
Automatic Generation of
Propagation Complete SAT Encodings

Martin Brain1, Liana Hadarean1, Daniel Kroening1, and Ruben Martins2

1 Department of Computer Science, University of Oxford, UK
first.last@cs.ox.ac.uk

2 University of Texas at Austin, USA
rmartins@cs.utexas.edu

Abstract. Almost all applications of SAT solvers generate Boolean formulae
from higher level expression graphs by encoding the semantics of each operation
or relation into propositional logic. All non-trivial relations have many different
possible encodings and the encoding used can have a major effect on the perfor-
mance of the system. This paper gives an abstract satisfaction based formalisa-
tion of one aspect of encoding quality, the propagation strength, and shows that
propagation complete SAT encodings can be modelled by our formalism and au-
tomatically computed for key operations. This allows a more rigorous approach
to designing encodings as well as improved performance.

1 Introduction

Almost all industrial applications of SAT solvers translate from a higher level language
into propositional logic. Many of these translations are modular in the sense that each
sub-expression is encoded into a set of clauses whose structure is independent of how
the expression is used. For example, an SMT solver can use the same template to gen-
erate clauses for every occurrence of a 64-bit multiplication operation.

For most non-trivial expressions, there are many different encodings available. For
example, there are several ways to encode cardinality constraints [4,37,1]. These may
use different clauses and possibly introduce auxiliary variables to simplify and compact
the encodings. The choice of encoding can have a significant impact on the performance
of the solver [35]. This difference can be large enough that identifying a bad encod-
ing from the CNF it generates and then replacing it with a better one within the SAT
solver can give a net improvement in solver performance [34]. Despite the importance
of choosing a good encoding there remain open questions about why some encodings
perform better than others. A common rule of thumb is that smaller encodings (pri-
marily in terms of number clauses but also in the number of variables) are preferable.
For some kinds of encoding, for example cardinality constraints, arc consistency [24]
is regarded to be a desirable property. Another desirable property is being propagation
complete [11]. Encodings with this property are considered extremely important since
constraint solvers can benefit from the increase in inference power. However, its use is
not yet wide spread in encoding design within the SMT community.

These issues are particularly relevant in encodings of bit-vector and floating-point
operations. Often the only way to tell if an encoding might be better than another is to



implement it and then compare system level performance on a ‘representative’ set of
benchmarks. Furthermore, the encodings commonly used are frequently literal transla-
tions of circuits designs used to implement these operations in hardware. These designs
were created to minimise signal propagation delay, to reduce area or for power and
layout concerns. It is not clear why a multiplier hardware design with low cycle count
should give a good encoding from bit-vector logic to CNF.

This paper advances both the theory and practice of the creation of encodings
through the following contributions:

– Section 3 uses and extends the framework of abstract satisfiability [19] to formalise
one aspect of encoding quality: propagating strength. We show that propagation
complete encodings [11] are modelled by our framework and can serve as a basis
for comparing encodings.

– An algorithm is given in Section 4 which can be used to determine if an encoding is
propagation complete, strengthen it if it is not or generate a propagation complete
encoding from scratch with and without auxiliary variables.

– In Section 5 we show that using our propagation complete encodings improves the
performance of the CVC4 SMT solver on a wide range of bit-vector benchmarks.

2 Abstract Satisfaction

The abstract satisfaction framework [19] uses the language of abstract interpretation
to characterise and understand the key components in a SAT solver [17]. One advan-
tage of this viewpoint is that it is largely independent of the concrete domain that is
being searched (sets of assignments) or the abstract domain used to represent infor-
mation about the search (partial assignments). This allows the CDCL algorithm to be
generalised [18] and applied to a range of other domains [27,20,12]. Another important
feature of the abstract satisfaction framework is that it allows the representation of a
problem and the effects of reasoning to be cleanly formalised. As we show later, this al-
lows us to characterise propagation algorithms, such as unit propagation, as a map from
representation to effect. In this section we recall some background results required to
formalise this idea.

The foundation of abstract interpretation is using an abstract domain to perform ap-
proximate reasoning about a concrete domain. This requires a relation between the two
domains; with Galois connections being one of the simplest and most popular choices.

Definition 1. Let (C,⊆) and (A,v) be sets with partial orders. The pair (α : C →
A, γ : A→ C) form a Galois connection if:

∀c ∈ C, a ∈ A � α(c) v a⇔ c ⊆ γ(a)

C is referred to as the concrete domain and A is the abstract domain. It is sometimes
useful to use an equivalent definition of Galois connection: α and γ are monotone and

∀c ∈ C � c ⊆ γ(α(c)) ∀a ∈ A � α(γ(a)) v a

If, additionally, γ ◦ α = id, then the pair is referred to as a Galois insertion and each
element of the concrete domain has one or more representations in the abstract domain.



Given the domain that we want to reason about and the abstraction that will be used
to perform the reasoning, the next step is to characterise the reasoning as transformers.

Definition 2. A concrete transformer is a monotonic function f : C → C. Many of the
transformers of interest are extensive, reductive or idempotent, respectively defined as:

∀c ∈ C � c ⊆ f(c) ∀c ∈ C � f(c) ⊆ c f ◦ f = f

A function that is extensive, monotonic and idempotent is referred to as an upper closure
while a reductive, monotonic, idempotent function is referred to as a lower closure.

Finally, we will need a means of approximating the transformer on the abstract do-
main using an abstract transformer. This gives a key result: the space of abstract trans-
formers (for a given concrete transformer) forms a lattice with a unique best abstract
transformer.

Definition 3. Given a transformer f on C, fo : A → A is an (over-approximate)
abstract transformer if:

∀a ∈ A � α(f(γ(a))) ⊆ fo(a)

Proposition 1. Given a reductive transformer f on a lattice (C,⊆), the set of abstract
transformers on lattice (A,v) form a lattice with the bottom element, referred to as the
best abstract transformer, is equal to:

α ◦ f ◦ γ

3 Characterising Propagating Strength

While the framework we introduce in this section generalizes to other domains, we
will focus on CNF encodings targeting CDCL-style SAT solvers [9]. We only consider
unit propagation, but other propagation algorithms, such as generalised unit propaga-
tion [33], can be treated in the same way.

A number of attributes can be used for evaluating encodings. Some of these are al-
gorithmic such as how much information it can propagate, how it affects the quality of
learnt clauses, how it interacts with the branching heuristic or what effect it has on pre-
processing. Others are more implementation-oriented: how many variables it uses, how
many clauses it contains and how many are binary, ternary, how quickly it propagates,
etc. In this work we will be characterising one of the major algorithmic properties: the
amount of information that can be propagated.

Informally, this can be thought of as the proportion of facts that are true (with re-
spect to the current partial assignment and encoding) that can be proven with unit prop-
agation. If E is an encoding, l is a literal and p is a partial assignment expressed as a
conjunct of all of the assigned literals, then it is the degree to which:

p ∧ E |= l implies p ∧ E `up l,

where |= represents logical entailment and `up stands for unit propagation.
We formalise this intuition using the viewpoint of abstract satisfaction. Figure 1

gives a visual summary of the formalisation; the key steps are:
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Fig. 1: A graphical presentation of the results in Section 3
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Fig. 2: A nest of adders

1. Present syntax as an abstraction of semantics and define the space of encodings of
a set of assignments as a substructure of the syntax lattice (Subsection 3.1).

2. Show that partial assignments, the information about possible models that is ma-
nipulated during the search, is also an abstraction of the semantics (Subsection 3.2).

3. Express the effects of reasoning as abstract transformers and characterise propaga-
tion algorithms such as unit propagation as maps from representations of a problem
to the effects of reasoning (Subsection 3.3).

3.1 Syntax and Semantics

We first fix a set of variable names Σ. This will include the ‘input’ and ‘output’ bits of
the encoding, plus any auxiliaries. Let Σ+ be the set of literals constructed from these
variables (i.e. Σ+ = {v|v ∈ Σ} ∪ {¬v|v ∈ Σ}). For simplicity we will assume double
negation is always simplified ¬¬v = v.

A clause is a disjunction of one or more literals. For convenience we will identify
clauses with the set of literals they contain. A clause is a tautology if it contains a



literal and its negation. Let CΣ+ be the set of non-tautological clauses which can be
constructed from Σ+. We identify sets of clauses with their conjunction. Let 2CΣ+

denote the powerset of CΣ+ and note that it forms a complete lattice ordered by ⊇. For
convenience we will pick ∅ to be the top element and CΣ+ to be the bottom.

Example 1. We will use a full adder as a running example. Figure 2 shows one pos-
sible circuit that can be used to implement a full adder as well as the truth table for
the input which gives the 8 possible satisfying assignments of the formula. In this
case Σ = {a, b, cin, s, cout} so Σ+ = {a, b, cin, s, cout,¬a,¬b,¬cin,¬s,¬cout}.
Thus {a}, {b,¬a}, {s,¬s} are clauses and only the last is a tautology. Also CΣ+ =
{∅, {a}, {b}, {¬a}, {a, b}, {a,¬b}, . . . }.

An assignment is a map from Σ to {>,⊥} and the set of all assignments is denoted
by AΣ . Similarly 2AΣ forms a powerset lattice. Following usual convention (and the
opposite of the syntax lattice), the top element will be AΣ and ∅ the bottom. With a
slight abuse of notation, we use assignments to give literals values: x(¬a) = ¬x(a).

The models relation, denoted using an infix |=, is a relationship between AΣ and
CΣ+ , defined as follows:

x |= c⇔ ∃l ∈ c � x(l) = >

An assignment is a model of a set of clauses if the models relation holds for all of the
clauses in the set.

Example 2. An assignment for the full adder example would be:
x = {(a,>), (b,>), (cin,⊥), (cout,>), (s,⊥)}.
From this we can see that x |= {a} and x |= {a,¬cin, cout} but x 6|= {¬b,¬a}. So x is
a model of {{a}, {a,¬cin, cout}}.

This relation gives maps AofC : 2CΣ+ → 2AΣ and CofA : 2AΣ → 2CΣ+ :

AofC(C) = {x ∈ AΣ |∀c ∈ C � x |= c}
CofA(A) = {c ∈ CΣ+ |∀x ∈ A � x |= c}

AofC(C) is the set of assignments which are models of C, while CofA(A) is all of the
clauses that are consistent with all of the assignments in A. Both maps are monotonic,
AofC(CofA(A)) = A and CofA(AofC(C)) ⊇ C so they form a Galois insertion be-
tween 2AΣ and 2CΣ+ . A set of clauses is a representation, or abstraction, of its set of
models.

Example 3. Given C = {{a,¬b}, {¬a}}, the set of all models of C is AofC(C) = {y :
Σ → {>,⊥}|y(a) = ⊥∧ y(b) = ⊥}. Conversely, CofA({x}) = {{a}, {a, b}, {a,¬b},
. . . } is the set containing all of the clauses consistent with the assignment x from Exam-
ple 2. When multiple assignments are given this is all of the clauses that are consistent
with all of the assignments.

In the SAT field, similar Galois connections to the one presented in this section have
been studied in [32]. Although we have presented this result with Boolean valuations
(the “concrete” domain) and CNF (the “abstract” domain), the construction is much



{¬a,¬b,¬cin,¬cout, s} {¬a,¬b,¬cin, cout,¬s} {¬a,¬b,¬cin, cout, s}
{¬a,¬b, cin,¬cout,¬s} {¬a,¬b, cin, cout,¬s} {¬a,¬b, cin, cout, s}
{¬a, b,¬cin,¬cout,¬s} {¬a, b,¬cin, cout,¬s} {¬a, b,¬cin, cout, s}
{¬a, b, cin,¬cout,¬s} {¬a, b, cin,¬cout, s} {¬a, b, cin, cout, s}
{a,¬b,¬cin,¬cout,¬s} {a,¬b,¬cin, cout,¬s} {a,¬b,¬cin, cout, s}
{a,¬b, cin,¬cout,¬s} {a,¬b, cin,¬cout, s} {a,¬b, cin, cout, s}
{a, b,¬cin,¬cout,¬s} {a, b,¬cin,¬cout, s} {a, b,¬cin, cout, s}
{a, b, cin,¬cout,¬s} {a, b, cin,¬cout, s} {a, b, cin, cout,¬s}

(a) Naı̈ve truth table encoding

{¬a,¬b, cin,¬s} {¬a, b,¬cin,¬s} {a,¬b,¬cin,¬s} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬a, b, cin, s} {a, b,¬cin, s} {a,¬b, cin, s}
{¬a,¬b, cout} {¬a,¬cin, cout} {¬b,¬cin, cout}
{a, b,¬cout} {a, cin,¬cout} {b, cin,¬cout}

(b) Eén and Sörensson’s basic encoding

{cin,¬s,¬cout} {a,¬s,¬cout} {b,¬s,¬cout} {a, b, cin,¬s}
{¬a,¬b,¬cin, s} {¬cin, s, cout} {¬a, s, cout} {¬b, s, cout}
{¬a,¬b, cout} {¬a,¬cin, cout} {¬b,¬cin, cout}
{a, b,¬cout} {a, cin,¬cout} {b, cin,¬cout}

(c) A propagation complete encoding

Fig. 3: A nest of adder encodings

more general and can be applied to SMT, CSP, ASP, etc. For more discussion of the
Galois connection between syntax and semantics, see [21].

Given a set of assignments M ⊂ AΣ , an encoding (of M ) is any set of clauses
C ⊂ CΣ+ such that AofC(C) = M . We shall denote the set of encodings of M as
EM = {C ⊂ CΣ+ |AofC(C) = M}. If C and D are both encodings (of the same
set of models), then so is C ∪ D; this is the basis for redundant encodings in CSP.
It also implies that the encodings of a set of models form a meet semi-lattice with
a minimum element, CofA(M), the most verbose encoding. There can be multiple,
incomparable, least verbose encodings. For example if M = ∅, then {a,¬a} is a least
verbose encoding (as there are no proper subsets which are encodings), but so is {b,¬b}.
This notion of encoding has been studied is the SAT field (e.g. [23]) and has recently
been formalised as a formula that has the same satisfying assignments as the set of
assignments of a given specification [26].

Example 4. Continuing our example of a full adder, let M be the set of eight models
described by the truth table in Figure 2a. There are many possible encodings, some
of which are given in Figure 3. All of these are subsets of CofA(M), all the clauses
consistent with M , in effect, the ‘theory’ of the full adder. However, not every subset of
CofA(M) is an encoding, as they are required to have the same models as M . Possible



encodings include the naive encoding (Figure 3a) in which all full assignments that are
not models are removed, the basic encoding given by [23] (Figure 3b) and a propagation
complete encoding (Figure 3c). Notice that the first two encodings are not propagation
complete.

To formally define propagation strength, we will need a notion of what kind of
information we are propagating and to relate the encoding to the action of propagation.

3.2 Representing Information During Search

Some propositional logic tools, such as BDDs, represent sets of models directly. For
solving SAT problems this is not really viable — as soon as you have a model that
you could represent, you have solved the problem. Thus SAT algorithms need a way of
representing partial information about models. For example if an encoding contains the
clause {¬a} then the SAT solver needs a way of recording “there are no models that
assign a to >”. The most common approach is to use partial assignments.

Following [17] we characterise a partial assignment over Σ (PΣ denotes the set of
all of them) as an abstraction of 2AΣ . Partial assignments are maps fromΣ to {>, ?,⊥},
where ? denotes an unknown or unassigned variable. They can be ordered by:

p v q⇔ ∀v ∈ Σ.q(v) 6=?⇒ p(v) = q(v)

Allowing an additional ‘contradiction’ partial assignment,⊥P , ordered below all other
partial assignments, makes PΣ a complete lattice, where >P = λv.? is the partial
assignment that does not assign any variables. The discussion below generalises to other
abstractions; we use partial assignments as they are a popular and simple choice.

Example 5. In our running example, p and q are partial assignments:
p = {(a, ?), (b,⊥), (cin,⊥), (s,>), (cout,>)}
q = {(a, ?), (b, ?), (cin, ?), (s,>), (cout,>)}

with p v q because where q assigns a variable to > or ⊥, p agrees.

To use PΣ as an abstraction of 2AΣ , we need to define a Galois connection between
them. Let α : 2AΣ → PΣ denote the map from models to the most complete partial
assignment that is consistent with all of them and γ : PΣ → 2AΣ denote the map from
a partial assignment to the set of models that is consistent with it:

α(A) =
⊔
x∈A

x γ(p) = {x ∈ AΣ |∀v ∈ Σ � p(v) 6=?⇒ x(v) = p(v)}

Example 6. Let x1, x2, x3 and x4 be (full) assignments:
x1 = {(a,>), (b,>), (cin,⊥), (s,⊥), (cout,>)}
x2 = {(a,>), (b,⊥), (cin,>), (s,⊥), (cout,>)}
x3 = {(a,>), (b,>), (cin,>), (s,⊥), (cout,>)}
x4 = {(a,>), (b,⊥), (cin,⊥), (s,⊥), (cout,>)}

then:
α({x1, x2}) = {(a,>), (b, ?), (cin, ?), (s,⊥), (cout,>)}

γ(α({x1, x2})) = {x1, x2, x3, x4}



3.3 Effects of Reasoning

Having defined partial assignments as the ‘units’ of information that propagation uses,
the next step is to formalize what kind of reasoning we are performing. In a SAT solver
the role of reasoning is to add to a partial assignment p (i.e., reduce the set of as-
signments that is being considered) that is consistent with all of the models in γ(p).
Formally, this is expressed in two steps: a models transformer on the concrete domain,
2AΣ , which captures the kind of reasoning that we are approximating and abstract trans-
formers on PΣ , which express the actual changes to the partial assignments.

In slight variation from [18] we define the models transformer, modM : 2AΣ →
2AΣ , as parameterised by a set of assignments rather than a formula:

modM (A) =M ∩A

This is a downward closure function on 2AΣ and expresses the ideal reasoning, or,
conversely, the limit of what is sound.

Example 7. In the full adder example, let M be the set of assignments described in the
truth table in Figure 2a. If A = {x1, x2, x3, x4}, then modM (A) = {x1, x2} as these are
the only two assignments in A that are also models of the full adder.

As 2AΣ is not directly representable for problems of significant size, we use PΣ .
Likewise, we cannot directly implement modM so instead we must use over-approximate
transformers on PΣ . Let TmodM denote the set of abstract transformers that over-
approximate modM and recall from Proposition 1 that they can be ordered point-wise
to form a lattice with id as the top element and α ◦modM ◦ γ as the bottom. The effect
of a sound propagator or other form of reasoning should be an abstract transformer, as
they soundly add to partial assignment.

The final link is to connect the encoding used to the effect of reasoning. To do this
we consider the unit propagation algorithm as a map from UP : EM → (PΣ → PΣ)
that uses a set of clauses to add assignments to a partial assignment.

Definition 4. Let up : CΣ+ → (PΣ → PΣ) map clauses to functions on partial
assignments.

assign(l) = λk.


> k = l

⊥ k = ¬l
? otherwise

up(c) = λp.

{
p u assign(l) ∃l ∈ c � p(l) =? ∧ ∀k ∈ c � k 6= l⇒ p(k) = ⊥
p otherwise

Define UP as the (greatest) fix-point of applying up(c) for each clause in the encoding:

UP(C)(p) = GFP

(
λq.p u (

l

c∈C
up(c)(q))

)



Example 8. Given the set C clauses in Figure 3b we have:

UP(C)({(a,>), (b,>), (cin,>), (s, ?), (cout, ?)}) =
{(a,>), (b,>), (cin,>), (s,>), (cout,>)})

as the clause {¬a,¬b, cout} assigns cout to > and {¬a,¬b,¬cin, s} assigns s to >.

Formalised in this manner, UP has a number of useful order-theoretic properties:

Proposition 2. Given C,D ⊂ CΣ+ , UP(Ci) is a closure function as:

UP(C) 6 id C 6 D =⇒ UP(C) 6 UP(D) UP(C) ◦ UP(C) = UP(C)

Note that UP is neither injective (up({{a}, {b}}) = up({{a}, {b}, {¬a, b}})) nor sur-
jective. Furthermore, UP does not preserve meets (well defined on encodings) or joins
(partially defined on encodings, fully defined on supersets of a given encoding). A prop-
agation algorithm that preserves joins would give a Galois connection between super-
sets of an encoding and abstract transformers, thus giving a unique, minimal encoding
required to give a certain amount of inference.

The final step is to show that the closure functions given by UP(C) are abstract
transformers and that they include the best abstract transformer.

Theorem 1. Let M ∈ 2AΣ be a set of assignments then:

{UP(C)|C ∈ EM} ⊆ TmodM UP(CofA(M)) = α ◦modM ◦ γ

Thus an encoding C ∈ EM is a propagation complete encoding (PCE) [11] when:

UP(C) = α ◦modM ◦ γ

Propagation complete encodings (PCEs) are not unique and there may be many, in-
comparable PCEs. One goal of encoding design can be the creation of PCEs with other
desirable properties, such as using a minimal number of clauses or auxiliary variables.
As with clauses, assignments and partial assignments, the discussion above is more
general than unit propagation alone. Using our abstract satisfaction framework we can
model PCEs. In the next section we present an algorithm for automatically generating
PCEs.

4 Generating Propagation Complete Encodings

The previous section defined the notion of propagation complete encodings (PCEs)
within our framework. Next, we present an algorithm (Algorithm 1) that can be used
to determine if an encoding is propagation complete, strengthen it if not, and generate
a PCE that is equisatisfiable to a reference encoding. Algorithm 1 takes as input a set
of variables Σ that will serve as the encoding vocabulary, an initial encoding E0 and a
reference encoding ERef (over a vocabulary including Σ), such that AofC(ERef) = M .
Note that, if E0 = ∅, then the algorithm will build a PCE over Σ from scratch that is
equisatisfiable to ERef . In practice E0 = ∅, and ERef can be any encoding of the circuit.



Algorithm 1: Generating a propagation complete encoding of a CNF formula
Input: 〈Σ,E0,ERef〉

1 E← E0

2 PQ.push(λv.?)
3 while not PQ.empty() do

// ∀q1, q2 ∈ PQ � UP(E)(q1) 6= UP(E)(q2) and ⊥P 6∈ PQ
4 pa← PQ.pop()
5 foreach v ∈ {x|x ∈ Σ and UP(E)(pa)(v) =?} do
6 foreach l ∈ {v,¬v} do
7 pa′← pa u assign(l)
8 if SATSolver(ERef , pa′) = sat then
9 PQ.push(pa′)

10 else
11 E← E ∪{¬MUS(pa′)}
12 PQ.compact()

// UP(E)(pa) = (α ◦modM ◦ γ)(pa)
13 return E

The algorithm traverses the fix-points of the best abstract transformer α ◦modM ◦
γ, i.e. partial assignments where no new facts can be deduced. To achieve this, the
algorithm uses a priority queue (PQ) of partial assignments sorted by partial assignment
size. For each element of PQ, we examine the variables v that unit propagation cannot
infer from E and pa (line 5). We then check if the reference encoding ERef , along with
the current partial assignment pa logically entail either v or ¬v. This check is done
via a call to a SAT oracle at line 8 (in our implementation this is a call to a CDCL
SAT solver). If the query returns sat , the variable is not entailed and the extended
partial assignment is added to the queue. Otherwise, l was a missed propagation and the
encoding is strengthened by adding a clause that blocks the partial assignment pa.3

If two partial assignments q1 and q2 unit propagate the same literals (UP(E)(q1) =
UP(E)(q2)) we only need to explore extensions of one of them. Therefore, the push
operation on line 9 only adds pa′ to PQ if ∀q ∈ PQ � UP(E)(q) 6= UP(E)(pa). In
other words we cache assignments that become equal when extended by unit propaga-
tion. Because we are potentially strengthening the encoding E with each iteration of the
for-loop the amount of information unit propagation can infer from E increases. The
PQ.compact call on line 12 iterates over the queue elements and removes queue ele-
ments that UP-extend to the same partial assignment. This ensures the invariant at the
beginning of the while-loop. Furthermore, at the end of the while loop the current en-
coding E is strong enough to unit propagate all literals entailed from pa. The continuous
strengthening of E also reduces the number of unassigned variables explored at line 5.

The algorithm is not always guaranteed to generate subset-minimal encodings. The
order in which the partial assignments is considered may lead to the learning of re-
dundant clauses. A clause c is redundant w.r.t. a PCE EPC if for all literals l ∈ c unit
propagation can infer l from EPC\c assuming the negation of the other literals¬(c\{l}).

3 As an optimization we add the negation of the minimal unsatisfiable core of ¬pa′: MUS(pa′).



Algorithm 2: Greedy algorithm for introducing auxiliary variables
1 E← genPCE(E0, Eref , Σ)
2 while Aux 6= ∅ do
3 best← undef
4 foreach aux ∈ Aux do
5 E′← genPCE(E0, Eref ∧ Def(aux), Σ ∪ {aux})
6 if |E′| < |E| then
7 E← E′

8 best← aux

9 if best = undef then return E
10 Σ← Σ ∪ {best}
11 Eref ← Eref ∧Def(best)
12 Aux← Aux \{best}
13 return E

For example, in the presence of a chain of implications, v1 ⇒ v2 ⇒ . . . ⇒ vk, the al-
gorithm may learn the redundant clause c = {¬v1, vk}. Note that c is redundant since
v1 ∧ (EPC \ c) `up vk and ¬vk ∧ (EPC \ c) `up ¬v1. For this reason, after running
Algorithm 1 we use the minimisation procedure described in [11] to remove redundant
clauses while maintaining propagation completeness.

Auxiliary variables. The algorithm we described so far only works on a fixed vocab-
ulary Σ consisting of the input and output variables of the encoding. For certain op-
erators, there no polynomially-sized CNF encodings if we restrict ourselves to the in-
put/output variables only. For this reason, we extended our algorithm to further reduce
the size of the encoding while maintaining propagation completeness by heuristically
adding auxiliary variables. Given a set of auxiliary variables Aux, we extend the ref-
erence encoding ERef by adding the definitional clauses Def(aux) for each auxiliary
variable aux ∈ Aux: Def(aux) ∧ ERef . For example, to introduce an auxiliary variable
a ≡ x∧ y for inputs x, y, we add the clauses corresponding to the formula a⇔ (x∧ y)
to ERef and run Algorithm 1 on Σ ∪ {a}.

We implemented a greedy algorithm that iteratively repeats this process as shown
in Algorithm 2. We denote by genPCE the procedure of generating a propagation com-
plete encoding from a reference encoding given in Algorithm 1. We denote by |E| the
size of an encoding as the number of clauses. The algorithm takes as input a reference
encoding ERef , a fixed alphabet Σ as well as a set of auxiliary variables Aux. It ini-
tially computes the PCE over the input/output variables Σ. For each auxiliary variable
aux in the current set of auxiliary variables, it computes the PCE over the alphabet
Σ ∪ {aux} from reference encoding ERef ∧Def(aux), where Def(aux) is the set of def-
initional clauses for aux. It then chooses the auxiliary variable best that minimises the
encoding the most, and adds it to the reference encoding. The process is repeated on
the remaining auxiliary variables Aux \ {aux} until no minimisation is achieved. Note
that this is a greedy algorithm, and does not guarantee finding a minimal size encoding
w.r.t. the given auxiliary variables. For the set of potential auxiliary variables Aux, we
generate Boolean combinations over the input/output variables up to a limited depth.
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Fig. 4: Composition of encoding primitives to build a n-bit less than comparator.

As a heuristic, we also add to the set Aux the auxiliary variables used by the reference
encoding.

Generating propagation complete encodings. Algorithm 1 solves an inherently hard
problem and may call a SAT solver an exponential number of times. It is intended to be
used as a tool to support encoding design rather than generating complete encodings.

To explore the feasibility of generating PCEs, we analysed the propagation com-
pleteness of encodings used in the CVC4 SMT solver [5]. CVC4 uses small circuit
primitives to build more complex encodings of word-level bit-vector operators. Fig-
ure 4 shows an example of how small circuits for unsigned less than (a < b) primitives
can be composed to build a more complex encoding to compare n-bit bit-vectors. Each
unsigned less than comparator (ULT) has three input bits (a, b, r) and one output bit
(o). There are different ways that this primitive can be encoded into CNF. A possible
PCE is: {{o,¬b, a}, {o,¬b,¬r}, {a,¬r, o}, {¬o, b,¬a}, {¬o, r,¬a}, {¬o, r, b}}. If r
has value ⊥, then o will be > iff a < b. Otherwise, if r has value >, then o will be
> iff a ≤ b. This structure allows the ULTs to be chained together to form an n-bit
PCE for the ULT comparator. A similar construction can be done for other encoding
primitives and is common in circuit design. For example, full-adders can be chained to
form a ripple-carry adder. Note that, if the encoding primitives are not PC, then their
composition will not be PC. However, the converse does not necessarily hold.

Table 1 shows the size of the encodings generated by Algorithm 1 and by intro-
ducing auxiliary variables compared to the size of the reference encoding ERef , starting
with an empty initial encoding E0. As encoding primitives (prim), we have considered
the if-then-else operator (ite-gadget), an unsigned less than comparator (ult-gadget),
a signed less than comparator (slt-gadget), the full-adder (full-add), adder with base 4
(full-add-base4), bit-count circuits (bc3to2, bc7to3), 2x2 multiplication circuit (mult2),
and multiplication by a constant (mult-const3, mult-const5, mult-const7). These en-
coding primitives are then composed (comp) to build n-bit bit-vector operators.

These experiments were run on Intel Xeon X5667 processors (3.00 GHz) running
Fedora 20 with a timeout of 3 hours and a memory limit of 32 GB. In case of timeout
of the greedy algorithm, we present the smallest encoding found until the timeout. The
reference encodings used were the default implementations in CVC4. From the encod-
ing primitives presented in Table 1, ite is the only encoding primitive that is propagation
complete in CVC4. This scenario is not restricted to CVC4, and most state-of-the-art
SMT solvers do not build PCEs (see section 5 for further details).

For small primitives our algorithms can easily find PCEs with small size even when
restricting the set of variables to inputs and outputs. For more complex circuits, as
mult-4bit, the PCE can be much larger than the non-PCE. When generating PCEs with



Table 1: Generation of PCEs for small encoding primitives and their composition

Original enc. PCE PCE w/ aux. vars
Benchmark Type #Vars #Cls #Vars #Cls #time (s) #Vars #Cls #time (s)

ite-gadget prim 4 6 4 6 <0.01 4 6 <0.01
ult-gadget prim 5 10 4 6 <0.01 4 6 <0.01
slt-gadget prim 4 6 4 6 <0.01 4 6 <0.01
full-add prim 8 17 5 14 <0.01 5 14 <0.01
full-add-base4 prim 33 74 10 120 0.31 12 86 140.40
bc3to2 prim 20 46 8 76 0.03 10 57 5.32
bc7to3 prim 27 68 10 254 0.49 14 136 769.50
mult2 prim 30 66 8 19 0.02 8 19 0.50
mult-const3 prim 16 33 6 20 <0.01 6 20 0.03
mult-const5 prim 25 50 9 24 0.01 9 24 0.21
mult-const7 prim 38 105 9 32 0.01 9 32 0.62
ult-6bit comp 33 68 13 158 27.73 15 38 timeout
add-3bit comp 18 39 9 96 0.09 11 29 10.05
add-4bit comp 26 58 12 336 3.89 15 43 1,607.50
bc3to2-3bit comp 38 78 12 1,536 11.72 16 69 timeout
mult-4bit comp 36 97 12 670 5.26 12 670 298.95

Σ containing auxiliary variables, we can obtain considerably smaller encodings. For
example, for the addition operator add-4bit the number of clauses decreased from 336
to 43 by only adding 3 auxiliary variables. In this case, the auxiliary variables that are
added by our greedy algorithm correspond to the carry bits from the chained adders.
Note that the PCE for add-4bit formed by chaining the propagation complete full-adder
results in an encoding with 20 variables and 60 clauses, which has a similar size to the
PCE found by our greedy algorithm.

Even though the algorithm can take a considerable amount of time to find small
PCEs with auxiliary variables, our goal is not to apply such algorithm to large formulae
but only to find PCEs of primitives. This process is done once, offline. Afterwards, the
encoding primitives can be chained together to form larger encodings for any bit-width.
We verified with our algorithm that for small bit-widths the composition of PCEs for
adders and comparators is propagation complete, while for the multiplier is not. We
conjecture that the existence of a reasonably-sized propagation complete multiplier is
unlikely, as this would help to efficiently solve hard factorization problems.

5 Experimental Evaluation

To explore the impact of propagation strength on performance, we implemented the
PCE primitives generated in Section 4 in the CVC4 SMT solver [5]. CVC4 is a com-
petitive solver that ranked 2nd in the 2015 SMT-COMP bit-vector division. We instru-
mented the solver’s bit-blasting procedure to use the primitives to build more complex
encodings of word-level bit-vector operators.

We focused on the following bit-vector operators: comparison, addition and multi-
plication. The rest of the bit-vector operations were either already propagation complete
(e.g. bitwise and), or could be expressed in terms of other operations. We implemented
n-bit circuits using the primitives described in Section 4. For addition, we used the prop-
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Fig. 5: The impact of using PC primitives in various kinds of multiplication circuits

agation complete full-adder (cvcAO) and for comparison the ult-gadget and slt-gadget
(cvcLO). For multiplication we implemented variants that use PC primitives: shift-add
multiplication (cvc vs cvcMO), tree reduction (cvcT vs cvcTO) and multiplication by
blocking (cvcB2 vs cvcB2O). We append O to the solver’s name to denote that the
propagation complete sub-circuits are enabled. All implementations of multiplications
that use propagation complete sub-circuits use the PC full-adder for adding the par-
tial products, while blocking multiplication also uses the propagation complete 2 by 2
multiplication sub-circuit mult2.

We used 31066 quantifier-free bit-vector benchmarks from SMT-LIB v2.0 [6]. Ex-
periments in this section were run on the StarExec [38] cluster infrastructure on Intel
Xeon E5-2609 processors (2.40 GHz) running Red Hat Enterprise Linux Workstation
release 6.3 (Santiago) with a timeout of 900 seconds and a memory limit of 200GB.

Figure 5 quantifies the impact of the PC components in the various kinds of mul-
tiplication circuits we implemented. The scatter plots are on the entire 31066 set of



Table 2: Comparison of performance of propagation complete encodings in CVC4

cvc cvcMO cvcAMO cvcALMO
set solved time (s) solved time (s) solved time (s) solved time (s)

VS3 (11) 1 145.3 0 0.0 0 0.0 0 0.0
bmc-bv (135) 135 641.4 135 665.6 135 669.7 134 527.0
brummayerbiere2 (65) 57 2866.9 62 2852.9 62 2870.2 62 2847.9
brummayerbiere3 (79) 40 3570.4 39 3527.6 40 3369.3 44 5546.3
bruttomesso (64) 38 3143.2 38 3145.7 41 4876.7 41 4904.5
calypto (23) 8 5.5 8 6.5 8 7.6 8 6.3
fft (23) 8 981.4 8 1053.9 7 59.1 7 190.7
float (213) 159 14550.6 158 13233.2 158 12004.4 159 12190.9
log-slicing (208) 67 23828.9 66 23426.5 70 27087.5 70 26871.2
mcm (186) 78 8674.2 78 8646.3 80 7387.8 80 8182.2
rubik (7) 6 623.2 6 619.0 6 615.8 7 1371.7
spear (1695) 1690 28046.5 1690 28603.8 1690 22731.4 1690 23357.9

2287 87077.4 2288 85780.9 2297 81679.5 2302 85996.6

benchmarks, and are on a log-scale. Each point is a benchmark, and the x and y-axis
represent the time (seconds) taken by CVC4 to solve the benchmark with the given
configuration. Using the propagation complete primitives (cvcMO, cvcTO and cvcB2O)
consistently improves performance over their default implementations. Although the
performance improvement is not dramatic, we believe it is consistent enough to show
that propagation strength is an important characteristic of encodings. Since cvcMO had
the best performance between multiplication circuits that use propagation complete sub-
circuits, we considered this encoding for further evaluation.

Table 2 gives the number of problems solved and the time taken to solve them
for CVC4 without propagation complete primitives (cvc) and with propagation com-
plete primitives, namely: shift-add multiplier (cvcMO); shift-add multiplier and full-
adder (cvcAMO); and shift-add multiplier, full-adder and comparison (cvcALMO). Due
to space constraints we removed rows where the number of problems solved by all con-
figurations was the same (see Appendix for full table). Table 2 shows that adding each
PC primitives increases performance, with the configuration using PC primitives for
addition, comparison and multiplication (cvcALMO) solving the most.

We believe this improvement is not limited to CVC4 but will translate to other
solvers as well. We examined the source code of other competitive SMT solvers, such
as boolector [13], stp2 [28], yices2 [22] and z3 [15], and their implementation of addi-
tion is not propagation complete. Therefore, although the notion of propagation com-
plete encodings is not new, it is not widely applied to solver encoding design. Prelim-
inary results from implementing the PC full-adder in the CBMC model-checker [14]
also showed an improved performance. The improvement is also not limited to con-
straint solvers that use CDCL SAT solvers but is also expected for look-ahead SAT
solvers [29]. These solvers are geared towards propagation and are even more likely to
take advantage of the increased inference power than CDCL SAT solvers.

We have shown that the propagation complete encoding primitives our algorithm
generated can be used to build encodings of bit-vector operators in an SMT solver. The
results are promising considering we are only strengthening a small part of the over-
all problem. Furthermore the propagation complete encodings have been automatically



generated from scratch, while the existing encodings had been optimized by hand. This
highlights the importance of propagation complete encoding in encoding design and
that our proposed framework can help practitioners improve encodings.

6 Related Work

The notion of propagation strength has been explored under various names such as unit
refutation complete [16] and propagation complete encodings (PCEs) [11] in AI knowl-
edge compilation. A formula is unit refutation complete [16] iff any of its implicates
can be refuted by unit propagation. Here we refer to refutation as being the process of
proving the implication E |= l by proving E ∧ ¬l |= ⊥. Bordeaux et al. [10] consider
variations of unit refutation complete encodings, such as its disjunctive closure and
a superset of unit refutation complete encodings where variables can be existentially
quantified and unit refutation concerns only implications from free variables. Gwynne
and Kullmann [25] introduce a general hierarchy of CNF problems based on “propaga-
tion hardness” and generalise the notion of unit refutation complete encodings.

PCEs are a proper subset of refutation complete encodings [25] and have been in-
troduced by Bordeaux and Marques-Silva [11] for finding encodings where only using
unit propagation suffices to deduce all the literals that are logically valid. The authors re-
duce the problem of generating PCEs to iteratively solving QBF formulas. We consider
PCEs using an abstract satisfaction framework and rely on a SAT solver’s efficient UP
routine to check whether a clause is empowering. Since QBF is a PSPACE-complete
problem, it is unclear that the approach from [11] would scale better than ours. Be-
cause [11] has no implementation that we are aware of, we cannot compare against
them. Their framework can also support adding auxiliary variables to PCEs but this ap-
proach was not explored by the authors. Our approach supports generating encodings
over a limited alphabet of auxiliary variables and includes an implementation and ex-
tensive experimental results that show performance gains. The work in [2] shows that
checking whether a clause is empowering (it is entailed by the given CNF formula and
it increases the propagation power of the formula) is co-NP complete. It also shows the
existence of operations that have only exponential PCEs. This supports our targeting of
small encoding primitives as opposed to n-bit circuits which is likely intractable.

Propagation completeness has also been considered in CSP (e.g. [3,8]) because of
its connection to Domain Consistency, also known as Generalised Arc Consistency
(GAC): when a constraint is encoded into SAT over some Finite-Domain variables,
if the encoding of the constraint is propagation complete, then unit propagation on the
SAT encoding effectively finds the same implications as Domain Consistency. In CSP
it is common to consider GAC over procedural propagators [3] of specific constraints.
Propagators can also be decomposed into primitive constraints that can be translated
to SAT [8]. GAC has been adopted in SAT [24] and many encodings have this prop-
erty [4,37,1]. However, GAC is usually only enforced on input/output variables and not
on auxiliary variables. PCEs consider a stronger notion of propagation strength since
GAC is enforced on both input/output variables as well as on auxiliary variables.

Trevor Hansen’s PhD [28] (independently) touches on many of the techniques we
have used. He considers both ‘bit-blasting’ encodings and forward propagators (algo-



rithms that implement abstract transformers directly), but treats these as independent
approaches, omitting the link we show in Section 3. Although he tests the propagators
for propagation completeness and even generates clauses to improve the propagators,
he does not use this approach to generate complete encodings, nor does he perform
minimisation. The SMT solver Beaver [30] also computes pre-synthesised templates
for bit-vectors operators which are optimised offline using logic synthesis tools such
as the ABC logic synthesis engine [7]. However, these templates are only computed
for predefined bit-widths and are not PC. Hansen makes use of Reps’ et al. [36] work
on computing best abstract transformers via a lifted version of Stalmarck’s algorithm.
Algorithm 1 similarly uses breadth-first traversal, but the key difference is in how and
when the algorithms are used. In [36] and most applications of their work [31], the result
of the best abstract transformer is computed on-line as part of a search. We compute an
encoding that gives the best abstract transformer off-line as part of solver development.

7 Conclusion

By using the abstract satisfaction framework we can characterise the space of encod-
ings, the effects of reasoning and the link between them. Propagation complete encod-
ings allow an increase of inference power that can be exploited by CDCL SAT solvers.
We have showed that these encodings are captured by our abstract satisfaction formal-
ism which allows us to reason about them and their extensions (Section 3). It is possible
to compute subset-minimal propagation complete encodings and for various key opera-
tions these are tractably computable and often smaller than conventional encodings. For
more complex encodings, we have shown that greedily introducing auxiliary variables
can generate significantly smaller propagation complete encodings (Section 4). Imple-
menting these in the CVC4 SMT solver gives performance improvements across a wide
range of benchmarks (Section 5). It is hoped that this work will contribute to a more
theoretically rigorous approach to encoding design.

Linking encodings to abstract transformers has many possible applications. Abstract
transformers are functions on ordered sets and are therefore partially ordered. This gives
a way of comparing the propagation strength of different encodings or investigating the
effects of pre and in-processing techniques. This is particularly important as for certain
operators there are no polynomially sized PCEs. A quantitative measure of propaga-
tion strength is a useful practical alternative. Proof-theoretic measures can be expressed
as properties of the syntactic representation lattice, for example proof length becomes
path length. Likewise solver run-time is bounded by the length of paths in UP(2CΣ+ ).
Finally, the abstract satisfaction viewpoint provides a means of exploring many inter-
esting questions about composition of encodings and when they preserve propagation
strength.
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32. Kleine Büning, H., Kullmann, O.: Minimal Unsatisfiability and Autarkies. In: Handbook of
Satisfiability, pp. 339–401. IOS Press (2009)

33. Kullmann, O.: Upper and lower bounds on the complexity of generalised resolution and gen-
eralised constraint satisfaction problems. Annals of Mathematics and Artificial Intelligence
40(3-4), 303–352 (2004)

34. Manthey, N., Heule, M., Biere, A.: Automated Reencoding of Boolean Formulas. LNCS,
vol. 7857, pp. 102–117. Springer (2013)

35. Martins, R., Manquinho, V., Lynce, I.: Exploiting Cardinality Encodings in Parallel Max-
imum Satisfiability. In: International Conference on Tools with Artificial Intelligence. pp.
313–320. IEEE Computer Society (2011)

36. Reps, T.W., Sagiv, S., Yorsh, G.: Symbolic Implementation of the Best Transformer. In: In-
ternational Conference on Verification, Model Checking, and Abstract Interpretation. LNCS,
vol. 2937, pp. 252–266. Springer (2004)

37. Sinz, C.: Towards an Optimal CNF Encoding of Boolean Cardinality Constraints. In: In-
ternational Conference on Principles and Practice of Constraint Programming. LNCS, vol.
3709, pp. 827–831. Springer (2005)

38. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a Cross-Community Infrastructure for Logic
Solving. In: International Joint Conference on Automated Reasoning. LNCS, vol. 8562, pp.
367–373. Springer (2014)


	Automatic Generation of Propagation Complete SAT Encodings

