Skip to main content

Orthogonal Layout with Optimal Face Complexity

  • Conference paper
  • First Online:
Book cover SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Abstract

We study a problem motivated by rectilinear schematization of geographic maps. Given a biconnected plane graph G and an integer \(k\ge 0\), does G have a strict-orthogonal drawing with at most k reflex angles per face? For \(k=0\) the problem is equivalent to realizing each face as a rectangle. The problem can be reduced to a max-flow problem in some linear-size nonplanar network, but the best solutions require \(\varOmega (n^{1.5} \log n\log k)\) time. We describe a graph matching approach that can decide strict-orthogonal drawability for arbitrary reflex complexity k in \(O((nk)^{1.5})\) time, which is faster for constant values of k. In contrast, if the embedding is not fixed, we prove that it is NP-complete to decide whether a planar graph admits a strict-orthogonal drawing with reflex face complexity 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bläsius, T., Krug, M., Rutter, I., Wagner, D.: Orthogonal graph drawing with flexibility constraints. Algorithmica 68(4), 859–885 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 184–195. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Chimani, M., Gutwenger, C., Jünger, M., Klau, G., Klein, K., Mutzel, P.: The open graph drawing framework. In: Handbook of Graph Drawing and Visualization, pp. 543–571 (2013)

    Google Scholar 

  4. Cornelsen, S., Karrenbauer, A.: Acclerated bend minimization. J. Graph Algorithms Appl. 16(3), 635–650 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012)

    Article  MATH  Google Scholar 

  6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs, 3rd edn. The MIT Press, Cambridge (2009)

    Google Scholar 

  7. Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, p. 483. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hopcroft, J.E., Karp, R.M.: An \(n^{5/2}\) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kaufmann, M., Wagner, D.: Drawing Graphs: Methods and Models. LNCS, vol. 2025. Springer, London (2001)

    Book  Google Scholar 

  12. Kempe, D.: On the complexity of the “reflections” game (2003). http://www-bcf.usc.edu/dkempe/publications/reflections.pdf

  13. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Symposium on Foundations of Computer Science (FOCS), pp. 270–281 (1980)

    Google Scholar 

  14. Leiserson, C.E., Cormen, T.H., Stein, C., Rivest, R.: Introduction to Algorithms. Prentice Hall, Englewood Cliffs (1999)

    Google Scholar 

  15. Miura, K., Haga, H., Nishizeki, T.: Inner rectangular drawings of plane graphs. Int. J. Comput. Geom. Appl. 16(2–3), 249–270 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore (2004)

    Book  MATH  Google Scholar 

  17. Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. IEICE Trans. 88–D(1), 23–30 (2005)

    Google Scholar 

  18. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  19. Tobler, W.: Thirty five years of computer cartograms. Ann. Assoc. Am. Geogr. 94, 58–73 (2004)

    Article  Google Scholar 

  20. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(2), 135–140 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wiese, R., Eiglsperger, M., Kaufmann, M.: yFiles: visualization and automatic layout of graphs. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 453–454. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers from our previous submission for pointing out how the network-flow formulations from earlier work can be modified to compute orthogonal drawings with bounded reflex face complexities, and for the suggestions on improving the NP-hardness result.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debajyoti Mondal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jawaherul Alam, M., Kobourov, S.G., Mondal, D. (2016). Orthogonal Layout with Optimal Face Complexity. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics