider the following game
between the p.p.t. adversary A = (A1, A2) and the challenger:

1. The challenger samples a hash function from the family hy, & Hy,.

2. Ay samples q(n) (possibly correlated) inputs x;, i € [g(n)].

3. The challenger tosses a coin b. If b = 0, then let y; = hi(z;), i € [q(n)]; if
b=1, then let y; & {0,137 i € [g(n)].

4. Ay gets hy, yi, i € [qg(n)], outputs V' € {0,1}, and wins if ' = b.

H is called q-CIH if any p.p.t. adversary A = (A1, As) wins with probability less
than 1/2 4 negl(n).

Theorem 10. If g-CIH exists, then there is a function ensemble that is q-CIH
but not correlation intractable. If correlation intractable function ensemble exists,
then there is a function ensemble that is correlation intractable but not q-CIH.

Proof. The constructions that demonstrate the separation of CIH and correlation
intractability are very similar to the ones in ([8], Sect.4.4) where they are used
to separate UCE from other notions including collision resistance.

Consider the following constructions:

Construction 11. Let H = {hy, : {0,1}! — {0,1}™™M}, ey be ¢-CIH. We
construct H' by adding a uniformly random string u € {0,1}'(") as the prefiz of
the key, and define hj, = h;Hk as:

r () = if © = w, return 0™ ;
ullkR7 7] else, return hg(z) .

5 Correlation robustness is defined for keyless hash functions, unlike the other notions
in this article.

6 [41] discussed both indistinguishability-style and correlation intractability-style def-
initions, when the adversary is only given partial information of the key (e.g. with
an a priori bound on the length).
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Lemma 4. H' is q-CIH but not correlation intractable.

Proof. To break correlation intractability, the adversary outputs w which is a
preimage of 0™("),

To show H' is ¢-CIH, assume by contradiction that there is an adversary
A" = (A}, A}) that wins the ¢-CIH game with probability 1/2 + n(n) where 7 is
non-negligible. We use the exact same adversary to break the ¢-CIH of H: note
that with probability (1 —27!(")4(") A" won’t sample an input that equals to u,
beyond which the view of A} will be exactly the same for H and H’. Therefore,
A’ wins the ¢-CTH game for H with probability no less than

(1 —271)a™ - (1/2 49(n)) = 1/2 +n(n) — q(n) - 27"V
where 7(n) — g(n) - 274" is non-negligible, thus forming a contradiction.

Construction 12. Let H = {h : {0,1}}™ — {0,1}"W-1k = g(s),s €
{0,137}, cn be a correlation intractable function ensemble, we construct H'
by padding an 1-bit at the end of the output:

1 (2) = hi(z)]|1
Lemma 5. H' is correlation intractable but not q-CIH.

Proof. To break ¢-CIH, the adversary outputs 0 if all the y;, i € [¢(n)] end with
1; otherwise, the adversary outputs 1.

To show H’ is correlation intractable, assume by contradiction that there is an
attacker A’ a sparse relation R’ : {0,1}/(")*+™(") _ {0 1}, and a non-negligible
function 7(-) such that

Prle  A'(K) : R (2, Wy () = 1] > ()

Then we build an adversary A and a sparse relation R : {0, 1}l(")+m(”)*1

{0, 1} against H: the relation R is defined as

—

R={(z,y) | R'(z,9|l1) =1, = € {0,1}'™, y € {0,1}" "}

The density of R is at most twice as much as the density of R/, so it is sparse.
Given the key k, A constructs h}, by padding a bit ‘1’ at the end of the output
of hy, then sends h}, to A" and outputs the answer of A’. The probability that
A breaks R is exactly the probability that A’ breaks R’, which contradicts the
assumption that H is correlation intractable.

Note that this transformation works regardless of the efficiency of checking
the relation.

The proof completes by combining Constructions11 and 12 and Lemmas4
and 5.
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