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Reachability problems for PAMs ⋆
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Abstract. Piecewise affine maps (PAMs) are frequently used as a ref-
erence model to show the openness of the reachability questions in other
systems. The reachability problem for one-dimentional PAM is still open
even if we define it with only two intervals. As the main contribution of
this paper we introduce new techniques for solving reachability problems
based on p-adic norms and weights as well as showing decidability for
two classes of maps. Then we show the connections between topological
properties for PAM’s orbits, reachability problems and representation of
numbers in a rational base system. Finally we show a particular instance
where the uniform distribution of the original orbit may not remain uni-
form or even dense after making regular shifts and taking a fractional
part in that sequence.
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1 Introduction

The simplification of real programs shows that there is a number of quite basic
models/fragments for which we have fundamental difficulties in the design of
verification tools. One of them is the model of iterative map that appears in
many different contexts, including discrete-event/discrete-time/hybrid systems,
qualitative biological models, chaos-based cryptography, etc [1, 8, 16, 23].

The one-dimensional affine piecewise iterative map is a very rich mathemati-
cal object and at the same time one of the simplest dynamical system producing
very complex and sensitive effects. A function f : Q → Q is a one-dimensional
piecewise-affine map (PAM) if f is of the form f(x) = aix+ bi for x ∈ Xi where
all coefficients ai,bi and the extremities of a finite number of bounded intervals
Xi are rational numbers. Let us consider the sequence of iterations starting from
a rational point x: x, f(x), f2(x) = f(f(x)), and so on. The reachability in PAM
is a problem to decide for a given f and two rational points x and y whether y
is reachable from x. In other words, is there an n ∈ N such that fn(x) = y?

The decidability of the reachability problem for one dimensional piecewise-
affine map is still an open problem, which is related to other challenging questions
in the theory of computation, number theory and linear algebra [7, 14, 15]. This
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model plays a crucial role in the recent research about verification of hybrid
systems [2, 3], timed automata [2] control systems [9, 10], representation of num-
bers in a rational base (β-expansions) [19, 21], discounted sum automata [11]. In
particular PAM is often used as a reference model to show the openness of the
reachability questions in other systems. It also has a very natural geometrical in-
terpretation as pseudo-billiard system [17] and Hierarchical Piecewise Constant
Derivative (HPCD) system [3]. The reachability problem for one-dimensional
PAM is still open even if we define it with only two intervals [2, 3, 5, 12].

The primary goal of this paper is to demonstrate new approaches for solving
reachability problem in PAMs, connecting reachability questions with topological
properties of maps and widening connections with other important theoretical
computer science problems. First, we show new techniques for decidability of the
reachability problem in PAMs based on p-adic norms and weights. We illustrate
these techniques showing decidability of two classes of PAMs. The algorithm in
Theorem 1 solves point to point reachability problem for two-interval injective
PAM under the assumption that a PAM has bounded invariant densities. While
our numerical experiments shows that the sequence of invariant densities con-
verge to smooth functions it is not yet clear whether it holds for all PAMs or if
not whether this property can be algorithmically checked.

Following the proposed approach based on p-adic weights in Theorem 2 we
define another fragment of PAMs for which the reachability problem is decid-
able. In particularly we remove the condition on bounded invariant densities and
injectivity of piecewise-affine map and consider a PAM f with a constraint on
linear coefficients in affine maps. This class of PAMs is also related to encoding
of rational numbers in the rational base (β-expansions). The decidability of the
point-to-point problem for this class is shown in Theorem 2 and decidability of
point-to-set problem for the same class can give someone an answer to the open
problem related to β-expansions.

Then we establish the connections of topological properties for PAM’s orbits
with reachability problems and representation of numbers in a rational base sys-
tem. We show that the reachability problems for above objects tightly connected
to questions about distribution of the fractional parts in the generated sequences
and moreover about distribution of the fractional part after regular shifts.

2 Preliminaries and Notations

In what follows we use traditional denotations N, Z, Z+ = {0, 1, 2, . . .}, P, Q
and R for sets of natural, integers, positive integers, primes, rational and real
numbers, respectively. Let us denote by S1 = Q/Z the unit circle which consists
only rational numbers. By {x}, ⌊x⌋ and ⌈x⌉ we denote the fractional part 3 of a
number, floor and ceiling functions.

Let Y be a set of numbers and x is a single number, then we define their
addition and multiplication as follows: Y + x = x + Y = {x + y|y ∈ Y } and

3 It will be clear from the context if brackets are used in other conventional ways, for
example, to indicate a set of numbers.



xY = Y x = {xy|y ∈ Y }. The application of a function f : X → Y to a set
X ′ ⊆ X is defined as f(X ′) = {f(x)|x ∈ X ′}. If f ⊆ X×Y is a nondeterministic
map, i.e. f : X → 2Y and x ∈ X , X ′ ⊆ X , we define f(x) = {y|(x, y) ∈ f} and
f(X ′) =

⋃

x∈X′ f(x).
p-adic norms and weights: Let us consider an arbitrary finite set of prime

numbers F = {p1, p2, . . . , pk} ⊂ P in ascending order and define the product of
prime numbers from F by m = p1p2 . . . pk. Let x be a positive rational number
that can be represented by primes from a set F. Then its prime factorization is
x =

∏

p∈F
pαp , where αp ∈ Z, p ∈ F.

Any nonzero rational number x can be represented by x = (pαpr)/s, where
p is a prime number, r and s are integers not divisible by p, and αp is a unique
integer. The p-adic norm of x is then defined by |x|p = p(−αp). The p-adic weight
of x is defined as ‖x‖p = logp(|x|p), i.e. ‖x‖p = −αp. The following properties
of p-adic weights are directly follows from the properties of p-adic norm:

‖x‖p = ‖y‖p ⇒ ‖x+ y‖p ≤ ‖x‖p. (1)

‖x‖p < ‖y‖p ⇒ ‖x+ y‖p = ‖y‖p, (2)

‖x · y‖p = ‖x‖p + ‖y‖p, (3)

‖xr‖p = r‖x‖p, (4)

If there is a prime p /∈ F such that ‖x‖p > 0, then we define ‖x‖m = +∞,
otherwise ‖x‖m = max

p∈F
‖x‖p.

By m-weight and m-vector-weight of x in respect to a set F we denote ‖x‖m
and (‖x‖)m=(‖x‖p1

, ‖x‖p2
, . . . , ‖x‖pk

)T respectively. Informally speaking the
m-weight of a number x (if ‖x‖m > 0) is the number of digits after the decimal
point in the representation of x in basem, i.e. x can be written as x = y ·m−‖x‖m ,
where y is an integer which the last digit in the m-ary representation is non zero.
If ‖x‖m ≤ 0, then x is an integer number.

Without loss of generality let us consider from now on only such x ∈ X for
which ‖x‖m < +∞. Alternatively if ‖x‖m = +∞, it is enough to change the set
F = {p1, . . . , pk} in order to fulfill the requirements of ‖x‖m < +∞.

Lemma 1. For all rational x ∈ [0, 1] with an upper bound a ∈ Z+ on ‖x‖m, i.e.
‖x‖m < a, there is a lower bound b ∈ Z based on a and F such that ‖x‖p ≥ b for
all p ∈ P.

Proof. Let us denote two sums of weights: α = −
∑

p∈P,‖x‖p≤0 ‖x‖p and β =
∑

p∈F,‖x‖p≥1 ‖x‖p. Assuming that 2 is the smallest possible prime number and

pk is the largest number in F, we have the following inequality: 2α

pka
k

≤ 2α

p
β

k

≤ x ≤ 1.

Then −α ≥ −kalog2 pk and if b = −α we have ‖x‖p ≥ b for all p ∈ P. ⊓⊔

Corollary 1. For any a ∈ Z there is only a finite number of rational x ∈ [0, 1]
for which ‖x‖m < a.



Reachability problem for PAMs: We say that f : S1 → S1 is a one-
dimensional piecewise affine map (PAM) whenever f is of the form f (x) =
aix + bi, where ai, bi ∈ Q ⇔ x ∈ Xi, S

1 = X1 ∪ X2 ∪ . . . ∪ Xl and where
{X1, . . . , Xl} is a finite family of disjoint (rational) intervals. If the intervals are
not disjoint we call it non-deterministic piecewise affine map and by default a
piecewise-affine mapping is understood to be deterministic. The derivative f ′ of
a PAM f we define as f ′(x) = ai for x ∈ Xi, 1 ≤ i ≤ l.

If f is deterministic PAM, an orbit (trajectory) of a point x is denoted by
Of (x) and will be understood either as a set Of (x) = {f i(x)|i ∈ Z+} or as a
sequence, i.e. Of (x) : Z

+ → S1, Of (x)(i) = f i(x). We also define that a point y
is reachable from x if y ∈ Of (x).

In general the reachability problem for PAM can be defined as follows. Given
a PAM f , x ∈ S1 and Y ⊆ S1, decide whether the intersection Y ∩ Of (x) is
empty. If Y is a finite union of intervals, we name the reachability problem as
point-to-set (interval) problem. If Y is a one element set (i.e. a single point), the
reachability problem is known as point-to-point reachability. 4

In this paper we only consider one-dimensional PAMs and by the reachability
problem for PAM we understand point-to-point reachability and explicitly state
the type of the problem when we need to refer to other reachability questions.
Note that the point-to-interval reachability can be reduced to point-to-point
reachability problem by extending a map with a few intervals in which the cur-
rent value is just sequentially deleted. It works for all PAMs but may not preserve
the properties and the form of the original map.

Generally speaking the piecewise-affine mapping does not need to be defined
as f : X → X , where X = S1 = [0, 1). However if the set X is a union of any
finite number of bounded intervals we always can scale it to S1. If f : X → X is
such that X 6= [0, 1), and X ⊆ [a, b), then by applying conjugation h(x) = x−a

b−a

the original reachability problem for f is reduced to the reachability problem for
the mapping g = h ◦ f ◦ h−1 from [0, 1) to [0, 1). Moreover the interest to PAMs
as f : S1 → S1 is also motivated by their use in the research of chaotic systems.

3 Decidability using p-adic norms

It is well know in dynamical systems research that due to complexity of orbits in
iterative maps it is less useful, and perhaps misleading, to compute the orbit of
a single point and it is more reasonable to approximate the statistics of the un-
derlying dynamics [13, 20]. This information is encoded in the so-called invariant
measures, which specify the probability to observe a typical trajectory within a
certain region of state space and their corresponding invariant densities.

Let us consider a density as an ensemble of initial starting points (i.e. initial
conditions). The action of the dynamical system on this ensemble is described by
the Perron-Frobenius operator. The ensembles which are fixed under the linear

4 Also in a similar way it is possible to define set-to-point and set-to-set reachability
problems.



Perron-Frobenius operator is known as invariant densities or in other words, they
are eigenfunctions with eigenvalue 1 [13].

Formally under an ensemble A we understand an enumerated set (sequence)
of points in phase space. With ensemble we can associate the distribution func-
tion and the density function. Let I be a set of points. We denote by FA

I (n) =
|{i ∈ Z+|i ≤ n,A(i) ∈ I}| the number of elements in the sequence A which be-
long to the set I and which indexes are less or equal n. The distribution function

of the ensemble A is defined as ΦA(x) = limn→∞
FA

(−∞,x)(n)

n
, if the limits exist.

The density function φA of the ensemble A is defined as φA(x) = Φ′
A(x).

Suppose given an ensemble A0 with density φ0. If we apply PAM f to each
point of the ensemble, we get a new ensemble A1 with some density distribution
φ1. We say that the function φ1 is obtained from φ0 using the Frobenius-Perron
or transfer operator, which we denote by Lf . It is known that

φ1(x) = Lf(φ0)(x) =
∑

y∈f−1(x)

φ0(y)

|f ′(y)|
.

If φ1 = φ0 we say that φ0 is a f -invariant density function or an eigenfunction
of the transfer operator Lf .

We prove that if for an injective PAM f there exists an invariant bounded
density function then the reachability problem for f is decidable.

Lemma 2. Let f be an injective PAM, and φ be a f -invariant density function.
If there are Kmin > 0 and Kmax < +∞ such that for any x from the domain
of f the following inequality holds: Kmin < φ(x) < Kmax, then for an arbitrary
segment of the orbit x1, x2, . . . xn+1, where xi+1 = f(xi), we have Kmin

Kmax
≤ |c1 ·

c2 · . . . · cn| ≤
Kmax

Kmin
, where ci = aj if xi ∈ Xj.

Proof. Let φ be an eigenfunction of the Perron-Frobenius operator for an injec-
tive PAM f . Then injectivity of f and the fact that y = f(x) implies that φ(y) =
φ(x)

|f ′(x)| . We denote f ′(xi) by ci. Then φ(xn+1) =
φ(x1)

|c1·c2·...·cn|
and |c1 · c2 · . . . · cn| =

φ(x1)
φ(xn+1)

. Now we can bound |c1 · c2 · . . . · cn| by
Kmin

Kmax
and Kmax

Kmin
.

Theorem 1. Given an injective PAM f with two intervals and the existence of
a f -invariant density function φ such that there are Kmin > 0 and Kmax < +∞
and the following inequality holds Kmin < φ(x) < Kmax for all x from the
domain of f . Then the reachability problem for f is decidable.

Proof. A piecewise-affine map f with two intervals X1 and X2 is defined as
follows: f(x) = aix + bi, if x ∈ Xi. Note that we only consider PAMs over
rational numbers where a starting point as well as all coefficients and borders
of intervals are rational numbers. Let us consider an arbitrary pair of points
x, y ∈ X such that y ∈ Of (x) and the sequence of points x1, x2, . . . , xn+1 from
the orbit Of (x) such that x1 = x, xn+1 = y, xi+1 = f(xi), 1 ≤ i ≤ n.

If it would be possible to find a computable upper bound M on the length n
of such reachability sequence from x to y (based on Kmin,Kmax a1, a2, b1, b2,



x, y) we could solve the reachability problem by considering only initial segment
of the reachability path of length less or equal to M .

In general the existence of such bound is not obvious, however if we can show
that in the path x1, x2, . . . , xn+1 where x1 = x and xn+1 = y the p-adic weights
‖xi‖m for all i ∈ {1, . . . , n + 1} are bounded by some value M1 then we can
restrict M as follows: n < M < mM1 as ‖xi‖m is the number of decimal places
in the representation of xi in base m. In particular if there is a orbit’s segment
of length that is greater than mM1 and which consists of numbers with p-adic
weights less than M1 then it always contains two identical numbers and the orbit
loops.

So in order to prove a computable upper bound on ‖xi‖m it is sufficient
to prove that for any p ∈ F p-adic weights (i.e. logarithmic norms) ‖xi‖p are
bounded from above by a computable number M2 for all i ∈ {1, . . . , n+1}. Note
that by the definition of the logarithmic m-norm, M2 = M1.

Let us define a number h = max{‖b1‖m + 1, ‖b2‖m + 1, ‖x1‖m, ‖xn+1‖m}.
Let us take an arbitrary p ∈ F and select a subsequence xj , xj+1, . . . , xr in the
sequence x1, x2, . . ., xn+1 such that its elements x ∈ {xj+1, xj+2, . . . , xr−1} have
the following property ‖x‖p > h, but at the same time ‖xj‖p ≤ h and ‖xr‖p ≤ h.
For simplicity, but without loss of generality, we assume that j = 1, r = n + 1
and ‖x1‖p = ‖xn+1‖p = h.

Later we either will find the computable upper bound on n or will show a
computable bound M2 on p-adic weights based on Kmin,Kmax, a1, a2 and h. As
stated above, it is enough for proving the theorem.

Let us define xi+1 = f(xi) = cixi + di, where ci ∈ {a1, a2}, di ∈ {b1, b2}.
From the properties (1) and (2) of the p-adic weights and the fact that ‖xi‖p >
‖bj‖p, i ∈ {1, 2, . . . , n}, j ∈ {1, 2} follows that ‖xi+1‖p = ‖xi‖p + ‖ci‖p. This

implies ‖xn+1‖p = ‖x1‖p +
∑n

i=1 ‖ci‖p = ‖x1‖p +
∑2

i=1 αi‖ai‖p for some non-
negative numbers α1 and α2, where α1 + α2 = n. Taking into account that
‖x1‖p = ‖xn+1‖p we have

∑2
i=1 αi‖ai‖p = 0.

Let r be the greatest common divisor of α1 and α2. We define α = α1/r and
β = α2/r, i.e. α and β are smallest non-negative integers such that α‖a1‖p +

β‖a2‖p = 0. Thus, we obtain
∑2

i=1 αi‖ai‖p = r(α‖a1‖p + β‖a2‖p). By Lemma 2

we have: Kmin

Kmax
≤ |c1 · c2 · . . . · cn| ≤

Kmax

Kmin
, i.e. Kmin

Kmax
≤ |aα1 a

β
2 |

r ≤ Kmax

Kmin
,

Now we consider two cases |aα1 a
β
2 | 6= 1 and |aα1 a

β
2 | = 1. The first case corre-

sponds to linearly independent columns of the matrix Af , rank(A) = 2, and the
second case to linear dependence, rank(Af ) < 2.

Let |aα1 a
β
2 | 6= 1, then either |aα1 a

β
2 | > 1 or |aα1 a

β
2 | < 1. If |aα1 a

β
2 | > 1 then from

|aα1 a
β
2 |

r ≤ Kmax

Kmin
follows that r ≤

ln Kmax
Kmin

ln |aα
1 a

β
2 |
. On the other hand if |aα1 a

β
2 | < 1, then

from |aα1 a
β
2 |

r ≥ Kmin

Kmax
follows r ≤

ln
Kmin
Kmax

ln |aα
1 a

β
2 |
.

Now suppose that |aα1 a
β
2 | = 1. The only interesting case is when a1 6= 1 and

a2 6= 1 as the cases where |a1| = 1, |a2| = 1 or both correspond to the trivial
case of piecewise-affine mapping (i.e. with no more than one linear factor).



Without loss of generality, we assume that a1 > 1 and a2 < 1. Note also that
‖a2‖p = −α

β
‖a1‖p. Let us now consider an arbitrary subsequence of consecutive

points x1x2 . . . xj+1, j ≤ n of the original reachability path. Assuming that α1,
α2 such that |c1c2 . . . cj | = |a1|α1 |a2|α2 we have that

‖xj+1‖p = ‖x1‖p + α1‖a1‖p + α2‖a2‖p = (α1 − α2
α

β
)‖a1‖p.

On the other hand from Lemma 2 we know that: Kmin

Kmax
≤ |a1|α1 |a2|α2 ≤ Kmax

Kmin
.

Since |aα1 a
β
2 | = 1,then |a2| = |a1|

−α
β and

Kmin

Kmax

≤ |a1|
α1−α2

α
β ≤

Kmax

Kmin

.

Taking into account assumption that |a1| > 1, we get α1 − α2
α
β
≤

ln Kmax
Kmin

ln |a1|
.

Now it follows that:

‖xj+1‖p = ‖x1‖p + (α1 − α2
α

β
)‖a1‖p ≤ h+

(

ln Kmax

Kmin

ln |a1|

)

‖a1‖m.

Thus, we have shown a computable upper bound for p-adic weights of the orbital
elements that can reach a point y. Finally, in view of provided reasoning, we
shown that the reachability problem for this type of PAMs is decidable. ⊓⊔

The theorem can be applied for a larger class of PAMs if more information
would be known about the convergence of density functions under the action of
the Perron-Frobenius operator. Let us call an ensemble A to be statistically fixed
with respect to f , if φA = Lf(φA). E.g. if someone can show that in injective
PAM all statistically fixed ensembles have identical distribution functions then
Theorem 1 can be applied to show decidability in injective PAMs.

Following the proposed approach based on p-adic weights we define another
fragment of PAMs for which the reachability problem is decidable. In particularly
we remove the condition on eigenfunction of the transfer operator and injectivity
of piecewise-affine map and consider a PAM f with only constraints on linear
coefficients in affine maps. More specifically we require that the powers of prime
numbers from prime factorizations of linear coefficients should have the same
signs (i.e. two sets of prime numbers used in nominator and denominator are
disjoint). Let us denote for a PAM f a matrix Af with values (aji), where
aji = ‖ai‖pj

, 1 ≤ i ≤ l, 1 ≤ j ≤ k. The rank of Af is denoted by rank(Af ).

Theorem 2. The reachability problem for a PAM f is decidable if every row of
a matrix Af contains values of the same sign, (i.e. aji · aj′i ≥ 0, for all i, j such
that 1 ≤ i ≤ l, 1 ≤ j, j′ ≤ k).

Proof. Let us consider a PAM f of the form f(x) = aix + bi for x ∈ Xi where
all coefficients ai,bi and the extremities of a finite number of bounded intervals
Xi are rational numbers. Let us define h = max{‖b1‖m, ‖b2‖m, . . . , ‖bl‖m}. The



condition of the theorem means that for any prime p ∈ F all linear coefficients
of the map f have non-zero p-adic weights of the same sign.

In this case, if p-adic weights of linear coefficients of f are non-negative,
then for any x ∈ X from ‖x‖p > h follows that ‖f(x)‖p ≥ ‖x‖p and therefore
‖f(x)‖m ≥ ‖x‖m (i.e. m-adic weight does not decrease). If p-adic weight of
linear coefficients of the mapping are negative, then for any x ∈ X we have
‖f(x)‖p ≤ max{‖x‖p, h}.

Thus, in the sequence of reachable points for an orbit of a map f either all
points of the orbit have m-adic weights bounded from above by h, then we have
a cyclic orbit, or from some moment when m-adic weight of a reachable point
exceeds h it does not decrease and again, either orbit loops or m-adic weight
increases indefinitely.

Thus, in order to decide whether y is reachable, i.e. y ∈ Of (x), it is sufficient
to start generating a sequence of reachable points in the orbit Of (x) and wait
for one of the events, where either 1) a point in the orbit is equal to y ( y is
reachable ), or 2) the orbit will loop and y /∈ Of (x) ( y is not reachable ), or 3)
a point x′ is reachable, such that ‖x′‖m > max{h, ‖y‖m}, and then y /∈ Of (x) (
y is not reachable ). ⊓⊔

Definition 1. A piecewise affine mapping f : S1 → S1 is complete if for a set
of disjoint intervals S1 = X1 ∪X2 ∪ . . . ∪Xn, f(Xi) = S1 for any i = 1..n.

Definition 2. Let be F : R → R is the lifting of a continuous map f : S1 → S1

on R, i.e. f({x}) = {F (x)}. Then by the degree deg(f) of a map f we denote
the number F (x+ 1)− F (x), which is independent from the choice of the point
x and the lifting F .

Corollary 2. The reachability problem for complete piecewise affine mappings
with two intervals 5 is decidable.

Proof. The condition of a piecewise affine map with two intervals f : S1 → S1

to be complete means that S1 = X1 ∪ X2 and f(X1) = f(X2) = S1. Thus,
if X1 =

[

0, m
n

]

and X2 =
[

m
n
, 1
)

, then f (x) = a1x + b1, where a1 = ± n
m
,

when x ∈ X1, and f (x) = a2x + b2, where a2 = ± n
n−m

at x ∈ X2, m,n ∈ N,
gcd(m,n) = 1. It is clear that n, m, n−m are relatively prime. So the conditions
of Theorem 2 are satisfied. ⊓⊔

4 PAM representation of β-expansions

Given a rational non-integer β > 1 and the number x ∈ [0, 1]. The target
discounted-sum 0-1 problem [22, 11] is defined as follows: Is there a sequence
w : N → {0, 1} of zeros and ones such that x =

∑∞
i=1 w(i)

1
βi .

For any x ∈ S1, there exists β-expansion w : N → {0, 1, . . . , ⌈β⌉ − 1} such
that x =

∑∞
i=1 w(i)

1
βi . If w(i) ∈ {0, 1} we call it (0, 1)− β-expansion. There-

fore, when β ≤ 2 the answer to the target discounted-sum problem is always

5 In particularly the continuous piecewise affine mapping of degree two



positive. Therefore, the only interesting case is when β > 2. We denote D =
{0, 1, . . . , ⌈β⌉ − 1}. Then the minimal and maximal numbers, which are repre-
sentable in the basis β with digits from the alphabet D, aremin =

∑∞
i=1 0

1
βi = 0

and max =
∑∞

i=1 (⌈β⌉ − 1) 1
βi = ⌈β⌉−1

β−1 . When β > 2 then max is always less

then two. Let us denote by Xd the interval [min+d
β

, max+d
β

) for each d ∈ D. If β
is not an integer number then two intervals Xd and Xd+1 intersect. Also taking
into account that max < 2, then the intervals Xd and Xd+2 have no common
points. Finally from the above construction we get the next lemma:

Lemma 3. If β > 2 and β is rational/non-integer number: Xd ∩ Xd+1 6= ∅,
d < ⌈β⌉ − 1; Xd ∩Xd+2 = ∅, d < ⌈β⌉ − 2; [min,max) = ∪d∈AXd.

Proposition 1. For any β-expansion there is a non-deterministic PAM where a
symbolic dynamic of visited intervals (i.e. a sequence of symbols associated with
intervals) from an initial point x0 corresponds to its representation in base β.

Proof. Let us define the piecewise affine mapping f ⊆ [min,max)× [min,max)
as follows f = {(x, βx − d)|x ∈ Xd, d ∈ D}. It directly follows from this
definition that f(Xd) = [min,max). Let us consider an orbit f i(x) = x(i),

Fig. 1. A non-deterministic PAM for 5

2
-expansion

i ∈ Z+. We say that di ∈ D such that x(i) ∈ Xdi
. Then for any n ∈ N

min <
∣

∣βnx− d1β
n−1 − d2β

n−2 − . . .− dnβ
0
∣

∣ < max, and in other form min
βn <

∣

∣

∣
x−

∑n

i=1(di
1
βi )
∣

∣

∣
< max

βn . So
∣

∣

∣
x−

∑n

i=1(di
1
βi )
∣

∣

∣
→ 0, n → ∞, and therefore

x =
∑∞

i=1(di
1
βi ). Let us consider it in other direction. Let x =

∑∞
i=1(di

1
βi ), then

the sequence x(i), where x(0) = x, x(i + 1) = βx(i) − di, is the orbit of x in
PAM f . Let us name the constructed map as the β-expansion PAM. ⊓⊔

The nondeterministic β-expansion can be translated into deterministic maps
corresponding to greedy and lazy expansions as follows:

Definition 3. A function f : [min,max) → [min,max) is the greedy β-expansion
PAM if the domain [min,max) is divided on intervals X ′

d, d ∈ {0, 1, . . . , ⌈β⌉−1}
such that X ′

⌈β⌉−1 = X⌈β⌉−1, X
′
d−1 = Xd−1 − Xd, d ∈ {1, 2, . . . , ⌈β⌉ − 1} and

f(x) = βx − d iff x ∈ X ′
d.



Since Xd = [min+d
β

, max+d
β

) then X ′
d = [min+d

β
, min+d+1

β
) = [ d

β
, d+1

β
), d ∈

{0, 1, . . . , ⌈β⌉− 2} and the length of the interval X ′
d is equal to 1

β
, d < ⌈β⌉− 1.

Fig. 2. Deterministic greedy (on the left) and lazy (on the right) 5

2
-expansion PAM

Definition 4. A function f : [min,max) → [min,max) is the lazy β-expansion
PAM, if the domain [min,max) is divided into intervals X ′′

d , d ∈ {0, 1, . . . , ⌈β⌉−
1}, such that X ′′

0 = X0, X
′′
d = Xd −Xd−1, d ∈ {1, 2, . . . , ⌈β⌉ − 1}, and f(x) =

βx− d iff x ∈ X ′′
d .

Proposition 2. Let f and g are greedy and lazy β-expansion PAM’s respec-
tively. f and g are (topologically) conjugate by the homeomorphism h : h(x) =
h−1(x) = max− x, i.e. f = h ◦ g ◦ h.

Proof. The statement holds since X ′
d = max−X ′′

⌈β⌉−1−d
, d ∈ {0, 1, . . . , ⌈β⌉− 1}

We would like to highlight that the questions about reachability as well as
representation of numbers in rational bases are tightly connected with questions
about the density of orbits in PAMs. Moreover if the density of orbits are the
same for all non-periodic points then it may be possible to have a wider applica-
tion of p-adic techniques provided in the beginning of the paper. Let us formulate
a hypothesis that goes along with our experimental simulations in PAMs:

Hypothesis 1 The orbit of any rational point in any expanding deterministic
PAM is either finite or dense on the whole domain.

Lemma 4. Any (0, 1)− β-expansion is greedy.

Proof. Let f be a β-expansion PAM. Assume that there is a point x and the orbit
x(i), where x(0) = x, x(i + 1) = βx(i) − di in the map f such that di ∈ {0, 1}
for all i ∈ N and the orbit does not correspond to the β greedy expansion of x.

The intersection of intervals X0 and X1 is an interval X01 = [min+1
β

, max
β

).

Applying a map y = βx to X01 we see that X01 is scaled into [min+1,max) =

[1, ⌈β⌉−1
β−1 ). The interval [1, ⌈β⌉−1

β−1 ) does not have any common points with X0

as the point 1 lies on the right side of the left border of the interval X2 =
[min+2

β
, max+2

β
) and by Lemma 3 Xi ∩Xi+2 = ∅.

Note that when x > 1
β−1 we have βx− 1 > x. Let us assume that for some i

x(i) ∈ X01 and x(i+1) = βx(i)− 0, i.e. we did not followed a greedy expansion



and therefore x(i + 1) ∈ [1, ⌈β⌉−1
β−1 ). Then x(i + 2) = βx(i + 1) − 1 > x(i + 1)

and x(i+2) /∈ X0, etc. In this case starting from x(i+1) there is monotonically
increasing sequence of orbital points in the interval X1. So points in such orbit
should eventually leave the interval X1 and reach Xd, where d > 1. This gives
us a contradiction with the original assumption. ⊓⊔

Corollary 3. Since the greedy expansion can be expressed by a deterministic
map then (0, 1)− β-expansion is unique and greedy.

Theorem 3. If Hypothesis 1 holds then a non-periodic (0, 1)−β-expansion does
not exist.

Proof. Any (0, 1)−β-expansion can be constructed by expanding 6 deterministic
greedy β-expansion PAM. If the orbit of a rational point in greedy β-expansion
PAM is non-periodic, then by Hypothesis 1 it should be dense and therefore
should intersect all intervals and cannot provide (0, 1)− β-expansion. ⊓⊔

Theorem 4. If Hypothesis 1 holds then for any rational number its determin-
istic β-expansion is either eventually periodic or it contains all possible patterns
(finite subsequences of digits) from {0, 1, . . . , ⌈β⌉ − 1}.

Proof. The statement is obvious as Hypothesis 1 implies that the orbit is either
periodic or it is dense and the dense orbit is visiting all intervals. ⊓⊔

It looks that the point-to-interval problem is harder than the point-to-point
reachability problem for the expanding PAMs, as for example Theorem 2 gives an
algorithm for the point-to-point reachability problem in the β-expansion PAMs,
but not for the point-to-interval reachability that is equivalent to the β-expansion
problem.

Note that in the β-expansion PAMs all linear coefficients are the same, so
the density of the orbit correspond to the density of the following sequence
x(n) = fn(x0), where f(x) = {βx}. For example when β = 5

2 and x0 = 1 we get
the sequence:

{ 5
2}, {

5
2{

5
2}}, {

5
2{

5
2{

5
2}}}, . . .

The question about the distribution of a similar sequence { 3
2}, {

32

22 }, {
33

23 }, ... ,
where the integer part is removed once after taking a power of a fraction (for
example 3/2) is known as Mahler’s 3/2 problem, that is a long standing open
problem in analytic number theory.

5 Density of orbits and its geometric interpretation

It is well known that x(n) = {αn}, where α is an irrational number, has an
uniform distribution. Let us give some geometric interpretation of the orbit den-
sity. Consider the Cartesian plane with the y-axis x and and the x-axis y (just

6 I.e. with linear coefficients that are greater than 1



swapping their places). Now let us divide the set of lines x = n, n ∈ N, by
integer points on the segments of the unit length. The set of points (y, x), where
m ≤ y < m+1, x = n, i.e. the interval [m,m+1)× n on the line x = n, will be
denoted by Sm,n, m ∈ Z+, n ∈ N. In other words, Sm,n = (m+ [0, 1))×n. Let I
be an interval such that I ⊆ [0, 1) and by Im,n let us denote the set (m+ I)×n.

Fig. 3. Left: An example for two sets Sm,n and Im,n; Right: A dynamic interval I(n).

Two points of the plane are defined to be equivalent if they belong to a
same line passing through the origin. We call α as homogeneous coordinate of a
point (y, x) if y = αx. By H(I) we denote the set of homogeneous coordinates
of all points from

⋃

m∈Z+,n∈N

Im,n. The sequence x(n) = {αn} is dense in [0, 1)

if and only if for any interval I ⊆ [0, 1) there are m and n, such that the line
y = αx intersects the set Im,n. It is known that [0, 1) − H(I) ⊆ Q for any
interval I ⊆ [0, 1), i.e. for any irrational α > 0 the line y = αx intersect the set

⋃

m∈Z+,n∈N

Im,n. Moreover in the case of irrational factors it is known that the

frequency of occurrence of x(n) = {αn} in the interval I is equal to its length.

In some sense the interval I, in the above example, can be named as static
because it does not change in time n. However in order to study and describe pre-
viously mentioned problems such as the target discounted-sum problem, PAMs
reachability problems, the Mahler’s 3/2 problem we require the notion of “dy-
namic intervals“.

Let x be a sequence of numbers from [0, 1). What is the distribution of a
sequence x′(n) =

{

pk(n)x(n)
}

, where k : Z+ → Z+ is a non-decreasing sequence?
For example, if k(n) = n−1 and the number x(n) has in the base p the following
form x(n) = 0.an1an2 . . . annan,n+1 . . ., then x′(n) = 0.annan,n+1 . . ..

Let us assume that I ⊆ S1 and k : Z+ → Z+ is a non-decreasing sequence,
p ∈ N. Now we define “dynamical intervals” as an evolving infinite sequence



I(1), I(2), I(3), . . . :

I(1) = I, I(n) =

pk(n)−1
⋃

j=0

I + j

pk(n)
.

By Fx

I
(n) = |{i ∈ Z+|i ≤ n,x(i) ∈ I(i)}| we denote a function representing

a frequency of hitting dynamical interval I by the sequence x. In contrast to
Fx

I (n) which only counts the number of hittings to a fixed interval I, our new
function Fx

I
counts the number of hittings when both points and intervals are

changing in time.

Proposition 3. The following equation holds: Fx
′

I (n) = Fx

I
(n).

The phenomenon that significant digit distribution in real data are not ac-
cruing randomly known as Benford’s Law. For example the sequence p1, p2, p3,..
satisfies Benford’s Law, under the condition that log10 p is an irrational num-
ber, which is a consequence of the Equidistribution theorem (proved separetly
by Weyl, Sierpinski and Bohl). The Equidistribution theorem states that the
sequence {α}, {2α}, {3α}, . . . is uniformly distributed on the circle R/Z , when
a is an irrational number. It gives us the fact that each significant digit of num-
bers in (pn) sequence will correspond to the interval R/Z and the length of the
interval related to the frequency for each appearing digit.

However the question about the distribution of the sequence {(3/2)n} is
different in the way that it is not about the distribution of the first digits of 3n

in base 2, i.e. not about the distribution of the sequence 3n

2⌈n log2 3⌉ , but related

to the sequence of digits after some shift of the number 3n

2⌈n log2 3⌉ corresponding
to the multiplication by a power of 2.

So in the above notations the distribution of numbers in the sequence x′(n) =
{(3/2)n} corresponds to the Fx

′

I (n) for the logarithmic (Benford’s law) dis-
tributed sequence x(n) = 3n

2⌈n log2 3⌉ , p = 2 and k(n) = ⌈n log2 3⌉ − n.

Now we will show that even if the sequence {α}, {2α}, {3α}, . . . is uniformly
distributed on the circle R/Z, the irrationality of α is not enough to guarantee
uniform distribution or even density of the sequence x′(n) on the circle corre-
sponding to the linear shifts k(n) = n.

Theorem 5. Let us define α =
∑∞

i=1
1

2∆i
where ∆1 = 1, ∆i+1 = 2∆i + ∆i,

i ≥ 1 (http://oeis.org/A034797). Then for all n ∈ N ∪ {0} the sequence {2nnα}
is not dense in the interval [0, 1] and {2nnα} < 1

2 .

Proof. Let us consider a sequence ∆, which initial elements are ∆1 = 1, ∆2 = 3,
∆3 = 11, ∆4 = 2059 etc.



∆1 ∆2 ∆3

x(0) = 0, 0 0 0 0 0 0 0 0 0 0 0 0 . . .

x(1) = 0, 1 0 1 0 0 0 0 0 0 0 1 0 . . .

x(2) = 0, 0 1 0 0 0 0 0 0 0 1 0 0 . . .

x(3) = 0, 0 1 1 0 0 0 0 0 0 1 1 0 . . .

x(4) = 0, 1 0 0 0 0 0 0 0 1 0 0 0 . . .

x(5) = 0, 1 0 1 0 0 0 0 0 1 0 1 0 . . .

x(6) = 0, 1 1 0 0 0 0 0 0 1 1 0 0 . . .

x(7) = 0, 1 1 1 0 0 0 0 0 1 1 1 0 . . .

x(8) = 0, 0 0 0 0 0 0 0 1 0 0 0 0 . . .

x(9) = 0, 0 0 0 0 0 0 0 1 0 0 1 0 . . .

x(10) = 0, 0 0 0 0 0 0 0 1 0 1 0 0 . . .

x(11) = 0, 0 0 0 0 0 0 0 1 0 1 1 0 . . .

x′(0) = 0, 0 0 0 0 0 0 0 0 0 0 0 0 . . .
x′(1) = 0, 0 1 0 0 0 0 0 0 0 1 0 . . .
x′(2) = 0, 0 0 0 0 0 0 0 1 0 0 . . .
x′(3) = 0, 0 0 0 0 0 0 1 1 0 . . .
x′(4) = 0, 0 0 0 0 1 0 0 0 . . .
x′(5) = 0, 0 0 0 1 0 1 0 . . .
x′(6) = 0, 0 0 1 1 0 0 . . .
x′(7) = 0, 0 1 1 1 0 . . .
x′(8) = 0, 0 0 0 0 . . .
x′(9) = 0, 0 1 0 . . .
x′(10) = 0, 0 0 . . .
x′(11) = 0, 0 . . .

Let us prove that when 0 ≤ n ≤ ∆i the inequality {2nnα} < 1
2 if and

only if {2nn
∑i

j=1
1

2∆j
} < 1

2 . The implication from left to right follows from

{2nn
∑i

j=1
1

2∆j
} < {2nnα}. Let us show that it also holds in other direction.

Assume that {2nn
∑i

j=1
1

2∆j
} < 1

2 then {2nn
∑i

j=1
1

2∆j
+x} < 1

2 for any 0 ≤ x ≤
1

2∆i+1−n . In this case it is enough to show that 2nnα− 2nn
∑i

j=1
1

2∆j
< 1

2∆i+1−n

holds when n ≤ ∆i. In fact we have that

2nnα− 2nn

i
∑

j=1

1

2∆j
= 2nn

∞
∑

j=i+1

1

2∆j
< 2nn

1

2∆i+1−1
=

=
1

2∆i+1−n−log2(n)−1
≤

1

2∆i+1−∆i−log2(∆i)−1
==

1

22
∆i−log2(∆i)−1

.

Finally we have 1

22
∆i−log2(∆i)−1

< 1
2∆i+1−n when n ≤ ∆i and i > 1.

Now for proving the theorem it is enough to show that for 0 ≤ n ≤ ∆i the
inequality {2nn

∑i
j=1

1

2∆j
} < 1

2 holds. When i = 1 the statement is trivial. Let



us assume that it holds for i = k−1. We show now that it holds for i = k, i.e. we
show that for ∆k−1 ≤ n ≤ ∆k inequality {2nn

∑k

j=1
1

2∆j
} < 1

2 holds or taking

into account ∆k−1 ≤ n also we have inequality {2nn 1
2∆k

} < 1
2 .

For ∆k−1 ≤ n ≤ ∆k −∆k−1 − 1 we get 2nn 1
2∆k

≤ 2∆k−∆k−1−1(∆k −∆k−1 −

1) 1
2∆k

. Since ∆k = 2∆k−1 + ∆k−1, then 2∆k−∆k−1−1(∆k − ∆k−1 − 1) 1
2∆k

=

(2∆k−1 − 1) 1

2∆k−1+1 = 1
2 − 1

2∆k−1+1 < 1
2 .

Consider the case when ∆k−∆k−1 ≤ n ≤ ∆k, i.e. 2
∆k−1 ≤ n ≤ 2∆k−1+∆k−1

and define m = n − 2∆k−1 . We have that 0 ≤ m ≤ ∆k−1 and 2nn 1
2∆k

=

2m+2∆k−1
(m+ 2∆k−1) 1

22
∆k−1+∆k−1

= 2m(m+ 2∆k−1) 1

2∆k−1
= 2mm 1

2∆k−1
+ 2m.

Therefore {2nn 1
2∆k

} = {2mm 1

2∆k−1
}, where 0 ≤ m ≤ ∆k−1. Now by the induc-

tion we have that {2mm 1

2∆k−1
} < 1

2 .

While the question about the distributions for PAM orbits remains open we
have unexpectedly shown that in a very similar system, operating with irrational
numbers, the uniform distribution of original orbits in maps may not remain
uniform or even dense when taking the fractional part after regular shifts. This
makes the questions about PAMs even more “mysterious” as it is not clear
whether such property may hold for a sequence of points generated by PAMs,
β-expansion and Mahler’s problem.
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