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Abstract. We study two variants of the problem of contact representation of pla-
nar graphs with axis-aligned boxes. In a cube-contact representation we realize
each vertex with a cube, while in a proportional box-contact representation each
vertex is an axis-aligned box with a prespecified volume. We present algorithms
for constructing cube-contact representation and proportional box-contact repre-
sentation for several classes of planar graphs.

1 Introduction

We study contact representations of planar graphs in 3D, where vertices are represented
by interior-disjoint axis-aligned boxes and edges are represented by shared boundaries
between the corresponding boxes. A contact representation of a planar graph G is
proper if for each edge (u, v) of G, the boxes for u and v have a shared boundary with
non-zero area. Such a contact between two boxes is also called a proper contact. Cubes
are axis-aligned boxes where all sides have the same length. A contact representation of
a planar graph with boxes is called a cube-contact representation when all the boxes are
cubes. In a weighted variant of the problem a proportional box-contact representation
is one where each vertex v is represented with a box of volume w(v), for any function
w : V → R+, assigning weights to the vertices V . Note that this “value-by-volume”
representation is a natural generalization of the “value-by-area” cartograms in 2D.

Related Work: The history of representing planar graphs as contact graphs dates back
at least to Koebe’s 1930 theorem [13] for representing planar graphs by touching disks
in 2D. Proper contact representation with rectangles in 2D is the well-known rectan-
gular dual problem, for which several characterizations exist [14, 18]. Representations
with other axis-aligned and non-axis-aligned polygons [7, 11, 19] have been studied.
Related graph-theoretic, combinatorial and geometric problems continue to be of inter-
est [6, 8, 12]. The weighted variant of the problem has been considered in the context of
rectangular, rectilinear, and unrestricted cartograms [4, 9, 15].

Contact representations have been also considered in 3D. Thomassen [17] shows
that any planar graph has a proper contact representation with touching boxes, while
Felsner and Francis [10] find a (not necessarily proper) contact representation of any
planar graph with touching cubes. Recently, Bremner et al. [5] asked whether any pla-
nar graph can be represented by proper contacts of cubes. They answered the question
positively for the case of partial planar 3-trees and some planar grids, but the problem
remains open for general planar graphs. The weighted variant of the problem in 3D is
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much less studied, although recently Alam et al. [1] have presented algorithms for pro-
portional representation of several classes of graphs (e.g., outerplanar, planar bipartite,
planar, complete), using 3D L-shapes.
Our Contribution: Here we expand the class of planar graph representable by proper
contact of cubes. We also show that several classes of planar graphs admit propor-
tional box-contact representations. Specifically, we show how to compute a propor-
tional box-contact representation for plane 3-trees, while a cube-contact representation
for the same graph class follows from [5]. We also show how to compute a proportional
box-contact representation and a cube-contact representation for nested maximal outer-
planar graphs, which are defined as follows. A nested outerplanar graph is either an
outerplanar graph or a planar graph G where each component induced by the internal
vertices is another nested outerplanar graph with exactly three neighbors in the out-
erface of G. A nested maximal outerplanar graph is a subclass of nested outerplanar
graphs that is either a maximal outerplanar graph or a maximal planar graph in which
the vertices on the outerface induce a maximal outerplanar graph and each component
induced by internal vertices is another nested maximal outerplanar graph.

2 Preliminaries

A 3-tree is either a 3-cycle or a graph G with a vertex v of degree three in G such that
G− v is a 3-tree and the neighbors of v form a triangle. If G is planar, then it is called
a planar 3-tree. A plane 3-tree is a planar 3-tree along with a fixed planar embedding.
Starting with a 3-cycle, any planar 3-tree can be formed by recursively inserting a vertex
inside a face and adding an edge between the newly added vertex and each of the three
vertices on the face [3, 16]. Using this simple construction, we can create in linear time
a representative tree for G [16], which is an ordered rooted ternary tree TG spanning
all the internal vertices of G. The root of TG is the first vertex we have to insert into the
face of the three outer vertices. Adding a new vertex v in G will introduce three new
faces belonging to v. The first vertex w we add in each of these faces will be a child of
v in TG. The correct order of TG can be obtained by adding new vertices according to
the counterclockwise order of the introduced faces.

An outerplanar graph is one that has a planar embedding with all vertices on the
same face (outerface). An outerplanar graph is maximal if no edge can be added without
violating its outerplanarity. Thus in a maximal outerplanar graph all the faces except for
the outerface are triangles. For k > 1, a k-outerplanar graph G is an embedded graph
such that deleting the outer-vertices from G yields a graph where each component is at
most a (k − 1)-outerplanar graph; a 1-outerplanar graph is just an outerplanar graph.
Note that any planar graph is a k-outerplanar graph for some integer k > 0.

Let G be a planar graph. We define the pieces of G as follows. If G is outerplanar,
it has only one piece, the graph itself. Otherwise, let G1, G2, . . ., Gl be the components
of the graph obtained by deleting the outer vertices (and their incident edges) from G.
Then the pieces of G are all the pieces of Gi for each i ∈ {1, 2, . . . , l}, as well as
the subgraph of G induced by the outer-vertices of G. Note that each piece of G is
an outerplanar graph. Since G is an embedded graph, for each piece P of G, we can
define the interior of P as the region bounded by the outer cycle of P . Then we can
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Fig. 1. Illustration for the proof of Theorem 1.

define a rooted tree T where the pieces of G are the vertices of T and the parent-child
relationship in T is determined as follows: for each piece P ofG, its children are all the
pieces of G that are in the interior of P but not in the interior of any other pieces of G.
A piece of G has level l if it is on the l-th level of T . All the vertices of a piece at level
l are also l-level vertices. A planar graph is a nested outerplanar graph if each of its
pieces at level l > 0 has exactly three vertices of level (l − 1) as a neighbor of some of
its vertices. On the other hand a nested maximal outerplanar graph is a maximal planar
graph where all the pieces are maximal outerplanar graphs.

3 Representations for Planar 3-trees

Here we prove that planar 3-trees have proportional box-representations in two different
ways. The first one is a more intuitive proof; the second one includes a direct computa-
tion of the coordinates for the representation.

Theorem 1. Let G = (V,E) be a plane 3-tree with a weight function w. Then a pro-
portional box-contact representation of G can be computed in linear time.

First Proof: Let a, b, c be the outer vertices ofG. We construct a representation Γ forG
where b occupies the bottom side of Γ , a occupies the back of Γ − {b} and c occupies
the right side of Γ − {a, b}; see Fig. 1. Here for a set of vertices S, Γ − S denotes
the representation obtained from Γ by deleting the boxes representing the vertices in
S. The claim is trivial when G is a triangle, so assume that G has at least one internal
vertex. Let r be the root of the representation tree TG of G. Then r is adjacent to a,
b and c and thus defines three regions G1, G2 and G3 inside the triangles ∆1 = abr,
∆2 = bcr and ∆3 = car, respectively (including the vertices of these triangles). By
induction hypothesis Gi, i = 1, 2, 3 has a proportional box-contact representation Γi

where the boxes for the three vertices in ∆i occupy the bottom, back and right sides of
Γi. Define Γ ′i = Γi−∆i. We now construct the desired representation for G. First take
a box for r with volume w(r) and place it in a corner created by the intersection of three
pairwise-touching boxes; see Fig. 1. For each∆i, i = 1, 2, 3, there is a corner pi formed
by the intersection of the three boxes for ∆i. We now place Γ ′i (after possible scaling)
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in the corner pi so that it touches the boxes for the vertices in ∆i by three planes. Note
that this is always possible since we can choose the surface areas for a, b and c to be
arbitrarily large and still realize their corresponding weights by appropriately changing
the thickness in the third dimension. This construction requires only linear time, by
keeping the scaling factor for each region in the representative tree TG at the vertex
representing that region. Then the exact coordinates can be computed with a top-down
traversal of TG. ut
Second Proof: Assume (after possible factoring) that for each vertex v ofG, the weight
w(v) is at least 1. Let TG be the representative tree of G. For any vertex v of TG, we
denote by Uv , the set of the descendants of v in TG including v. The predecessors of
v are the neighbors of v in G that are not in Uv . Clearly each vertex of TG has exactly
three predecessors. We now define a parameter W (v) for each vertex v of TG. Let v1,
v2 and v3 be the three children of v in TG (where zero or more of these three children
may be empty). ThenW (v) is defined asΠ3

i=1[W (vi)+
3
√
w(v)], where U(vi) is taken

as zero when vi is empty. We can compute the value of W (v) for each vertex v of TG
by a linear-time bottom-up traversal of TG. Once we have computed these values, we
proceed on constructing the box-contact representation as follows.

a

(a) (b)

b

c

W(r)

W(v)

w(v)

W(v1)

W(v2)

W(v3)

Fig. 2. Illustration for the second proof of Theorem 1.

Let a, b, c be the three outer vertices of G in the clockwise order and let r be the
root of TG. We start by computing three boxes for a, b and c with the correct volume
as illustrated in Fig. 2(a), so that the volume of the dotted box R is W (r). We will now
construct a box representation of Ur inside R so that all the vertices in Ur adjacent to
an outer vertex is represented by a box with a face co-planar on the face of R adjacent
to box representing that outer vertex. We do this recursively by a top-down computation
on TG. Let v be a vertex of TG with the three predecessors u1, u2 and u3. LetD(v) be a
box with volumeW (v) and let t1, t2, t3 be three faces of it with a common point. While
traversing v, we compute a proportional box-contact representation of Uv inside D(v)
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where the vertices in Uv adjacent to ui for some i ∈ {1, 2, 3} is represented by a box
with a face co-planar with ti. Let v1, v2 and v3 are the three children of v in TG (where
zero or more of these children may be empty). Also assume that x1, x2, x3 are the
length, width and height of D(v), respectively and p is the common point of t1, t2 and
t3. Then first compute a box R(v) of volume w(v) for v with a corner at p where x′1, x′2
and x′3 are the length, width and height of R(v), such that x′i =

3
√

w(v)

W (v1)+
3
√

w(v)
. These

choices of x′i’s also creates three boxesD(vi) with volume at leastW (vi), i ∈ {1, 2, 3},
as illustrated in Fig. 2(b). Finally we recursively compute the box representations for
Uvi inside D(vi) for i ∈ {1, 2, 3} to complete the construction. ut

Theorem 2. [5] Let G be a plane 3-tree. Then a cube-contact representation of G can
be computed in linear time.

The proof of this claim also relies on the recursive decomposition of planar 3-trees.

4 Cube-Contacts for Nested Maximal Outerplanar Graphs

We prove the following main theorem in this section:

Theorem 3. Any nested maximal outerplanar graph has a proper contact representa-
tion with cubes.

We prove Theorem 3 by construction, starting with a representation for each piece
of G, and combining the pieces to complete the representation for G.

Let G be a nested maximal outerplanar graph. We first augment the graph G by
adding three mutually adjacent dummy vertices {A,B,C} on the outerface and then
triangulating the graph by adding dummy edges from these three vertices to the outer
vertices of G such that the graph remains planar; see Fig. 4(a). Call this graph the
extended graph of G. For consistency, let the three dummy vertices have level 0. The
observation below follows from the definition of nested maximal outerplanar graphs.

Observation 1 Let G be a nested-maximal planar graph and let G′ be the extended
graph of G. Then for each piece P of G at level l, there is a triangle of (l − 1)-level
vertices adjacent to the vertices of P and no other k-level vertices with k < l are
adjacent to any vertex of P .

Given this observation, we use the following strategy to obtain a contact represen-
tation of G with cubes. For each piece P of G at level l, let A, B and C be the three
(l − 1)-level vertices adjacent to P ’s vertices. Let P ′ be the subgraph of G induced
vertices of P as well as A, B and C; call P ′ the extended piece of G for P . We obtain a
contact representation of P ′ with cubes and delete the three cubes forA,B andC to ob-
tain the contact representation of P with cubes. Finally, we combine the representations
for the pieces to complete the desired representation of G.

Before we give more details on this algorithm, we have the following lemma, that
we use in this section. Furthermore this result is also interesting by itself, since for any
outerplanar graph O, where each face has at least one outer edge, Lemma 2 gives a
contact representation of O on the plane with squares such that the outer boundary of
the representation is a rectangle.
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Fig. 3. Illustration for the proof of Lemma 2.

Lemma 2. Let G be planar graph with outerface ABba and at least one internal ver-
tex, such that G−{A,B} is a maximal outerplanar graph. If there is no chord between
any two neighbors of A and no chord between any two neighbors of B, then G has
a contact representation Γ in 2D where each inner vertex is represented by a square,
the union of these squares forms a rectangle, and the four sides of these rectangles
represent A, B, b and a, respectively.

Proof: We prove this lemma by induction on the number of vertices in G. Denote the
maximal outerplanar graph H = G − {A,B}; see Fig. 3(a). If G contains only one
internal vertex v, then we compute Γ by representing v by a square R(v) of arbitrary
size and representing A, B, b and a by the left, bottom, right and top sides of R(v).

We thus assume that G has at least two internal vertices. Let u be the unique com-
mon neighbor of {a, b} in H . If u is a neighbor of A, then H − {a} is a maximal
outerplanar graph. By induction hypothesis, G − {a} has a contact representation Γ ′

where each internal vertex of G − {a} is represented by a square and the left, bottom,
right and top sides of Γ ′ represent A, B, b and u. Then we compute Γ from Γ ′ by
adding a square R(u) to represent u such that R(u) spans the entire width of Γ ′ and is
placed on top of Γ ′; see Fig. 3(b). A similar construction can be used if u is a neighbor
of B; see Fig. 3(c). We thus compute a contact representation for G; see Fig. 3(d). ut

4.1 Cube-Contact Representation for Extended Pieces

Lemma 3. Let P be a piece of G at level l and P ′ be the extended piece for P with
(l − 1)-level vertices A, B, C. Then P ′ has a cube-contact representation.

Proof: Let r be a common neighbor of B and C; s a common neighbor of A and C; t
a common neighbor of A and B. It is easy to find a contact representation of P ′ if r,
s and t are the only vertices of P , so let P have at least four vertices. The outer cycle
of P can be partitioned into three paths: Pa is the path from s to t, Pb is the path from
r to t and Pc is the path from r to s. Note that all vertices on the path Pa (Pb, Pc) are
adjacent to A (B, C). A chord (u, v) is a short chord if it is between two vertices on the
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same path from the set {Pa, Pb, Pc}. (Note that a chord between two vertices from the
set {r, s, t} is also a short chord.) We have the following two cases.
Case A: There is no short chord in P . In this case all the chords of P are between
two different paths. We consider the following two subcases.

Case A1: There is no chord with one end-point in {r, s, t}. In this case, due
to maximal-planarity there exist three vertices a, b and c, adjacent to A, B, and C,
respectively such that (i) ab is the chord between vertices of Pa and Pb farthest away
from t, (ii) bc is the chord between vertices of Pb and Pc farthest away from r, and (iii)
ac is the chord between vertices of Pa and Pc farthest away from s; see Fig. 4(a). We
can then find three interior-disjoint subgraphs of P ′ defined by three cycles of P ′: G1

is the one induced by all vertices on or inside ABba; G2 is induced by all vertices on
or inside BCcb; and G3 is induced by all vertices on or inside ACca. Each of these
subgraphs has the common property that if we delete two vertices from the outerface
(two vertices from the set {A,B,C} in each subgraph), we get an outerplanar graph.
From the representation with squares from the proof of Lemma 2, we find a contact
representation of Gi, i = 1, 2, 3 where each internal vertex of Gi is represented by a
cube and the union of all these cubes forms a rectangular box whose four sides realize
the outer vertices. We use such a representation to obtain a contact representation of P ′

with cubes as follows.
We draw pairwise adjacent cubes (of arbitrary size) for A, B, C. We need to place

the cubes for all the vertices of P in the a corner defined by three faces of the cubes
for A, B, C. Then we place three mutually touching cubes for a, b and c, which touch
the walls for A, B and C, respectively; see Fig. 4(b). We also compute a contact rep-
resentation of the internal vertices for each of the three graphs G1, G2 and G3 with
cubes using Lemma 2, so that the outer boundary for each of these representation forms
a rectangular pipe. We adjust the sizes of the three cubes for a, b and c in such a way
that the three highlighted rectangular pipes precisely fit these three representations (af-
ter some possible scaling). Note that this construction works even if one or more of the
subgraphs G1, G2 and G3 are empty. This completes the analysis of Case A1.

Case A2: There is at least one chord with one end-point in {r, s, t}. Due to
planarity all such chords will have the same end-point in {r, s, t}. Suppose s is this
common end point for these chords; see Fig. 5(a). Let b1 and bf be the first and last
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endpoints in the clockwise order of these chords around s. Then we can find two sub-
graphsG1 andG2 induced by the vertices on or inside two separating cyclesABb1s and
BCsbf . We find contact representations for the internal vertices of these two graphsG1

and G2 using Lemma 2 so that the outer-boundaries of these representation form rect-
angular pipes. We then obtain the desired contact representation for P ′, starting with the
three mutually touching walls for A, B and C at right angles from each other, placing
the cubes for s and b1, . . ., bf as illustrated in Fig. 5(b), and fitting the representations
for G1 and G2 (after some possible scaling) in the highlighted regions.

Case B: there are some shord chords in P . In this case, we find at most four subgraphs
from P ′ as follows. At each path in {Pa, Pb, Pc}, we find the outermost chord, i.e., one
that is not contained inside any other chords on the same path. Suppose these chords
are a1a2, b1b2 and c1c2, on the three paths Pa, Pb, Pc, respectively. Then three of these
subgraphs Ga, Gb and Gc are induced by the vertices on or inside the three triangles
Aa1a2, Bb1b2 and Cc1c2. The fourth subgraph P ∗ is obtained from P ′ by deleting all
the inner vertices of the three graphs Ga, Gb and Gc; see Fig. 6.

A cube representation of P ∗ can be found by the algorithm in Case A, as P ∗ fits
the condition that there is no chord between any two neighbors of the same vertex in
{A,B,C}. Note that by moving the cubes in the representation by an arbitrarily small
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amount, we can make sure that for each triangle xyz in P ∗, the three cubes for x, y
and z form a corner surrounded by three mutually touching walls at right angles to each
other. Now observe that each of the three graphs Ga, Gb and Gc is a planar 3-tree; thus
using the algorithm of either [5] or [10], we can place the internal vertices of these three
graphs in their corresponding corners, thereby completing the representation. ut

4.2 Cube-Contact Representation for a Nested Maximal Outerplanar Graph

Proof of Theorem 3: Let G be a nested maximal outerplanar graph. We build the
contact representation of G by a top-down traversal of the rooted tree T of the pieces
of G. We start by creating a corner surrounded by three mutually touching walls at
right angle to each other. Then whenever we traverse any vertex of T , we realize the
corresponding piece P at level l by obtaining a representation using Lemma 3 and
placing this in the corner created by the three already-placed cubes for the three (l−1)-
level vertices adjacent to P (after possible scaling). ut

5 Proportional Box-Contacts for Nested Outerplanar Graphs

In this section we prove the following main theorem.

Theorem 4. Let G = (V,E) be a nested outerplanar graph and let w : V → R+ be
a weight function defining weights for the vertices of G. Then G has a proportional
contact representation with axis-aligned boxes with respect to w.

We construct a proportional representation for G using a similar strategy as in the
previous section: we traverse the construction tree T of G and deal with each piece
of G separately. Each piece P of G is an outerplanar graph and hence one can easily
construct a proportional box-contact representation for P as follows. Any outerplanar
graph P has a contact representation with rectangles in the plane. In fact in [2], it was
shown that P has a contact representation with rectangles on the plane where the rect-
angles realize prespecified weights by their areas. Thus by giving unit heights to all
rectangles we can obtain a proportional box-contact representation of P for any given
weight function. However if we construct proportional box-contact representation for
each piece of G in this way, it is not clear that we can combine them all to find a pro-
portional contact representation of the whole graph G. Instead, we use this construction
idea in Lemmas 4 and 5 to build two different proportional rectangle-contact represen-
tations for outerplanar graphs and we use them in the proof of Theorem 4.

Suppose O is an outerplanar graph and Γ is a contact representation of O with
rectangles in the plane. We say that a corner of a rectangle in Γ is exposed if it is on the
outer-boundary of Γ and is not shared with any other rectangles.

Lemma 4. Let O be a maximal outerplanar graph with a weight function w. Let 1, . . .,
n be the clockwise order of the vertices around the outer-cycle. Then a proportional
rectangle-contact representation Γ of O for w can be computed so that rectangle R1

for 1 is leftmost in Γ , rectangle Rn for n is bottommost in Γ − R1, and the top-right
corner for each rectangle is exposed in Γ .
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Proof: We give an algorithm that recursively computes Γ . Constructing Γ is easy when
G is a single edge (1, n). We thus assume that G has at least 3 vertices. Let x be the
(unique) third vertex on the inner face that is adjacent to (1, n). Then graph G can be
split into two graphs at vertex x and edge (1, n): G[1, x] consists of the graph induced
by all vertices between 1 and x in clockwise order around the outer-cycle; whileG[x, n]
consists of the graph induced by the vertices between x and n.

Recursively draw G[1, x] and remove the rectangles for 1 and x from it; call the
result Γ1. Again recursively draw G[x, n] and remove x and n from it; call the result
Γ2. Now draw a rectangle Rx for x with area w(x). Let lx and hx be the width and
height of Rx, respectively. Then draw the rectangles R1 and Rn for 1 and n touching
the left and the bottom sides of Rx, respectively with necessary areas. Select the widths
and heights of these two rectangles such that the area lx(h1 − hn − hx) can contain
Γ1 while the area (wn − wx) ∗ hx can contain Γ2, where lj and hj denote the width
and height of Rj , respectively for j ∈ {1, n}. Finally place Γ1 (after possible scaling)
touching the right side ofR1 and the top side ofRx and place Γ2 (after possible scaling)
touching the right side ofRx and the top side ofRn to complete the drawing; see Fig. 7.

ut
Note that in the layout obtained above the top right corners of the rectangles for

vertices {1, . . . , n} have increasing x-coordinates and decreasing y-coordinates. Thus
we refer to them as Staircase layouts and to the algorithm as the Staircase Algorithm.

Lemma 5. Let O be a maximal outerplanar graph with a weight function w. Let 1, . . .,
n be the clockwise order of the vertices around the outer-cycle. Then a proportional
rectangle-contact representation Γ of O for w can be computed so that rectangle R1

for 1 is leftmost in Γ , rectangle Rn for n is bottommost in Γ − R1, and the top-right
corners of all rectangles for vertices {1, . . . , i} and the bottom-right corners of all
rectangles for vertices {i, . . . , n} are exposed in Γ .

Proof: We again compute Γ recursively. Constructing Γ is easy when G is a single
edge (1, n). We thus assume that G has at least 3 vertices. Let x be the (unique) third
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vertex on the inner face that is adjacent to (1, n). Define the two graphs G[1, x] and
G[x, n] as in the proof of Lemma 4; see also Fig. 8(a).

If x > i, then recursively draw G[1, x] and remove the rectangles for 1 and x from
it; call the result Γ1. Draw G[x, n] using the Staircase Algorithm. Now draw three
mutually touching rectanglesR1,Rx andRn for 1, x and n, respectively with necessary
areas such that the right side of R1 touches both Rx and Rn and the right side of Rx

has greater x-coordinate than the right side of Rn; see Fig. 8(b). Finally place Γ1 (after
possible scaling) touching the right side of R1 and the top side of Rx such that the right
side of the rectangle for (x − 1) extends past Rx. Also place Γ2 (after 90◦ clockwise
rotation and possible scaling) touching the bottom side of Rx and the right side of Rn

to complete the drawing (the width of Rx can be chosen long enough so that Γ2 can be
contained between the bottom side of Rx and the right side of Rn).

On the other hand if x = i we follow almost the same procedure as in the previous
paragraph. However, instead of the drawing ofG[1, x] recursively, we compute it by the
Staircase Algorithm and then delete from it 1 and x to obtain Γ1. We compute Γ2 as
in the previous section. We also draw R1, Rx and Rn in the same way. Then we place
Γ1 (after possible scaling) touching the right side of R1 and the top side of Rx (again
the width of Rx is chosen long enough so that this can be done). We also place Γ2 as
the same manner as before to complete the drawing; see Fig. 8(c).

Finally if x < i, then we draw G[1, x] by the Staircase Algorithm and delete from
it 1 and x to obtain Γ1. However, to compute Γ2, we recursively drawG[x, n] and delete
x and n from it. We now draw R1, Rx and Rn as before but this time the right side of
Rn should extend past Rx. We now place Γ1 (after possible scaling) touching the right
side of R1 and the top side of Rx (this is again possible for suitable choice of the height
ofR1). Finally we complete the drawing by placing Γ2 (after possible scaling) touching
the right side ofRx and the top side ofRn so that the right side of the rectangle for n−1
extends past Rn; see Fig. 8(d). ut

Note that in the layout obtained above the top-right corners for vertices {1, . . . , i}
and the bottom-right corners for vertices {i + 1, . . . , n} form two staircases. Thus we
refer to this as a Double-Staircase layout, to the algorithm as the Double-Staircase
Algorithm, and to vertex i as the pivot vertex.

Let O be a maximal outerplanar graph and let Γ be either a Staircase or a Double-
Staircase layout. Then any triangle {p, q, r} in O is represented by three rectangles
and the shared boundaries of these rectangles define a T-shape. The vertex whose two
shared boundaries are collinear in the T-shape is called the pole of the triangle {p, q, r}.

Proof of Theorem 4. Let T be the construction tree forG. We compute a representation
forG by a top-down traversal of T , constructing the representation for each piece as we
traverse it. Let P be a piece of G at the l-th level. If P is the root of T , then we use the
Staircase Algorithm to find a contact representation of P with rectangles in the plane
and then we give necessary heights to these rectangles to obtain a proportional contact
representation of P with boxes. Otherwise, the vertices of P are adjacent to exactly
three (l − 1)-level vertices A, B, C that form a triangle in the parent piece of P . Since
A, B, C belong to the parent piece of P , their boxes have already been drawn when
we start to draw P . To find a correct representation of G, we need that the boxes for
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the vertices in P have correct adjacencies with the boxes for A, B, and C; hence we
assume a fixed structure for such a triangle. We maintain the following invariant:

Let {p, q, r} be three vertices in a piece P of G forming a triangle. Then in the
proportional contact representation of P , the boxes for p, q, r are drawn in such a way
that (i) the projection of the mutually shared boundaries for these boxes in the xy-plane
forms a T-shape, (ii) the highest faces (faces with largest z-coordinate) of the three
rectangles have different z coordinates and the highest face of the pole-vertex of the
triangle has the smallest z-coordinate.

Note that by choosing the areas of the rectangles in the Staircase layout, we can
maintain this invariant for the parent piece by appropriately adjusting the heights of the
boxes(e.g., incrementally increasing heights for the vertices in the recursive Staircase
Algorithm).

We now describe the construction of a proportional box-contact representation of P
with the correct adjacencies forA,B andC. By the invariant the projection of the shared
boundaries for {A,B,C} forms a T-shape in the xy-plane. Without loss of generality
assume that A is the pole of the triangle and the highest faces of B, C and A are
in this order according to decreasing z-coordinates. Also assume that P is a maximal
outerplanar graph; we later argue that this assumption is not necessary.

Let ab be a common neighbor of A and B; bc a common neighbor of B and C; ca a
common neighbor of C and A. Then the outer cycle of P can be partitioned into three
paths: Pa is the path from ca to ab, Pb is the path from ab to bc and Pc is the path from
bc to ca. All the vertices on the path Pa (Pb, Pc, respectively) are adjacent to A (B, C,
respectively). We first assume that there is no chord in P between ca and a vertex on
path Pa. We consider the following two cases.

Case 1: No vertex of P is adjacent to all of {A,B,C}. We label the vertices of P in
the clockwise order starting from ca = 1 and ending at n, where n is the number of
vertices in P . Let i and j be the indices of vertices bc and ab, respectively. Let x be the
index of the vertex that is the (unique) third vertex of the inner face of P containing
the edge (1, n). Define the two graphs G[1, x] and G[x, n] as in the proof of Lemma 4.
We first find a proportional contact representation of P for w restricted to the vertices
of P using rectangles in the plane, then we give necessary heights to this rectangles.
Draw G[x, n] using the Staircase Algorithm and delete the rectangles for x and n to
obtain Γ2. Draw rectangles Rx and Rn for x and n, respectively, so that the bottom
side of Rx touches the top side of Rn, the left sides for both the rectangles have the
same x-coordinate and and the right side of Rn extends past Rx. Now place Γ2 (after
possible scaling) touching the right side of Rx and the top side of Rn (this is possible
since we can make the width ofRn sufficiently long); see Fig. 9. Place the rectangleR1

for 1 touching the left sides of Rx and Rn such that its bottom side is aligned with Rn

and its top side is aligned with the top side of the rectangle for j. To complete the rest
of the drawing, we have the following two subcases:

Case 1a: x ≤ i. We draw G[1, x] using the Staircase Algorithm and delete from it
the rectangles for 1 and x to obtain Γ1. We finally place Γ1 (after 90◦ counterclockwise
rotation and possible scaling) touching the top side of R1 and left side of Rx (this is
possible by choosing a sufficiently large height for Rx); see Fig. 9(a).
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Case 1b: x > i. We draw G[1, x] using the Double-Staircase Algorithm where i
is the pivot vertex. From this drawing, we delete the rectangles for 1 and x to obtain Γ1.
Finally place Γ1 (after 90◦ counterclockwise rotation and possible scaling) touching the
top side of R1 and left side of Rx such that the topside of the rectangle for (x− 1) goes
past the top side of Rx; see Fig. 9(b).

So far we used the function w to assign areas for the rectangles and obtained pro-
portional box-contact representation of P from the rectangles by assigning unit heights.
However, by changing the areas for the rectangles, we can obtain different heights for
the boxes. We will use this property to maintain adjacencies with {A,B,C}, as well as
to maintain the invariant. Specifically, once we get the box representation of P , we scale
it by increasing the heights for the boxes, so that when we place it at the corner created
by the T-shape for {A,B,C} it will not intersect the representation for any of its sibling
pieces in T . Consider the point p which is the intersection of the lines containing the
right side of the rectangle for i and the top side of the rectangle for j. We place Γ such
that the point p superimposes on the corner for the T-shape in the projection on the xy-
plane. Since the highest faces ofB, C andA are in this order according to z-coordinate,
the adjacencies of the vertices in P with {A,B,C} are correct. By appropriately choos-
ing the areas for the rectangles, we ensure that all the boxes for the vertices of P have
their highest faces above that of B and that the invariant is maintained.
Case 2: A vertex of P is adjacent to all of {A,B,C}. In this case at least one of
{A,B,C} has only one neighbor in P . Assume first that a vertex b (= ab = bc) of P
is adjacent to all of {A,B,C} and this is the only neighbor of B; see Fig. 9(c). Then
we follow the steps for Case 1a with b = j (and some vertex between x and b as i).
But when we finally place this representation of P on the corner for the T-shape of
{A,B,C} we find the point p to superimpose on this corner as follows. The point p is
on the line containing the top side of the rectangle for b and has x-coordinate between
the right sides of the rectangles for b and (b− 1).

If a vertex c (= bc = ca) is adjacent to all of {A,B,C} and is the only neighbor of
C in P , then we follow the steps of Case 1b with i = 2 and j = ab; see Fig. 9(d). We
find the point p to superimpose on the corner for the T-shape of {A,B,C} as follows.
The point p is on the line containing the top side of the rectangle for j = ab and has
x-coordinate between the left sides of the rectangles for 1 and 2.

If a vertex a (= ab = ca) is adjacent to all of {A,B,C} and is the only neighbor
of A in P , then we number the vertices of P in the clockwise order starting from the
clockwise neighbor of a and ending at a = n; see Fig. 9(e). We use the Staircase
Algorithm to find a representation of P with rectangles and give necessary heights to
obtain a representation with boxes. On the corner for the T-shape of {A,B,C}, we
superimpose the intersection point for the lines containing the top side of the rectangle
of n and the right side of the rectangle for bc.

Finally, we consider the case when there is a chord between ca and another vertex
on the path Pa. Take the innermost such chord and let its other end-vertex be t. Then
consider the two subgraphs P1 and P2 induced by all the vertices outside the chord and
inside the chord (along with the two vertices ca and t). P1 does not contain any chord
from ca; thus we use the algorithm above to obtain a representation of P1; denote this
by Γ ′. In this representation ca and t will play the roles of 1 and n, respectively. Each
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Fig. 9. Illustration for Theorem 4. Construction of the representation for a piece P of G, when
(a)–(b) no vertex of P is adjacent to all of {A,B,C}, and (c)–(e) a vertex of P is adjacent to all
of {A,B,C}.
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vertex of P2 is adjacent to A and we find a proportional contact representation of P2

and attach it with Γ ′ as follows. We use the Staircase Algorithm to find a proportional
contact representation of P2 with rectangles in the plane and delete the rectangles for ca
and t from it to obtain Γ ′′. In Γ ′, we change the height of the rectangle R1 for ca = 1
to increase its area so that its bottom side extends past the bottom side of the rectangle
Rn for t = n. Then we place Γ ′′ (after reflecting with respect to the x-axis and possible
scaling) touching the right side of R1 and the bottom side of Rn. Since the Staircase
Algorithm can accommodate any given area for the layout, we can change the heights
of the boxes for the vertices in P2 to maintain the invariant.

Thus with the top-down traversal of T , we obtain a proportional contact represen-
tation for O. We assumed that each piece of O is maximal outerplanar. However in the
contact representation, for each edge (u, v), either a face of the boxRu for u is adjacent
to the boxRv for v and no other box; or a face ofRv is adjacent toRu and no other box.
In both cases the adjacency between these two coxes can be removed without affecting
any other adjacency. Thus this algorithm holds for any nested outerplanar graph O. ut

6 Conclusions and Future Work

We proved that nested maximal outerplanar graphs have cube-contact representations
and nested outerplanar graphs have proportional box-contact representations. These
classes of graphs are special cases of k-outerplanar graphs, and the set of k-outerplanar
graphs for all k > 0 is equivalent to the class of all planar graphs. Even though our ap-
proach might generalize to large classes, cube-contact representations and proportional
box-contact representations are still open for general planar graphs.

Acknowledgments: We thank Therese Biedl, Steve Chaplick, Stefan Felsner, and Torsten
Ueckerdt for discussions about this problem.
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