
ABS: A High-Level Modeling Language
for Cloud-Aware Programming

Nikolaos Bezirgiannis(B) and Frank de Boer

Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands
{n.bezirgiannis,f.s.de.boer}@cwi.nl

Abstract. Cloud technology has become an invaluable tool to the IT
business, because of its attractive economic model. Yet, from the pro-
grammers’ perspective, the development of cloud applications remains a
major challenge. In this paper we introduce a programming language that
allows Cloud applications to monitor and control their own
deployment. Our language originates from the Abstract Behavioral Spec-
ification (ABS) language: a high-level object-oriented language for
modeling concurrent systems. We extend the ABS language with Deploy-
ment Components which abstract over Virtual Machines of the Cloud
and which enable any ABS application to distribute itself among mul-
tiple Cloud-machines. ABS models are executed by transforming them
to distributed-object Haskell code. As a result, we obtain a Cloud-aware
programming language which supports a full development cycle including
modeling, resource analysis and code generation.

1 Introduction

The IT industry, always looking for cutting operational costs, has been increas-
ingly relying on virtualized resources offered by the “Cloud”. Besides being more
economically attractive, the Cloud can allow certain software to benefit in secu-
rity and execution speed. For these reasons, software applications are steadily
being migrated to run on virtualized hardware, essentially turning cloud com-
puting into a hot topic among the software community.

Recent research has led to numerous methodologies, tools, and technologies
being proposed to help the migration and execution of software in the cloud,
ranging from (static) configuration management tools to (live) orchestration
middleware, and from simple resource monitoring services to the dynamic (elas-
tic) provisioning of resources. Unfortunately, the (so-called) DevOps engineers
are now burdened with developing and maintaining an extra logic for such cloud
tools, besides the usual application logic. These cloud tools may be best described
as semi-automatic and it is often the case that an engineer has to manually inter-
vene to apply the desired configuration & deployment of a cloud application.

These cloud applications are migrated unchanged: monolithic boxes of code
which are transferred from a non-cloud setting to the new cloud environment

Partly funded by the EU project FP7-610582 Envisage. This work was carried out
on the Dutch national e-infrastructure with the support of SURF Foundation.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 433–444, 2016.
DOI: 10.1007/978-3-662-49192-8 35

http://www.envisage-project.eu
http://www.surf.nl

434 N. Bezirgiannis and F. de Boer

by the DevOps engineers. Such separation of the application from its execu-
tion is traditionally believed to be an advantage, long before Cloud came to
existence. However, one would expect that with the introduction of the virtu-
alized (dynamic) hardware of the Cloud, and since software logic is inherently
dynamic, an application could “become aware” and leverage its own execution
for managing its cloud resources & deployment in an optimal way, and without
the constant administering of an engineer.

In this paper, we aim to address the challenges of engineering cloud appli-
cations by introducing a “cloud-aware” programming language that provides
certain high-level abstractions for unifying the application logic together with
its deployment logic in a single integrated environment, while in the same-time,
hiding any lower-level hardware and cloud-provider considerations. The language
is intended for DevOps engineers and (potentially) computational scientists who
are responsible for both the development and execution of software residing in
the Cloud but would rather focus more on the application’s logic than manage
continuously its deployment. Applications written in the proposed language are
christened “cloud-aware” in the sense that they can actively monitor and control
their own deployment.

The proposed language is based on the Abstract Behavioral Specification lan-
guage (ABS), a formally-specified, object-oriented modeling language that has
been used for both analyzing [1], verifying ([8]), and simulating [5] software
programs, as well as running them in production through the various backends
developed (currently targeting Java, Erlang, and Haskell). We extend ABS with
Deployment Components that serve as a suitable abstraction over Cloud Virtual
Machines and which allow the application to distribute itself among multiple
(provider-agnostic) computing systems. The ABS developer writes code that
can dynamically create, monitor and shutdown such Deployment Components
(Virtual Machines) and most importantly bring up new objects inside them.
To this end, an ABS cloud-application forms a cloud-aware distributed-object
system, which consists of a number of inter-VM objects that communicate asyn-
chronously, while recording any failures that may happen in the cloud.

An implementation of this extension must be efficient and safe so that it can
be put in production code. For this, the Haskell backend of ABS is chosen for
translating ABS code to Haskell intermediate code, which is again typechecked
and transformed to an executable by an external Haskell compiler. We augment
this backend with support for Cloud-Haskell, a framework for type-safe, fault-
tolerant distributed programming in the Haskell ecosystem. The implementation,
although in its infancy, is already being tested in a real cloud environment,
exhibiting promising results which are also presented.

2 ABS Language and its Cloud Extension

The ABS (for “Abstract Behavioral Specification language”) [5] is a statically-
typed, executable modeling language with formal operational semantics. The
language consists of a purely-functional programming core and an imperative,

ABS: A High-Level Modeling Language 435

object-oriented layer. The syntax and behaviour resembles that of Java with
two clear differences: side-effectful code cannot be mixed with pure expressions,
and class inheritance is abolished in favour of code reuse via delta models [3].
ABS adds, next to the Java-like (passive) objects, builtin support for active
(concurrent) objects coupled with cooperative scheduling.

The functional core provides a declarative way to describe computation
which abstracts from possible imperative implementations of data structures.
The primitive types (Int and Rational) can be extended with (possibly recursive)
algebraic data types (ADTs) (e.g. data Bool = True | False) that can exhibit
parametric polymorphism (List < A >) and Hindley-Milner type inference. Pure
expressions are formed by successive λ-let abstractions and applications over
values of the defined datatypes (let x = 3 in x > 2 || True). Function definitions
associate a name to a pure expression which is evaluated in the scope where the
the expression’s free variables are bound to the function’s arguments. The func-
tional core supports pattern matching with a case-expression which matches a
given expression against a list of branches.

The imperative layer specifies the interlaced control flow of the concurrent
objects in terms of communication, synchronization, and internal computation.
This layer extends the functional core (datatype and function definitions) with
interface definitions, class definitions, and a main block. Interfaces declare a set
of method names to their type-signatures. An interface extends other inter-
faces, in this case inheriting the methods of of its super-interfaces. A class defin-
ition declares its (private-only) attributes and a set of interfaces it implements.
Method implementation bodies are comprised of statements of standard sequen-
tial composition s; s, assignment x = rhs, conditionals, while-loops, and return.
Statements can mutate private attributes of the current class, locally-defined
variables, and the method’s formal parameters. The read-only variable this eva-
luates to the object in which computation occurs. A program’s main block is a
special method body with no this associated object. Classes are not types and
used only to create object instances that instead are typed-by-interface. Note
that interfaces support subtype polymorphism while ensuring strong encapsula-
tion of implementation details.

Methods calls are either synchronous (v = obj.method(args);) where the
statement is blocked until the method has finished with result v, or asynchro-
nous (f = obj!method(args);) where the statement returns immediately with
a future f (with type Fut < A >), without waiting for the method’s completion.
Each asynchronous method call creates a new process which will eventually store
the result of the method call into the future reference. The caller can use this
future reference to retrieve the result by calling the blocking statement v =
f.get;. Objects may form a so-called Concurrent Object Group (COG), where
objects (and their processes) share the same thread of control: at each point
in time, only one process of the COG is executing. This process may decide to
willfully pass control to another same-group process, by waiting until a future is
ready (await f?;) or a boolean expression is met (await exp;). ABS does not
specify any concrete policy for this cooperative scheduling of processes; it is left
to the particular implementation (backend) to decide.

436 N. Bezirgiannis and F. de Boer

2.1 Extending to the Cloud

We extend the ABS language with syntactic and library support for Deploy-
ment Components. A Deployment Component (DC), first described in [7], is “an
abstraction from the number and speed of the physical processors available to
the underlying ABS program by a notion of concurrent resource”. Simply put, a
DC corresponds to a single (properly-quantified) Virtual Machine which executes
ABS code. We restrict the definition of DC to correspond only to a Platform
Virtual Machine (VM) residing inside the boundaries of a Cloud infrastructure.
Multiple inter-communicating VMs effectively form an ABS cloud application.

To be able to programmatically (at will) create and delete VMs in any lan-
guage, would require modeling them as first-class citizens of that language. As
such, we introduce DCs as first-class citizens to the already-existing language of
ABS in the least-intrusive way: by modeling them as objects. All created DC
objects are typed by the interface DC. Minimal implementation for the methods
of the DC interface are shutdown for shutting down and releasing the cloud
resources of a virtual machine, and load for probing its average system load,
i.e. a metric for how busy the underlying computing-power stays in a period of
time. We use the Unix-style convention of returning 3 average values of 1, 5 and
15 min. The DC interface resides in the augmented standard library:

module StandardLibrary.CloudAPI;

interface DC {

Unit shutdown();

Triple <Rat ,Rat ,Rat > load();

}

By having a common DC interface the different cloud backends can agree
on a basic service, while still being able to provide additional functionality
through sub-interfaces and distinct DC-interfaced classes. Each DC-interfaced
class implements the connection to a distinct cloud provider (e.g. Amazon,
OpenStack). A code skeleton of such a class follows, where the DC (VM) is
parameterized by the number of CPU cores and main RAM memory:

module StandardLibrary.SomeProvider;

data CpuSpec = Micro | Small | Large;

data MemSpec = GB(Int) | MB(Int);

class SomeProvider (CpuSpec c,MemSpec m) implements DC {

Unit shutdown() { /* omitted */ }

Triple <Rat ,Rat ,Rat > load() { /* omitted */ }

}

The implementor can expose other properties to DCs, such as, network, num-
ber of IO operations, VM region location. A concrete implementation, which is
omitted for brevity, usually involves some high-level ABS logic coupled with
low-level code written in a foreign language (in our case Haskell). The average
ABS user will not have to provide such connections to the cloud, since we (the

ABS: A High-Level Modeling Language 437

implementors) intend to provide class implementations for most major cloud
providers/technologies, in an accompanying ABS library. With this approach,
we lift the low-level API of the cloud provider (usually XML-RPC) to a typed
high-level API (e.g. CpuSpec and MemSpec datatypes).

Moving on, we create an object of the SomeProvider class by passing the num-
ber of cores and memory measured in GBs as class’ formal parameters. The call
to “new SomeProvider” contacts the specific cloud provider in the background
for bringing up a new VM instance. The provider responds with a unique identi-
fier (commonly the public IP address of the created VM) which is stored in the
DC object. Finally, the machine is released by calling shutdown(), making the
DC object point to null.

DC dc1 = new SomeProvider(Large , GB(8));

_ future_l1 = dc1 ! load();// underscore infers the type

_ l1 = future_l1.get;

dc1 ! shutdown ();

The creation of a DC object reference is usually fast, since it involves a single
network communication between the current ABS node and the cloud provider.
Still, the underlying VM requires considerably more time to boot up and be
responsive, depending on factors such as provider’s availability, congestion and
hardware. To address this, we allow the creation of new dc objects to continue,
but we require the program to potentially block when executing the first opera-
tion of the newly-created DC, as shown in the example:

DC mail_server = new Amazon (..);

DC web_server = new Azure (..);

DC db_server = new Rackspace (..);

mail_server!load(); // will block if DC is not up yet

Similar to this identifier, a method context contains the thisDC read-only
variable (with type DC) that points to the VM host of the current executing
object. A running ABS node can thus control itself (or any other nodes), by
getting its system load or shutting down its own machine. However, after its
creation, a running ABS node will remain idle until some objects are creat-
ed/assigned to it. The spawns keyword is added to create objects that “live”
and execute in a remote DC:

Interf1 o1 = dc1 spawns Cls1(args ..);

o1 ! method1(args ..);

this.method2(o1);

The spawns behaves similar to the new keyword: it creates a new object
(inside a new COG), initializes it, and optionally calls its run method. Indeed, the
expression new Cls1(params) is equivalent to thisDC spawns Cls1(params).
The keyword spawns returns a remote object reference, (also called a proxy
object; o1 in the above example) that can be called asynchronously for its meth-
ods and passed around as a parameter. Every remote object reference is a single
“address” uniquely identified across the whole network of nodes. Calls to spawns
will also (besides shutdown, load) block a until the VM is up and running. From

438 N. Bezirgiannis and F. de Boer

a theoretical standpoint, a remotely-spawned object must point to the same code
(attributes and methods) as in a local object; a remark that is reinforced in the
Subsect. 3.1.

Whereas the development of ABS code is by-definition provider-dependent
— the user has to explicitly specify the class of the cloud provider —, the com-
munication and interaction between the spawned remote objects is (in principle)
provider-agnostic. To this extent, an ABS user could write an ABS cloud appli-
cation that spans over multiple cloud providers and, most importantly, different
cloud technologies.

Cloud Failures. In cloud computing, and in any distributed system in gen-
eral, failures are more frequent, mostly because of unreliable networks. Based
on this fact, we further extend ABS with proper support for extensible, asyn-
chronous exceptions. At the language level, exceptions are pure expressions
modeled as single-constructor values of the ADT Exception. To define new
exceptions the user writes a declaration similar to an ADT declaration, e.g.
exception MyException(Int, List < String >);. Our cloud extension prede-
fines certain common “local” exceptions (e.g. NullPointerException, Division-
ByZeroException) and cloud-related exceptions (e.g. NetworkErrorException,
DCAllocationException, DecodingException).

Exception values are either implicitly raised by a primitive operation (e.g.
DivisionByZeroException) or explicitly signaled using the throw keyword. To
recover from exceptions the user writes a try/catch/finally block as in Java,
the only difference being that the user can pattern-match on each catch-clause
for the exception-constructor arguments. Normally, if an exception reaches the
outermost caller without being handled, its process will stop. We introduce a
special built-in keyword named die that changes this behaviour and causes an
object to be nullified and all of its processes to stop. With this in hand, a
distributed application can easily model objects that can be remotely killed:

interface Killable { Unit kill(); }

class K implements Killable { Unit kill() { die; } }

Killable obj = dc1 spawns K();

obj ! kill();

Exceptions originating from asynchronous method calls are recorded in the
future values and propagated to their callers. When a user calls “future.get;”,
an exception matching the exception of the callee-process will be raised. If on
the other hand, the user does not call “future.get;”, the exception will not be
raised to the caller node. This design choice was a pragmatic one, to allow for
fire-and-forget method calls versus method calls requiring confirmation. In our
extension, we name this behaviour “lazy remote exceptions”, analogous to lazy
evaluation strategy.

3 Implementation

For the implementation, we rely on our abs2haskell backend/transcompiler.
Haskell is a statically-typed, purely-functional language and, as such, it becomes

ABS: A High-Level Modeling Language 439

straightforward to translate the ABS’ functional core to Haskell. In the impera-
tive layer, we model interfaces as Haskell’s typeclasses, objects as references to
mutable data (IORef in the Haskell world), and futures as synchronizing vari-
ables (MVar in Haskell). Nominal subtyping is achieved through an upcasting
typeclass. An alternative would be to encode OO using extensible records [6],
although this method widens the spectrum to structural subtyping.

At runtime, each COG becomes a Haskell lightweight thread (with SMP
parallelism). The COG-thread holds a process-enabled queue, a process-disabled
table, and a local mailbox. Upon an asynchronous method call, a new process is
created and put in the end of the process-enabled queue; note that processes are
not threads, they are coroutines (first-class continuations) and thus can be stored
as data. The COG resumes the next process from the queue until it reaches an
await (on a future or a condition), where the process is suspended and moved to
the process-disabled table. Later, another process informs the COG (by writing
to its mailbox) that the await-condition is met; the COG will move back the
process to the enabled queue. This strategy avoids busy-wait polling the await
conditions of processes.

Moving on to distributed programming, we extend our backend with layered
support for Cloud-Haskell [4], a framework for Haskell that replicates Erlang’s
concurrency & distribution model (message passing) but in a type-safe manner.
We reuse the network transports and serialization protocols defined in Cloud
Haskell for the ABS transmitted data between Virtual Machines. Each COG-
thread is accompanied with a separate Cloud-Haskell thread (also lightweight)
that listens for messages in public mailbox and forwards them to the local mail-
box of its associate COG-thread. This approach was chosen to firstly, avoid need-
less network-serialization between local communication and secondly, treat our
distributed extension as optional to our (previously SMP-only) haskell backend.

Serialization. ABS data have to be serialized to a standard format before trans-
mitting them between DCs. The serialization of values of primitives and algebraic
datatypes are automatically done by Haskell. We serialize object/future refer-
ences to proxy references by serializing their Cloud-Haskell thread ID (network-
unique) together with a COG-unique ID, and leaving out their actual attribut-
es/future results. Each asynchronous method call is serialized to a static closure,
i.e. a static code-pointer to the method (known at compile-time and platform-
independent) and a serialized environment of its free variables (method argu-
ments and local variables). No kind of code (source-, byte- or machine-code)
corresponding to the method body is transferred. All described-above serializa-
tions are type-safe and version-safe, in the sense that we include next to the
payload of an ABS datum, its serialized type signature and the library-versions
of any types involved; thus, we avoid decoding bugs because of type and library-
version mismatches.

Garbage Collection. In a local-only setting, all ABS-based values, i.e. ADTs,
futures, objects are automatically garbage-collected by the underlying Haskell
GC. However, in our distributed setting some object/future references may have

440 N. Bezirgiannis and F. de Boer

to be transmitted outside as proxy references, which results to the local ABS
system garbage-collecting “too-early”. An obvious solution would be to abolish
automatic GC altogether, but that would hinder the development of software
applications, especially those supposed to be long-running (as is the norm in
cloud applications). On the other hand, introducing distributed garbage collection
to ABS would allow both local and remote objects to be automatically GC’ed.
The downside is that the user can no longer reason about the GC-incurred per-
formance penalty which may be considerable. We chose a middleground where
objects are by default GC-enabled and only become disabled when they are
remotely communicated over (to another DC). The implementation has been
straight-forward: a process appends the local object reference(s) that are trans-
mitted remotely to a locally-held list of GC-disabled objects. This global list is
held during the lifetime of the node, effectively surpassing the Haskell’s garbage
collector underneath. Our design choice was based on best practice; we believe
that a distributed cloud ABS application of many DCs would contain a combi-
nation of a lot of local ephemeral objects, yet a few long-lived remote objects.

DCs, being special objects, are treated differently: when falling out of context
they are automatically GC’ed. That does not mean that the attached VM is
shut down. The user that wants to shutdown a DC but holds no reference to
it anymore, has to contact a remote object residing there to return a reference
to the DC (with thisDC), or to shut it down on user’s behalf. If the executing
program holds (now and in the future) no reference to a DC and its objects, we
consider its VM unreachable and fallen out of scope of the ABS application.

Futures are garbage-collected in a publish-subscribe pattern: the caller of an
asynchronous method is a subscriber, while the callee is the publisher. When
the callee has finished computing the future, it “pushes” the resulted value to its
caller (the direct subscriber) and may now locally garbage-collect that value. A
subscriber that “passes over” a remote future reference to other nodes becomes
an intermediate broker with the responsibility to later also “push” that future
value to all others before it is allowed to locally garbage-collect it. This forwarding
strategy avoids unnecessary tracking and network communication between the
initial node and all (directly and indirectly) subscribed nodes.

Cloud Architecture. When creating a new DC, a cloud provider is on the back-
ground contacted (usually via an XML-RPC API) and asked to bring up a new
VM with the given characteristics. After the machine has booted, the caller repli-
cates itself (the current ABS application) by transmitting its machine code to
the newly-created machine. In case the cloud provider offers heterogeneous plat-
forms (different OS or CPU architecture), we instead transmit the ABS source
code and compile it in-place with our compiler toolset (that prior reside in the
VM’s image). The new machine runs the transmitted ABS application and sends
an acknowledgment signal to its creator, which can now start computations to
the new DC by spawning new objects in it.

When it comes to network communication between machines, Cloud-Haskell
does not enforce any particular network transport; even different transports can
be composed together. Some existing implementations are TCP, AMQP, CCI,

ABS: A High-Level Modeling Language 441

in-memory, etc. In ABS, the particular transport used depends on the implemen-
tation of the DC-interfaced class: we currently have DC-class implementations
for OpenNebula (TCP), Azure (TCP) and Local (in-memory).

4 Experimental Results

We tested two instances of a real-world load-balancer: one with a static deploy-
ment of workers, and an adaptive (dynamic) load-balancer with worker VMs
created on-demand based on how “well” the workers can keep up with incoming
requests. Clients were submitting job requests (of approximately of equal size)
to the balancer in a steady rate; workers were distinct Cloud VMs that were
continuously computing the results for their incoming job requests.

The static load-balancer case is a fairly straight-forward cloud ABS appli-
cation, consisting of 3 classes of LoadBalancer, Worker, and Client, exchanging
asynchronous method calls of job requests/results. The LoadBalancer runs the
main block and initially creates N number of Worker DCs (VMs) before starting
accepting requests and forwarding to workers in round-robin. We ran this static
deployment against varying size (N=1..16) of worker VMs. The results of the
runs are shown in Fig. 1(a) stripped from the initial boot time of VMs. What
we can draw from these results is that the completed jobs (per minute) nearly
doubles when we double the number of worker VMs until we reach 5 workers.
After that, we still increase the completed jobs but with a slower pace. This
observation can be attributed to the fact that a point is reached where there is
not a significant benefit from adding more worker VMs; the rate of job requests
is always steady, thus worker VMs are “slacking”.

We modified the static load-balancer to an adaptive version, that takes full
advantage of the expressivivity of the cloud extension. The LoadBalancer creates
now only 1 initial VM. We accommodate the LoadBalancer with a HeartBeater
object which periodically retrieves the load of each worker in the VM “farm”. The
HeartBeater computes the average load of all VMs and if this average exceeds
80%, it creates a new DC (VM), adds it to the current farm, and remotely spawns
a Worker in the new DC. We illustrate a particular run of this configuration in
Fig. 1(b) (NB: VM boot times are not subtracted from the result). Each asterisk
∗ in (b) is a point where the HeartBeater decides to create a new DC. This
run stabilizes on 6 workers, which is a good approximation of maximum speed
(according to Fig. 1(a)), and possibly a good choice if we took into account any
VM costs. As an extra, the HeartBeater could potentially shutdown machines if
their load remained small (under a threshold) for a certain time.

The tests were conducted on the SURF cloud-provider with OpenNebula
IaaS, modern 8-cores, each with 8GB RAM and 20Gbps Ethernet. Interesting to
mention is that each worker can benefit from ABS multicore (SMP) parallelism.
A snippet of the HeartBeater follows with the full ABS code at our repository1:

1 Upstream abs2haskell repository at http://github.com/bezirg/abs2haskell.

http://www.surf.nl
http://github.com/bezirg/abs2haskell

442 N. Bezirgiannis and F. de Boer

class HeartBeater(List <Worker > farm , Balancer b) {

Unit beat() {

Rat avg = this.

if (avg > 80/100) {

DC dc = new NebulaDC (8 ,8192); // 8-core , 8GB RAM

Worker w = dc spawns Worker ();

farm = Cons(w,farm);

b ! updateFarm(farm); } } }

0 5 10 15

10

20

30

worker virtual machines

co
m

p
le

te
d
-j
o
b
s/

m
in

0 20 40

10

20

timeminutes

co
m

p
le

te
d
-j
o
b
s/

m
in

(a) Static deployment of VMs (b) Adaptive Deployment over time

Fig. 1. (a) Static deployment of VMs. (b) Adaptive Deployment over time

5 Related Work

With the introduction of the Cloud, a plethora of cloud technologies & tools have
appeared in the software community. We distinguish two categories of technolo-
gies related to our work: distributed-prog. languages and cloud middleware.

Distributed languages. Erlang is one of the first distributed-oriented languages
that next to the canonical message-passing communication, offers distinct fea-
tures, such as hot-code loading and serialization of arbitrary closures. This comes
with a cost in safety since the serialized Erlang data are untyped and usually
unversioned. Erlang’s builtin processes are lightweight threads whereas ABS
processes are coroutines (even more lightweight). The Akka framework brings
(typed) actors to the Scala language. Although Akka provides a rich library and
toolkit, it currently lacks a cloud-aware API. At runtime Akka is constrained by
a threadpool (since JVM threads are expensive) and actors are not able to use
cooperative scheduling and instead resort to a form of message routing. The Java
RMI (Remote Method Invocation) is a library bundled in the Java platform for
communication between remote objects. The product pioneered in areas such
as bytecode downloading and distributed-GC. The method invocation is strictly

http://akka.io

ABS: A High-Level Modeling Language 443

synchronous (the caller has to wait for the remote method to finish) and thread-
unsafe. JADE [2] is an active distributed multiagent system also built in Java;
agents are more expressive than actors at the expense of program complexity
and, possibly, performance.

Cloud middleware. Ubuntu JuJu is a tool primarily for scaling and orchestrating
a system’s deployment on the cloud. Juju also comes with a GUI for modeling
and visualizing a cloud deployment and saving it to a “recipe” for later reuse.
It is usually accompanied by a configuration-management tool (such as Puppet)
for the provisioning of cloud machines. CoreOS is a container-based OS that
provides service and configuration discovery. It can be thought as a low-level
infrastructure, primarily targeted to system administrators, for managing system
services across a cluster of cloud machines, The Aeolus research project has
built various tools that can derive an optimized deployment from the constraint-
based model of a desired deployment, and automatically deploy that derivation.
Finally, general SaaS supported by cloud providers eases the migration of existing
software to the cloud and its automatic scaling of deployment. Albeit dynamic, a
SaaS deployment can only vary on the CPU consumption, whereas our proposal
would allow a much more expressive deployment that can depend on arbitrary
application logic.

6 Conclusion and Future Work

We presented an extension to the ABS language that permits the management of
an application’s own cloud-deployment inside the language itself. We discussed
the realization of such extension (by a Haskell transcompiler) and the execution
of an ABS cloud application (based on Cloud-Haskell). Results showed that
ABS can benefit from the extra performance that the Cloud offers. Moreover, the
extension gives to ABS the expression power it needs to fuse the application logic
with the application’s own (dynamic) deployment logic. A positive side-effect of
the proposed extension is that, ABS being primarily a modeling language, could
now be used to model also an application’s deployment. Indeed, such cloud-aware
software models could be simulated against different and dynamically-varying
cloud deployment scenarios.

For future work we are considering additions both at the language and run-
time level. At the language level, it would be beneficial to include, besides the
system load, other metrics such as memory, disk usage, object count, process
count, exceptions raised. In this way, an ABS application would enhance its
monitor and cloud-control logic. In a different direction, we plan to work on
adding a basic service discovery mechanism to the standard library of ABS.
This can be simply realized by extending the DC interface with two extra me-
thods: an acquire(Interface obj) method that returns a reference to a remote
object implementing the provided Interface; an expose(Interface obj) that
subscribes the passed object together with its current interface-view to the ser-
vice registry of the DC.

http://jujucharms.com
http://coreos.com
http://www.aeolus-project.org/

444 N. Bezirgiannis and F. de Boer

At the system level, we are first interested in expanding our library support
for other common cloud providers (such as Amazon EC2, OpenStack). Besides
the current open (peer-to-peer) topology of DCs we want to add support for
other cloud topologies, such as provider-specific, slave-master, or supervision
topologies – a crude solution to topologies would be to introduce to the DC
interface a method List < DC > neighbours() that lists all ABS nodes residing
in the same private cloud network. A second consideration is to extend our vir-
tualization technology support. With the introduction of micro-kernels (see the
Xen hypervisor and unikernels), the cloud user no longer needs an OS under-
neath the application/service. By packaging the application into the kernel itself,
the startup time of the VM is greatly improved, as is its management & distri-
bution. The Haskell Lightweight Virtual Machine (HaLVM) is a promising such
technology that allows the user to: “run Haskell programs without a host operat-
ing system”. Likewise, containers (e.g. Docker), with its OS-level virtualization,
would allow us to offer a more fine-grained control of deployment.

We believe that the cloud extension of ABS leads to new opportunities for
furthering the application of formal methods to cloud computing, for example:
specifying, verifying, and monitoring Service Level Agreements (SLA) of software
systems — with that being the overall goal of ENVISAGE, our current research
project. Indeed, we like to envisage software that is aware of its deployment and
thus can control it, while its users merely monitor its behaviour via SLAs signed
between the interested parties.

References

1. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Costabs: a
cost and termination analyzer for ABS. In: PEPM, pp. 151–154 (2012)

2. Bellifemine, F., Poggi, A., Rimassa, G.: Jade-a fipa-compliant agent framework.
In: Proceedings of PAAM, vol. 99, pp. 33, London (1999)

3. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. ACM Sigplan
Not. 46(2), 13–22 (2011)

4. Epstein, J., Black, A.P., Peyton-Jones, S.: Towards haskell in the cloud. In: ACM
SIGPLAN Notices, vol. 46, ACM (2011)

5. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS,
vol. 6957, pp. 142–164. Springer, Heidelberg (2011)

6. Kiselyov, O., Lmmel, R., Schupke, K.: Strongly typed heterogeneous collections. In:
Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pp. 96–107 (2004)

7. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: generalizing active objects to concurrent
components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 275–299.
Springer, Heidelberg (2010)

8. Wong, P.Y.H., Albert, E., Muschevici, R., Proença, J., Schäfer, J., Schlatte, R.:
The abs tool suite: modelling, executing and analysing distributed adaptable objec-
toriented systems. STTT 14(5), 567–588 (2012)

http://www.xenproject.org/
http://corp.galois.com/halvm
https://www.docker.io/

	ABS: A High-Level Modeling Language for Cloud-Aware Programming
	1 Introduction
	2 ABS Language and its Cloud Extension
	2.1 Extending to the Cloud

	3 Implementation
	4 Experimental Results
	5 Related Work
	6 Conclusion and Future Work
	References

