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Abstract

We introduce delegatable functional signatures (DFS) which support the delegation of signing
capabilities to another party, called the evaluator, with respect to a functionality F . In a DFS,
the signer of a message can choose an evaluator, specify how the evaluator can modify the
signature without voiding its validity, allow additional input and decide how the evaluator can
further delegate its capabilities.

The main contribution of this paper is twofold. First, we propose DFS, a novel cryptographic
primitive that unifies several seemingly different signature primitives, including functional sig-
natures as defined by Boyle, Goldwasser, and Ivan (eprint 2013/401), sanitizable signatures,
identity based signatures, and blind signatures. To achieve this unification, we present several
definitions of unforgeability and privacy. Finding appropriate and meaningful definitions in this
context is challenging due to the natural mealleability of DFS and due to the multi-party setting
that may involve malicious keys.

Second, we present a complete characterization of the instantiability of DFS under common
assumptions, like the existence of one-way functions. Here, we present both positive and negative
results. On the positive side we show that DFS not achieving our notion of privacy can be
constructed from one-way functions. Furthermore, we show that unforgerable and private DFS
can be constructed from doubly enhanced trapdoor permutations. On the negative side we
show that the previous result is optimal regarding its underlying assumptions presenting an
impossibility result for unforgeable private DFS from one-way permutations.
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1 Introduction

Digital signature schemes resemble the idea of a hand written signature in the sense that a signer
signs messages with his private key sksig and anybody can check the validity of the signature using
the corresponding public key pksig. The elementary security property is unforgeability under chosen
message attacks which says that an adversary cannot compute a signature on a fresh message, even
if he has observed q signatures on q messages of his choice [29]. This security definition models
the idea of non-malleability for digital signatures: The adversary should not be able to modify any
signature such that it verifies for a different message.

For many emerging applications, such as the delegation of computation on authenticated data,
the basic notion is insufficient. Consider as an example the scenario where a user wants to outsource
computation on authenticated data to untrusted parties, called the evaluators, without handing
out her secret key. The evaluators are organized in a chain, where each evaluator receives the
intermediate result and computes a specific function f chosen by the user on the intermediate result
and its own input. The chain computation should be publicly verifiable which means that everybody
can verify that:

• The computation was based on the original data of the user.

• Only the functions chosen by the user were applied to the data (in the correct order).

• Any delegation of computation by an evaluator to a third party has been authorized by the
user.

For this scenario we consider malicious, non-colluding adversaries and the following security notions:
Unforgeability says that malicious evaluators can only apply the functions(s) they were allowed to
apply. Privacy says that given the result of a computation, it is not possible to gain information
about the computed functions or their input (or the parties that did the computation). Traditional
signature schemes as well as their malleable variants are not suitable in this setting. In this paper
we close this gap by introducing the concept of delegatable functional signatures.

1.1 Our Contribution

Our main contributions are as follows. First, we introduce delegatable functional signatures (DFS).
This primitive supports highly controlled, fine-grained delegation of signing capabilities to desig-
nated third parties and is general enough to cover several malleable signature schemes. Second, we
present strong security notions for unforgeability and privacy that also take into account insider ad-
versaries. Third, we provide a complete charaterization regarding the achievability of our security
notions based on general complexity assumptions. In the following we discuss each contribution
comprehensively.

Delegatable Functional Signatures. Delegatable functional signatures support the delegation
of signing capabilities to another party, called the evaluator, with respect to a functionality F . The
evaluator may compute valid signatures on messages m′ and delegate capabilities f ′ to another
evaluator with key k whenever (f ′,m′)← F(f, α, k,m) for a value α of the evaluators choice. Thus,
the functionality describes how an evaluator can perform the following two tasks.
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Malleability. The designated evaluator can derive a signature on m′ from a signature on m, if
(f ′,m′)← F(f, α, k,m), where the evaluator picks α and k himself.

Example 1. Suppose that Alice wants to allow Bob to fill in information in a few fields of a
document that she signs. Her choice of f describes the places where information can be added, as
well as which information can be added by Bob (e.g., 16 characters) without harming the validity
of the signature. Bob chooses the fields and the information he wishes to fill in by choosing the
corresponding value for α, and he derives a signature on m′, where (·,m′)← F(f, α, k,m).

Delegatability. The designated evaluator can delegate signing capabilities f ′ on his signature on m′,
to other parties, if (f ′,m′) ← F(f, α, k,m), where k is the key of another evaluator (or his own
key, if he wants to apply several functions successively) and where the evaluator picks α himself.

Example 2. Suppose that Alice wants to restrict how Bob can delegate further capabilities. Her
choice of f additionally describes that after filling in information, certain parts of the document can
be censored without harming the validity of the signature and she adds a description of the evaluators
that are allowed to do this second round of processing. Bob chooses a key of the next evaluator in
the chain as well as restrictions on which part may be censored by choosing the corresponding value
for α and delegates the capabilities f ′, where (f ′, ·)← F(f, α, k,m).

Our definition also covers signing capabilities for fresh messages. If Alice wants to give Bob the
capability to sign certain messages in her name, she can simply generate a signature σfresh for a
new (empty) message and use f to specify which capabilities Bob has, i.e., which signatures he can
derive from σfresh.

Security Model for DFS. A central contribution of this paper are the formal definitions of
unforgeability and privacy. On an abstract level, these notions resemble the well known intuition:
Unforgeability means that no signatures can be forged, except on messages within a certain class.
Privacy means that derived signatures are indistinguishable from fresh signatures. However, finding
meaningful and achievable definitions for DFS is rather challenging, because the signatures are
malleable by nature and we are also considering the multi-party setting:

Unforgeability In a DFS scheme the signer specifies for every signature the degree of malleability
and how this malleability can be delegated. Unforgeability is then captured by a transitive
closure that contains all messages that can trivially be derived.

Privacy Our notion of privacy follows the idea that all information about signatures should be
hidden (except for the message). This is captured in an indistinguishability game where the
adversary can hand in a signature of his own. Either this signature is treated exactly as
the adversary specifies it (modified by evaluators of his choice, possibly under keys of the
adversary possesses) or a new signature for the same (resulting) message is created.

For both unforgeability and privacy we present three different security notions for DFS schemes:
The weakest one, unforgeability/privacy against outsider attacks, holds only for adversaries that do
not have access to the private key of an evaluator. The second one, unforgeability/privacy against
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insider attacks, assumes that an evaluator is malicious and possesses a honestly generated evalua-
tor key. The third one, unforgeability/privacy against strong insider attacks assumes a malicious
evaluator that might generate its own keys.

Unifying signature primitives. Delegatable functional signatures are very versatile and imply
several seemingly different signature primitives. These include functional signatures, which were
recently introduced by Boyle, Goldwasser, and Ivan [14], blind signatures, identity based signatures,
sanitizable signatures and redactable signatures.

Instantiability of DFS. We give a complete characterization of the instantiability of DFS from
general complexity based assumptions presenting both positive and negative results.

Possibility of DFS.On the positive side we show that DFS can be constructed from one-way functions
in a black-box way if one gives up privacy.

Theorem 1 (Possibility, informal). Unforgeable delegatable functional signatures exist if one-way
functions exist.

Furthermore, we show that unforgeable and private DFS schemes can be constructed from
(doubly enhanced) trapdoor permutations in a black-box way. Our scheme shows that our strong
definitions for unforgeability and privacy are achievable for arbitrary, efficiently computable, choices
of F .

Theorem 3 (Possibility, informal). Private unforgeable delegatable functional signatures exist if
doubly enhanced trapdoor permutations exist.

Impossibility of DFS. We show that the previous result is optimal w.r.t. the underlying assumptions.
We show that unforgeable and private delegatable functional signatures cannot be constructed from
one-way functions. The basic idea is to construct a blind signature scheme out of any functional
signature scheme in a black-box way. Recently, Katz, Schröder, and Yerukhimovich have shown
that blind signature schemes cannot be build from one-way permutations using black-box techniques
only [34]. A construction of DFS based on OWFs would yield a black-box construction of blind
signature schemes based on OWFs. However, this would directly contradict the result of [34].

Theorem 2 (Impossibility, informal). Private unforgeable delegatable functional signatures secure
against insider adversaries cannot be constructed from one-way functions in a black-box way.

1.2 Related Work

(Delegatable) Anonymous Credentials. In anonymous credential systems users can prove
the possession of a credential without revealing their identity. We view this very successful line
of research as orthogonal to our work: Credentials can be applied on top of a signature scheme
in order to prove properties that are specified in an external logic. In fact, one could combine
delegatable functional signatures with credentials in order to partially leak the delegation chain,
while allowing to issue or modify credentials in an anonymous but controlled way. Anonymous
credential systems have been investigated extensively, e.g., [15, 16, 20, 21, 8, 22, 39, 19, 24]. The
main difference between delegatable anonymous credential schemes, such as [7, 2], and our approach
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is that delegation is done by extending the proof chain (and thus leaking information about the
chain). Restricting the properties of the issuer in a credential system has been considered in [6].
However, they only focus on access control proofs and their proof chain is necessarily visible, whereas
our primitive allows for privacy-preserving schemes.

Malleable Signature Schemes. A limited degree of malleability for digital signatures has been
considered in many different ways. First we give an overview over schemes that do not consider a
special secret key for modifying signatures, which means that everyone with access to the correct
public key and one or more valid message-signature pairs can derive new valid message-signature
pairs. There are schemes that allow for redacting signatures [38, 32, 36, 17] that allow for deriving
valid signatures on parts (or subsets) of the message m. There are schemes that allow for deriving
subset and union relations on signed sets [32], linearly homomorphic signature schemes [27, 13] and
schemes that allow for evaluating polynomial functions [12].

However, all approaches mentioned above only consider static functions or predicates (one func-
tion or predicate for every scheme) and leave the signer little room for bounding a class of functions
to a specific message. As the signatures can be modified by everyone with access to public informa-
tion, they do not allow for a concept of controlled delegation.

Sanitizable signature schemes [4, 18] extend the concept of malleable signatures by a new secret
key skSan for the evaluator. Only a party in possession of this key can modify signatures. In
general, this primitive allows the signer to specify which blocks of the message can be changed,
without restricting the possible content. However, they do not consider delegation and they do not
allow for computing arbitrary functions on signed data.

Anonymous Proxy Signatures [28] consider delegation of signing rights in a specific context. For
example, the delegator may choose a subset of signing rights for the tasks of quoting. Their notion
of privacy makes sure that all delegators remain anonymous. The main difference to our work is that
they only allow delegation on the basis of the keys and that they do not support restricting further
delegation, whereas we support restricting delegation capabilities depending on each message.

Constructing delegatable anonymous credentials out of malleable signatures has very recently
been investigated by Chase et al. [23]. However, the authors only consider one fixed set of allowable
transformations per malleable signature scheme and do not allow the signer to restrict malleability
(per message) nor does their system allow any way to restrict delegation.

The general framework by Ahn et al. [3] is versatile and, like delegatable functional signatures,
unifies a variety of signature notions. A variety of instantiations can be captured in their framework
using their predicate P to describe a complex functionality for deriving signatures. In fact, it
seems possible to describe delegatable functional signatures in their framework by encoding the
functionality in a complex predicate and by encoding the keys of the evaluators as specifically
structured signatures. However, so far there exist no construction for their framework that is
capable of dealing with such predicates (their constructions support single element sets M, but
to encode our scheme, at least sets of size two are required). Moreover, they do not explore the
minimal computational assumptions.

1.3 Independent Concurrent Work

In a concurrent and independent work, Boyle, Goldwasser, and Ivan [14] introduced functional
digital signatures. In their formulation the signer hands out keys skf for functions f to allow the
recipient to sign all messages in the range of f . Similar to our contributions, they define notions of
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unforgeability and privacy (called function privacy) and present several constructions for functional
digital signatures. One of their constructions also shows that functional signatures can be build
from one-way functions provided that one is willing to give up privacy. They furthermore show how
to construct one-round delegation schemes out of a functional digital signature scheme.

While our work is closely related, it differs in several aspects: First, we not only consider the
controlled malleability of the signature, but also support the delegation of signing capabilities.
Second, while we also show for our notions that unforgeable-only DFS schemes can be build from
one-way functions, we additionally show that private DFS schemes can not be constructed from
from one-way permutations (see Section 4). We believe that our impossibility result should also
hold for their definition of functional signatures [14], because our impossibility result does not rely on
the delegation property of our scheme. Furthermore, DFS signatures allow for authenticated chain
computations. In Appendix A we compare delegatable functional signature schemes to functional
digital signature schemes and show how to construct a functional digital signature scheme out of a
delegatable functional signature scheme. Whether the converse holds is unknown (see Appendix A.2
for a discussion).

2 Delegatable Functional Signatures

Delegatable functional signatures support the delegation of signing capabilities to another party,
called the evaluator, with respect to a functionality F . The evaluator may compute valid signatures
on messages m′ and delegate capabilities f ′ to another evaluator with key k whenever (f ′,m′) ←
F(f, α, k,m) for a value α of the evaluators choice.

Our definition of DFS limits the delegation capabilities of the evaluator. In particular, the signer
specifies how an evaluator may delegate his signing rights.

2.1 Formal Description of a DFS scheme

A delegatable functional signature (DFS) scheme over a message space M, a key space K, and
parameter spaces Pf and Pα is a signature scheme that additionally supports a controlled form of
malleability and delegation. A DFS is described by a functionality F : N × Pf × Pα × K ×M →
(Pf ×M)∪{⊥} that specifies how messages can be changed and how capabilities can be delegated.
Once the signer received a message-signature pair, it can compute signatures on messages of its
choice (that are legitimate w.r.t. F) and can partially delegate his signing capabilities to another
evaluator. We model this property by introducing an algorithm EvalF for evaluating functions on
signatures. This algorithm takes as input the parameter α that defines the evaluator’s own input
to the function f , the message m, and a key pk′ev. The algorithm EvalF outputs a signature σ′ on
m′, where (f ′,m′) ← F(λ, f, α, pk′ev,m). This new signature σ′ can be changed by an evaluator
that owns a (possibly different) key sk′ev and this evaluator can transform it further with the new
capability f ′.

Definition 1. (Delegatable functional signatures). A delegatable functional signature scheme DFSS
is a tuple of efficient algorithms DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) defined as follows:

(pp,msk)← Setup(λ): The setup algorithm Setup outputs public parameters pp and a master secret
key msk.
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(sksig,pksig)← KGensig(pp,msk): The signature key generation algorithm outputs a secret signing
key sksig and a public signing key pksig.

(skev,pkev)← KGenev(pp,msk): The evaluation key generation algorithm KGenev outputs a secret
evaluator key skev and a public evaluator key pkev.

σ ← Sig(pp, sksig,pkev, f,m): The signing algorithm Sig outputs a signature σ on m, on which
functions from the class f can be applied (or an error symbol ⊥).

σ̂ ← EvalF (pp, skev,pksig, α,m,pk
′
ev, σ): The evaluation algorithm outputs a derived signature σ̂

for m′ on the capability f ′, that can be modified using the evaluator key sk′ev associated with
pk′ev, where (f ′,m′)← F(λ, f, α, pk′ev,m) (or an error symbol ⊥).

b← Vf(pp,pksig,pkev,m, σ): The verification algorithm Vf outputs a bit b ∈ {0, 1}.

A DFS is correct if the verification algorithm outputs 1 for all honestly generated signatures
and for all valid transformations of honestly generated signatures.

Formally, we define a correctness set S of all message/signature pairs for which Vf should output
1 as follows:

Definition 2. (F-Correctness). Given a delegatable functional signature scheme DFSS = (Setup,
KGensig,KGenev, Sig,EvalF ,Vf), let the correctness set SF for a functionality F be a set such that:

∀f ∈ Pf , α ∈ Pα,m ∈M, (msk, pp) ∈ [Setup(λ)], (sksig, pksig) ∈ [KGensig(pp,msk)],
(skev, pkev), (sk

′
ev, pk

′
ev) ∈ [KGenev(pp,msk)]

1) (pp,m, f, σ, pksig, pkev) ∈ SF for all σ ∈ [Sig(pp, sksig, pkev, f,m)].

2) If (pp,m, f, σ, pksig, pkev) ∈ SF , F(λ, f, α, pk′ev,m) = (f̂ , m̂) with m̂ ∈ M, f̂ ∈ Pf , then
(pp, m̂, f̂ , σ̂, pksig, pk

′
ev) ∈ SF for all σ̂ ∈ [EvalF (pp, skev, pksig, α,m, pk

′
ev, σ)]

A delegatable functional signature scheme DFSS = (Setup, KGensig,KGenev, Sig,EvalF ,Vf) is
F-correct for the functionality F if for all elements (pp,m, f, σ, pksig, pkev) ∈ SF it holds that
Vf(pp, pksig, pkev,m, σ) = 1.

3 Security Notions for DFS

In this section we define unforgeability and privacy for delegatable functional signatures. In both
cases we distinguish between outsider and insider attacks: In an outsider attack, the adversary only
knows both public keys, whereas an adversary launching an insider attack knows the private key of
the evaluator. Informally we say that a delegatable functional signature scheme provides privacy if
it is computationally hard to distinguish whether a signature was created by the signer or whether
it was modified by the evaluator. In the following subsections we discuss the intuition behind each
definition in more detail and provide formal definitions.

For the following security definitions we follow the concept of Bellare and Rogaway in defining
the security notions as a game G(DFSS,F ,A, λ) [11]. Each game G behaves as follows: First, it
invokes an algorithm Initialize with the security parameter and sends its output to the algorithm A.
Then it simulates A with oracle access to all specified algorithms Query[x] that are defined for G. It
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also allows A to call the algorithm Finalize once and ends as soon as Finalize is called. The output
of Finalize is a boolean value and is also the output of G. Note that G is allowed to maintain state.
We say that A “wins” the game if G(DFSS,F ,A, λ) = 1.

3.1 Unforgeability

Intuitively, a delegatable functional signature scheme is unforgeable, if no adversary A is able to
compute a fresh message-signature pair that is not trivially deducible from its knowledge. In the
case of regular signature schemes this means that the attacker needs to compute a signature on
a fresh message. The situation here is more complex, because our signatures are malleable and
because several parties are involved (and they may even use malicious keys). We present three
different unforgeability notions:

Unforgeability against outsider attacks. We model the outsider as an active adversary that
knows the public keys (pksig, pkev) and has oracle access to both the Sig and the EvalF algorithm.
Our definition of unforgeability against outsider attacks resembles the traditional definition of un-
forgeability for signature schemes [30], where the adversary knows the public-key and has access to
a signing oracle.

Unforgeability against (weak/strong) insider attacks. Our second definition considers the
case where the evaluator is malicious. We define two different notions depending on the capabilities
of the adversary. That is, our first definition that we call unforgeability against weak insider attacks
(or just insider attacks), gives the attacker access to an honestly generated private key skev. The
second notion allows the adversary to choose its own private key(s) maliciously. Note, that the
attacker might choose these keys adaptively. We refer to this notion as unforgeability against strong
insider attacks.

We model our notions by giving the adversary access to three different KGen oracles. An
adversary only using Query[KGenP] to retrieve public keys is considered an outsider, an adversary
that additionally has access to the oracle Query[KGenS] to retrieve one or more secret evaluator
keys is considered an insider. An adversary that additionally has access to the oracle Query[RegKey]
to (adaptively) register its own (possibly malicious) evaluator keys is considered a S-Insider. All
adversaries have access to the honestly generated public signer key pksig. The set KC stores all
key pairs, KA contains all public for which the adversaries knows the private key, and Q stores
A’s queries to both Query[Sign] and Query[Eval]. To handle the information that an adversary can
trivially deduce from its queries, we define the transitive closure for functionalities.

Definition 3. (Transitive closure of functionality F). Given a functionality F , we define the n-
transitive closure Fn of F on parameters (λ, (f,m)) recursively as follows:

• For n = 0, F0(λ, (f,m)) := {(f,m)}.

• For n > 0, Fn(λ, (f,m)) := {(f,m)}
⋃

α,pk′ev

Fn−1(λ,F(λ, f, α, pk′ev,m))

We define the transitive closure F∗ of F on parameters (λ, (f,m)) as F∗(λ, (f,m)) :=
∞⋃
i=0
F i(λ, (f,m)).

Note that the transitive closure F∗ on (λ, (f,m)) might not be efficiently computable (and thus
a challenger for Unf might not be efficient).
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Although it is not necessary to compute the closure explicitly in our case, one could require
a DFSS to provide an efficient algorithm Check−F such that Check−F(λ, f,m,m∗) = 1 iff m ∈
F∗(λ, (f,m)).

proc Initialize (λ):

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

store (pp,msk, sksig, pksig)

set KC := ∅,KA := ∅,Q := ∅
output (pp, pksig)

proc Finalize(m∗, σ∗, pk∗ev) :

if ∃(f,m, pkev, ·) ∈ Q, s.t.
pkev ∈ KA ∧m∗ ∈ F∗(λ, (f,m))

output 0

else
if (·, ·,m∗, ·, ·) ∈ Q

output 0

else
retrieve (pp, pksig)

b← Vf(pp, pksig, pk
∗
ev,m

∗, σ∗)

output b

proc Query[KGenP]() :

retrieve (pp,msk)
(skev, pkev)← KGenev(pp,msk)
set KC := KC ∪ (skev, pkev)
output (pkev)

proc Query[KGenS]() :

retrieve (pp,msk)
(skev, pkev)← KGenev(pp,msk)
set KC := KC ∪ {(skev, pkev)}
set KA := KA ∪ {pkev}
output (skev, pkev)

proc Query[RegKey](sk∗ev, pk
∗
ev) :

set KC := KC ∪ {(sk∗ev, pk∗ev)}
set KA := KA ∪ {pk∗ev}

proc Query[Sign](pk∗ev, f,m) :

retrieve (pp, sksig)
if (·, pk∗ev) ∈ KC
σ ← Sig(pp, sksig, pk∗ev, f,m)

set Q := Q∪ {(f,m, pk∗ev, σ)}
output σ

else output⊥

proc Query[Eval](pk∗ev, α,m, pk
′
ev, σ) :

retrieve (pp, pksig)

if (sk∗ev, pk
∗
ev) ∈ KC ∧ (·, pk′ev) ∈ KC

σ′ ← EvalF (pp, sk∗ev, pksig, α,m, pk
′
ev, σ)

if σ′ 6= ⊥
extract f from σ using sk∗ev
let (f ′,m′) := F(λ, f, α, pk′ev,m)

set Q := Q∪ {f ′,m′, pk′ev, σ′}
output σ′

else output ⊥

Figure 1: Unforgeability for delegatable functional signature schemes.

Definition 4. (Unforgeability Against X ∈ {Outsider, Insider, S-Insider} Attacks). Let DFSS =
(Setup,KGensig,KGenev, Sig,EvalF ,Vf) be a delegatable functional signature scheme. The definition
uses the game Unf(DFSS,F ,A, λ) defined in Figure 1. We say that DFSS is existential unforgeable
against X-attacks (EU-X-A) for the functionality F if for all PPT adversaries AX

AdvEU-X-A
DFSS,F ,AX

= Pr [Unf(DFSS,F ,AX , λ) = 1]

is negligible in λ, where AOutsider can neither invoke the oracles Query[KGenS] nor Query[RegKey];
the attacker AInsider can not make use of Query[RegKey] and the adversary AS-Insider is not restricted
in its queries.

Remark: We assume implicitly that f can be extracted from σ using skev from any valid query
to EvalF . We believe that this is a reasonable assumption, because the evaluator that transforms
a signature should learn the value f , as it describes the capabilities of the evaluator. In fact, our
construction (Section 5) satisfies this property.

Remark on measuring the success of A: The success of the adversary is determined by
the challenger and measured in the Finalize algorithm. Although not stated explicitly, Finalize
distinguishes between outsiders and insiders. Within the oracles Query[Sign] and Query[Eval], the
challenger only allows to delegate to keys that are “known” to it, which is formalized with the set KC .
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The oracle Query[Eval] only allows the delegation to keys that are known to the challenger. Note
that his does not restrict the adversary, but allows the challenger to distinguish between weak insider
and strong insider. Whenever a message has been signed either by Query[Sign] or Query[Eval], this
message is included in Q, together with the public key of the evaluator to whom the message was
delegated and together with the parameters that state what this evaluator can trivially deduce from
the signature.

The setKA is the set of all public evaluator keys pkev for which the adversary knows the secret key
skev. Consequently, KA is initially empty and is only extended by Query[KGenS] and Query[RegKey].
Whenever A delegates a signature to a key pk′ev ∈ KA, the finalize algorithm will later discard all
message-signature pairs that are trivially deducible from this signature.

For both outsiders (KA = ∅) and insiders (KA 6= ∅), we require that the forgery message m∗

is a fresh message, i.e., it has not been signed by the challenger, which is formally expressed by
(·,m∗, ·, ·) 6= Q. Observe that a different public key pkev might have been used when signing a
message as compared to when verifying the resulting signature.

We leave it up to the signature scheme to decide whether a signature can verify under different
evaluator keys. As a matter of fact: There can be schemes where Vf does not need to receive pkev
at all.

3.2 Relations between the unforgeability notions

The three notions of unforgeability describe a hierarchy of adversaries. It is intuitive, that security
against outsider attacks does not imply security against insider attacks, as the key skev of the
evaluator can indeed leak enough information to construct the signature key sksig out of it.

However, although an insider adversary is stronger than an outsider adversary, making use
of the additional oracle can weaken an adversary. Consider a scheme with only one valid public
evaluator key pkev, that allows an insider to change messages inside signatures to arbitrary values,
but that also leaks the secret signing key sksig with every signature. An insider that received sksig
can not create a forgery, since every message he creates after receiving at least one signature is
not considered a forgery: he could have computed them trivially using TransFG . Without invoking
Query[KGenS], the adversary can request a signature and subsequently forge signatures for arbitrary
messages, using the key sksig he received with the signature.

An S-Insider is again stronger than an insider or an outsider. A scheme can become insecure if
a certain key pair (skev, pkev) is used that is highly unlikely to be an output of KGenev (e.g., one of
them is 0λ).

Proposition 1 (EU-X-A-Implications). Let DFSS be a functional signature scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider s.t.

AdvEU-IA
DFSS,F ,AInsider

≥ AdvEU-OA
DFSS,F ,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider s.t.

AdvEU-SIA
DFSS,F ,AS-Insider

≥ AdvEU-IA
DFSS,F ,AInsider
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3.3 Privacy

Our privacy notion for DFS says that it should be hard to distinguish the following two signatures:

• a signature on a message m′ that has been derived from a signature on a challenge message
m by one or more applications of EvalF .

• a fresh signature on m′, where (·,m′)← F(. . .) was computed via one or more applications of
F to m.

This indistinguishability should hold even against an adversary with oracle access to KGenev, Sig
and EvalF that can choose which transformations are to be applied to which challenge message m
and under which evaluator keys (even if they are known to the adversary), as long as the resulting
signature is not delegated to the adversary.

Analogously to our definitions of unforgeability, we distinguish between three different types
of adversaries, depending on their strength: outsiders, insiders and strong insiders. We model
this by giving the adversary access to three different KGen oracles that are defined analogously to
Definition 19 in Section 3.1. In the following definition, the set KC stores all key pairs, KA contains
all public keys for which the adversaries knows the private key, and KX stores the keys used in the
challenge oracle Query[Sign-F ]. Note that is necessary to check that the adversary did not learn a
private key for a key used by the challenge oracle, or it can simply revoke the privacy afterwards.

proc Initialize (λ):

b← {0, 1}
(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

store (b, pp,msk, sksig, pksig)

set KC := ∅,KX := ∅
set KA := ∅
output (pp, sksig, pksig)

proc Finalize(b∗) :

retrieve b
if b = b∗ ∧ KX ∩ KA = ∅ then output 1

else output 0

proc Query[Eval](pk∗ev, α,m, pk
′
ev, σ) :

retrieve (pp, pksig)

if (sk∗ev, pk
∗
ev) ∈ KC ∧ (pk′ev, ·) ∈ KC

σ′ ← EvalF (pp, sk∗ev, pksig, α,m, pk
′
ev, σ)

output σ′

proc Query[KGenP]() :

retrieve (pp,msk)
(skev, pkev)← KGenev(pp,msk)
set KC := KC ∪ (skev, pkev)
output (pkev)

proc Query[KGenS]() :

retrieve (pp,msk, sksig)
(skev, pkev)← KGenev(pp,msk)
set KC := KC ∪ {(skev, pkev)}
set KA := KA ∪ {pkev}
output (skev, pkev)

proc Query[Sign](pk∗ev, f,m) :

retrieve (pp, sksig)
if (·, pk∗ev) ∈ KC
σ ← Sig(pp, sksig, pk∗ev, f,m)

output σ

proc Query[RegKey](sk∗ev, pk
∗
ev) :

set KC := KC ∪ {(sk∗ev, pk∗ev)}
set KA := KA ∪ {pk∗ev}

proc Query[Sign-F ]([pkev, α]t0, t,m0, σ0) :

retrieve (b, pp, sksig, pksig)

if (·, pkev[t]) /∈ KC ∨ f 6= f0 output ⊥
if Vf(pp, pksig, pkev[0],m0, σ0) 6= 1 then output ⊥
if ¬∃sk∗ev. (sk∗ev, pkev[0]) ∈ KC output ⊥
extract f0 from σ0 using sk∗ev
for i ∈ {1, . . . , t}
if ¬∃sk∗ev. (sk∗ev, pkev[i− 1]) ∈ KC
output ⊥

(fi,mi) := F(λ, fi−1, α[i], pkev[i],mi−1)

qi := (pp, sk∗ev, pksig, α[i],mi−1, pkev[i], σi−1)

σi ← EvalF (qi)

set KX := KX ∪ {pkev[t]}
if b = 0 ∧ σt 6= ⊥
σ ← Sig(pp, sksig, pkev[t], ft,mt)

else
σ := σt

output σ

Figure 2: Privacy under chosen functionality attacks CFA for delegatable functional signature
schemes.

Definition 5. (Privacy under chosen function attacks (CFA)) against X ∈ {Outsider, Insider,
S-Insider}. Let DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) be a delegatable functional signature
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scheme. The definition uses the game CFA(DFSS,F ,A, λ) defined in Figure 2. We say that DFSS
is privacy-preserving under chosen function attacks (X-CFA) for the functionality F if for all PPT
adversaries AX

AdvPP-X-CFA
DFSS,F ,AX

=

∣∣∣∣Pr [CFA(DFSS,F ,A, λ) = 1]− 1

2

∣∣∣∣
is negligible in λ, where AOutsider can neither invoke the oracles Query[KGenS] nor Query[RegKey];
the attacker AInsider can not make use of Query[RegKey] and the adversary AS-Insider is not restricted
in its queries.

Remark on measuring the success of A: The adversary may choose an arbitrary challenge
message m0, together with a capability f0. The challenger constructs a respective signature σ0.
Furthermore the challenger repeatedly applies EvalF to σ0 and allows the adversary to choose the
parameters αi that are input to EvalF and the key pkev[i] to which the signature is delegated.
However, A may not choose keys that are not known to the challenger. By this restriction we
distinguish between outsiders, insiders and strong insiders.

Whenever the challenger applies EvalF within the query Query[Sign-F ], it additionally computes
the new values for m and f for the resulting signature. Thus, it finally produces a signature σt, on
a message mt on which the owner of pkev[t] can apply the capability ft. The challenger adds the
key pkev[t] to which a challenge has been issued, to the set KX .

If one of the transformations failed and the resulting signature is not a valid signature (σt = ⊥),
Query[Sign-F ] outputs ⊥ independently from the value of b. The reason is, that we only want to
give guarantees for valid signatures and not extend the notion of correctness from Definition 2.

Otherwise, depending on the value of b, the challenger outputs σt or creates a new signature on
mt with capability ft.

The success of A is computed by checking whether A guessed the correct value for b. However,
if A delegated a challenge signature to a key pkev[t] to which A knows the secret key (pkev[t] ∈
KA ∩ KX), the challenger outputs 0. This way we allow a scheme to leak some information to the
evaluator to which a signature is delegated. However, only “local” information is allowed. After one
delegation, this information has to vanish, since A has access to a TransFG oracle and can delegate
the signature σt to a key pk∗ev ∈ KA.

3.4 Relations between the privacy notions

For privacy, we have the same hierarchy as for unforgeability: A scheme that is secure against
outsiders may be insecure against insiders, as the key skev of an evaluator can help to distinguish
between delegated and fresh signatures. Again, calling Query[KGenS] might weaken the adversary.
Consider a scheme that does not preserve privacy against outsiders and that only has one valid
evaluator key. An insider that calls both Query[KGenS] and Query[Sign-F ] is discarded, because it
knows the only valid evaluator key (and thus KX ∩ KA 6= ∅).

As for unforgeability, an S-Insider, is stronger than outsider or against an insider. A scheme can
leak information about delegation if a certain key pair (skev, pkev) is used that is highly unlikely to
be an output of KGenev (e.g., one of them is 0λ).

Proposition 2 (PP-X-CFA-Implications). Let DFSS be a functional signature scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider s.t.

AdvPP-I-CFA
DFSS,F ,AInsider

≥ AdvPP-O-CFA
DFSS,F ,AOutsider
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(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider s.t.

AdvPP-SI-CFA
DFSS,F ,AS-Insider

≥ AdvPP-I-CFA
DFSS,F ,AInsider

Proof. The proposition follows trivially. Observe:

(i) The adversary AInsider runs a black-box simulation of AOutsider and makes no use of the addi-
tional oracle.

(ii) The adversary AS-Insider runs a black-box simulation of AInsider and makes no use of the addi-
tional oracle.

3.5 Implications

In the following section we show that DFS imply several seemingly different signature primi-
tives. Using only black-box access to a given delegatable functional signature scheme DFSS =
(Setup,KGensig,KGenev, Sig,EvalF ,Vf), we construct (among others) identity based signature schemes,
sanitizable signature, and redactable signature schemes.
Signature Schemes. As a warm-up, we show that DFS imply the notion of standard signature
schemes that are clearly non-malleable: Only the signer in possession of the secret signing key can
generate signatures on messages of its choice.

We use the following, straight-forward functionality:

FS(λ, f, α, pkev,m) := (⊥,⊥)

Proposition 3 (Signatures). If unforgeable delegatable functional signatures exist, then unforgeable
signatures exist.

Unforgeability against outsider adversaries (UnfO) suffices for regular signatures.

Identity Based Signatures. In an identity based signature scheme (IBS), publicly known iden-
tifiers ID serve as verification keys for signatures that were generated by the entity with identifier
ID. We follow the general construction of [10], in which a trusted party generates a master secret
key msk and extracts a signing key skID from (msk,ID) for each entity with identifier ID. Formally,
an IBS scheme is a tuple IBS = (SetupIBS,ExtractIBS, SigIBS,VfIBS) of efficient algorithms.
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SetupIBS(λ) :

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

(skev, pkev)← KGenev(pp,msk)

set IBS.pp := (pp, pksig, pkev)

set IBS.msk := (msk, sksig, skev)

output (IBS.msk, IBS.pp)

ExtractIBS(pp,msk, ID) :

parse IBS.pp = (ppF , pksig, pkev)

parse IBS.msk = (mskF , sksig, skev)

σID ← Sig(pp, sksig,
pkev, 1, (ID,⊥))

set skID := (skev, σID, ID)

output skID

SigIBS(pp, skID,m) :

parse IBS.pp = (pp, pksig, pkev)

parse skID = (skev, σID, ID)

σ ← EvalF (ppF , skev, pksig,

m, (ID,⊥), σID)

output σ
VfIBS(pp, ID,m, σ) :

parse IBS.pp = (pp, pksig, pkev)

b← Vf(pp, pksig, pkev, (ID,m), σ)

output b

Figure 3: Construction of an IBS out of a DFSS

For our implication we derive a secret signing key sksig that is never given to any entity except
for the trusted party. With this signing key, we generate secret keys by signing the individual
entity’s ID. This signature σID constitutes the secret that a participant can use in order to sign
their own messages. Signing means modifying σID in a controlled way: We add the (real) message
to the (signed) ID. (see Figure 8).

We define the functionality FIBS as follows.

FIBS(λ, 1, α, pkev, (ID,⊥)) := (0, (ID, α))

Naturally, FIBS(λ, f, ·, ·, ·) := ⊥ for all f 6= 1. The security of the scheme comes from the fact that
σID cannot be generated by any entity but the trusted party.

Proposition 4 (Identity based signatures). If unforgeable private delegatable functional signatures
exist, then unforgeable identity based signatures exist.

Unforgeability against insider adversaries (UnfI) and privacy against insider adversaries is neces-
sary for this construction. The fact that privacy is necessary might be somewhat surprising at first
glance. However, since we use signatures as keys, the original signature σID has to be kept secret.
If it can be extracted from a derived signature, other participants can sign in the name of ID.

Sanitizable Signatures. Sanitizable signature schemes as in [18] allow a signature on m to be
enriched with certain admissions adm. All possible modifications mod such that adm(mod) = 1
can be applied to the signature to derive signatures on m′ = mod(m). The sanitizable signature
scheme we create does not have a notion of accountability. However, extending the scheme to an
accountable sanitizable signature scheme is an interesting future work. We construct a functionality
F as follows, where adm⊥ always returns 0.

F(λ, adm,mod, pkev,m) :=

{
(adm⊥,mod(m)) if adm(mod) = 1

⊥ otherwise

Proposition 5. If unforgeable, private delegatable signature schemes exist, then unforgeable, im-
mutable, private sanitizable signature schemes exist.
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Redactable Signatures. Redactable signatures as in [17] allow signatures that can be modified in
specific ways by anyone that holds access to the signature. Intuitively we can construct a redactable
signature scheme RSS from a functional signature scheme by making the secret evaluator key skev
public. This allows everyone to modify signatures according to a functionality F that implements
the desired redaction predicate P as follows.

FP (λ, f, α, pkev,m) :=

{
(0, α) if P (m,α) = 1 ∧ f = 1
⊥ otherwise

Proposition 6 (Redactable signatures). If unforgeable, private delegatable signatures exist then
unforgeable private redactable signatures exist.

Blind signatures. Delegatable functional signatures also imply blind signatures. We explore this
subject in detail in Section 4.1.

4 Possibility and Impossibility of DFS From OWFs

In this section we investigate the instantiability of DFS. In particular, we are interested in under-
standing which security property is “harder” to achieve. If we counter-intuitively are not interested
in unforgeability, naturally we can construct a delegatable functional signature scheme DFSS un-
conditionally. A signature on m simply consists of the string “this is a signature for m”. Obviously,
this construction satisfies privacy against strong insiders in the sense of Definition 5 but not even
unforgeability against outsiders.

Similarly, if we are not interested in privacy, DFS schemes can easily be constructed similarly to
the construction in [14]. We assume a signature scheme S that is based on any one-way function.
Now, the idea is that the signer simply signs a tuple consisting of the message together with the
capability f and the public verification key of an evaluator. When evaluating, a changer adds his
own signature on the previous signature together with α and the key of the following evaluator to
the original signature. The verification procedure only accepts a signature if the signed trace of
evaluations and delegations is legitimate w.r.t. the functionality F . This scheme trivially satisfies
unforgeability against strong insiders (cf. Definition 4) but none of our privacy notions. Thus, we
obtain the following simple result:

Theorem 1. If one-way functions exist, then there exists a unforgeable delegatable functional sig-
nature scheme.

4.1 Impossibility of DFS from OWPs

In this section we prove an impossibility result showing that (D)FS cannot be constructed from
OWP in a black-box way. The basic idea of our impossibility is to build a blind signature scheme
in a black-box way. Since it is known that blind signature cannot be constructed from OWP only
using black-box techniques [35], this implies that (D)FS cannot be constructed from OWF as well.
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Blind Signatures and Their Security A blind signature scheme is an interactive protocol
between a signer S, holding a secret key skBS and a user U who wishes to obtain a signature on
a message m such that the user cannot create any additional signatures and such that S remains
oblivious about this message. We refer to Section 5.1 for formal definitions of commitment schemes
and to Appendix B for formal definitions of blind signatures.

Building Blind Signatures from (D)FS The basic idea of our construction is as follows. The
user chooses a message m, commits to the message and sends the commitment c on m to the signer.
The signer signs the commitment, using a delegatable functional signature scheme and sends the
signature σc back to the user. The user then calls EvalF with the open information om to derive a
signature on m.

Given a commitment scheme C = (Commit,Open) and a delegatable functional signature scheme
DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) for functionality FC , where FC(λ, 1, α, pkev,m) :=
(0,Open(α,m)), we construct a blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) as follows.1

(skBS,pkBS)← KGBS(1λ). The key generation algorithm KGBS(1λ) performs the following steps:

(msk, pp)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

(skev, pkev)← KGenev(pp,msk)

(skBS, pkBS)← (sksig, (pp, pksig, pkev, skev))

Signing. The protocol for U to obtain a signature on messagem is depicted in Figure 4 and consists
of the following steps:

U → S The user sends a commitment c to the signer, where (c, om) := Commit(λ,m).

S → U The signer signs c together with the capability f and the public evaluator key of the
user, obtaining σc ← Sig(sksig, pkev, 1, c). It sends σc to U . The user calls EvalF with the
open information om to derive a signature on m, as σm ← EvalF (skev, pksig, om, pk

′
ev, σc)

and outputs (m,σ′).

b← VfBS(pkBS, σ,m). Verification VfBS(pkBS, σ,m) returns Vf(pp, pksig, pkev,m, σ).

Signer S(skBS) User U(pkBS,m)

(c, om) := Commit(λ,m)
c←−−−−−−−−−−−−−−−−−−−−−−−

σ ← Sig(sksig, pkev, 1, c)
σ−−−−−−−−−−−−−−−−−−−−−−−→

Return σ′ ← EvalF (skev, pksig, om, pk
′
ev, σ)

Figure 4: Issue protocol of the two move blind signature scheme.

1FC outputs ⊥ whenever f 6= 1.

15



Theorem 2. If DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) is an unforgeable and private dele-
gatable signature scheme (both against insider attacks) and C = (Commit,Open) is a commitment
scheme which is both computationally binding and hiding, then the interactive signature scheme
BS = (KGBS, 〈S,U〉 ,VfBS) as defined above is unforgeable and blind w.r.t. Definitions 19 and 20.

Intuitively, unforgeability holds because the user can only obtain a signature on m if he calls
EvalF on an authenticated commitment. This follows from the binding of the commitment scheme
and from the unforgeability of the DFS. Blindness follows directly from the hiding property of the
commitment scheme and from the privacy of our DFS. Note that the impossibility result of [34]
rules out blind signature schemes that are secure against semi-honest adversaries.

We prove this theorem with the following two propositions.

Proposition 7. If DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) is an unforgeable delegatable
signature scheme and C = (Commit,Open) is a commitment scheme which is binding, then the
interactive signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) as defined above is unforgeable.

Proof. Assume there is an efficient algorithmA that forges a signature for BS. We useA to construct
an efficient adversary B against the unforgeability of DFSS. First, B receives (pp, pksig) from the
Initialize algorithm of the UnfI challenger. Then it calls Query[KGenS]() to receive an evaluator key
pair (skev, pkev), sets pkBS := (pp, pksig, pkev, skev) and simulates A(pkBS). Whenever A interacts
with its signature oracle with a (blinded) message ci, then B calls Query[Sign](pkev, f, ci) and returns
the resulting signature σi to A.

Eventually, A stops, outputting k + 1 message-signature pairs (m∗i , σ
∗
i ) after k successful

interactive signing procedures, B chooses one of them at random and outputs it as a (possible)
forgery.

For the analysis observe that the functionality FC only applies the Open algorithm to the signed
message and only if f = 1 has been set. So for every signature σi that A received, only one
application of EvalF is allowed and only the Open algorithm can be applied. Since C is a binding
commitment scheme, every commitment can only be opened to a unique message, except for a
negligible error probability. However, this means that one of the signatures σ∗i must be a forgery
for DFSS as it is either a signature on a new message, or an evaluation of a function that has not
been allowed (and thus is not in the transitive hull F∗ of any message that has been signed via
Query[Sign]).

If A constructs a forgery, B chooses the right message-signature pair (m∗i , σ
∗
i ) with probability

at least 1
k , so the probability that B constructs a forgery is at least 1

k times the probability that A
constructs a forgery.

Remark. Note that f is necessary to ensure that EvalF is only called once, otherwise there is a
simple attack against the scheme: The adversary A picks a message m and computes (c1, o1) ←
Commit(m). Then A computes (c2, o2)← Commit(c1) and sends c2 to the signer. Upon receiving a
signature σc2 , the algorithm A uses EvalF to get a signature on c1 = Open(c2, o2). Now A uses EvalF
again to derive a signature on m = Open(c1, o1) and it outputs both signatures. Since A outputs
two valid message-signature pairs (with two distinct message) after one successful interaction it
breaks the unforgeability of BS.
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Proposition 8. If DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) is a private delegatable signature
scheme and C = (Commit,Open) is a commitment scheme which is hiding, then the interactive
signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) as defined above is blind.

Proof. We will show this proposition via a game-based proof. We will start with the original game
BlindBS

S∗ (λ) for blindness (see Definition 20) and modify it until we reach a game in which the
adversary can not observe any information that might help him in guessing the bit b.

We use the following notation for describing the games. We assign a number to each line where
the first digit marks the game and the remaining digits the line in this game. Thus, 234 marks
the 34th line of game 2. Moreover we do not write down all lines explicitly. All lines that are not
explicitly stated are as they were defined in the last game that defined them. If, e.g., we write for
Game G5 the line

536XY Z

this means that Game G5 differs from Game G4 in line 36 which is replaced by XY Z for Game G5.

Game G0
−−KGBS −−
001 (msk, pp)← Setup(λ)

002 (sksig, pksig)← KGensig(pp,msk)

003 (skev, pkev)← KGenev(pp,msk)
004 (skBS, pkBS)← (sksig, (pp, pksig, pkev, skev))

−−find−−
005 (m0,m1, state)← A(find, skBS, pkBS)

006 b← {0, 1}
− −issue−−

007 (state, σcb)← A(issuestate)〈·,Ub〉1,〈·,U1−b〉1

− where Ub computes −
008 (cb, ob)← Commit(mb)

− and U1−b computes −
009 (c1−b, o1−b)← Commit(m1−b)

− unblind−
010 σm0 ← EvalF (pp, skev, pksig, o0, c0, pkev, σ)

011 σm1 ← EvalF (pp, skev, pksig, o1, c1, pkev, σ)

012 if σm0 = ⊥ ∨ σm1 = ⊥ then
013 (σm0 , σm1) := (⊥,⊥)

−−guess−−
014 b∗ ← A(quess, state, σm0 , σm1)

Game G1
110 σm0 ← Sig(pp, sksig, pkev, 0,m0, pkev)
111 σm1 ← Sig(pp, sksig, pkev, 0,m1, pkev)

Game G2
208 (cx, ox)← Commit(0n)

209 (cy, oy)← Commit(0n)

Game G0 ⇒Game G1: Since DFSS is private, we can create new signatures instead of calling
EvalF on the signature of A.

Claim 1. Game G0 and Game G1 are computationally indistinguishable.

Proof. Assume there is an efficient, malicious signer A, which is able to distinguish both games. We
show how to use A to build a distinguisher B that breaks the privacy property of DFSS. The algo-
rithm B simulates Game G0, but instead of calling EvalF in lines 10 and 11, it queries Query[Sign-F ]
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((pkev,⊥), (pkev, o0), 1, c0, σc0) and Query[Sign-F ]((pkev,⊥), (pkev, o1), 1, c1, σc1) respectively. If A
distinguishes Game G0 and Game G1 with probability noticeably larger than 1

2 , then B breaks the
privacy property of DFSS by guessing the bit b of the challenger for CFA with probability noticeably
larger than 1

2 .

Game G1 ⇒Game G2: In Game G1 the signature of the adversary is not used anymore and thus
the commitment is not opened anymore. Consequently we can replace the commitments by
commitments to zero.

Claim 2. Game G1 and Game G2 are computationally indistinguishable.

Proof. This follows from the hiding property of the commitment scheme. If there is an efficient,
malicious signer A, which is able to distinguish the two games, then we can use it to break the
hiding property of C.

In Game G2 the bit b is never used. The commitments and all signatures are completely in-
dependent of b. Thus, the probability that A guesses b∗ = b in Game G2 is exactly 1

2 . Since the
games are (pairwise) computationally indistinguishable, the proposition holds.

Combining Theorem 2 and the impossibility result of [35] (which is based on the work of Barak
and Mahmoody [5]), we obtain the following result.

Corollary 1. (Delegatable) functional signature schemes that are unforgeable and private against
insider adversaries cannot be build from one-way permutations in a black-box way.

Remark. Since this construction did not use the delegation property of the delegatable functional
signature scheme, it should be possible to construct blind signatures from functional signatures, as
defined by [14]. A DFS that is unforgeable and private against outsider adversaries is not ruled out
by this corollary. Exploring whether the impossibility also holds in this case would be interesting.

5 Constructing DFS From Trapdoor Permutations

In this section we construct a delegatable functional signature scheme DFSS as defined in Sec-
tion 2.1. Our construction is based on (regular) unforgeable signature schemes, a public-key en-
cryption scheme, and a non-interactive zero-knowledge proof system. It is well known that these
primitives can be constructed from (doubly enhanced) trapdoor permutations. Before presenting the
construction we give a brief overview over these underlying primitives. We will omit the (standard)
definitions for correctness and security.

5.1 Cryptographic Primitives

Digital Signatures. A (regular) signature scheme is a tuple of efficient algorithms S = (SetupS ,
KGenS , SigS ,VfS), where SetupS returns some public parameters pp and a master secret key msk,
KGenS(pp,msk) outputs a secret signing key sk and a public verification key pk, SigS signs messages
using a key sk and VfS checks whether a signature is valid for a given message and a given verification
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key pk. A signature scheme is length preserving, if for a fixed key-pair, the signing algorithm
outputs signatures of equal length, if the messages have the same length, i.e., if |m1| = |m2|, then
|σ1 ← SigS(pp, sk,m1)| = |σ2 ← SigS(pp, sk,m2)|

Initialize(λ) :

(pp,msk)← Setup(λ)

(sk, pk)← KGenS(pp,msk)

store (pp, sk, pk)

setM := ∅
output (pp, pk)

Initialize(λ) :

b
R← {0, 1}

(pp,msk)← SetupE(λ)

(dk, ek)← KGenE(pp,msk)

store (pp, ek, b)
output (pp, ek)

Query[Sign](m) :

retrieve (pp, sk, pk)

σ ← SigS(pp, sk,m)

setM :=M∪ {m}
output σ

Query[Challenge](m0,m1) :

(only once)
retrieve (pp, ek, b)
c← EncE(pp, ek,mb)

output c

Finalize(m∗, σ∗) :

if m∗ ∈M then
output 0

else
retrieve (pp, sk, pk)

b← VfS(pp, pk,m∗, σ∗)
output b

Finalize(b∗) :

if b∗ = b

output 1

else
output 0

Figure 5: (u.) Unforgeability for (regular) signature schemes (Unf) and (d.) security under chosen
plaintext attacks (CPA) for public-key encryption schemes.

Definition 6. (Correctness of a signature scheme). A signature scheme S = (SetupS ,KGenS , SigS ,VfS)
is correct, if for all λ ∈ N, all m ∈ M and for all (pp,msk) ∈ [SetupS(λ)] and all (sk, pk) ∈
[KGenS(pp,msk)] the following property holds:

VfS(pp, pk,m, (SigS(pp, sk,m))) = 1

A signature is unforgeable, if it is computationally hard to forge signatures for new messages
without access to the signing key, even if arbitrary messages have been signed before.

Definition 7. (Unforgeability). A signature scheme S = (SetupS ,KGenS , SigS ,VfS) is unforgeable
if for all PPT adversaries A the probability

Pr[Unf(S,A, λ) = 1].

is negligible in λ. The definition uses Unf(S,A, λ) defined in Figure 5.

The definition can easily be strengthened to strong unforegability by adding the requirement
that the pair (m,σ) has never been learned from the queries/answer pair to the signing oracle.
Obviously, this definition is stronger because an attacker succeeds even if he outputs a new signature
for a message he has sent to the signing oracle before.

For our construction we need to make two additional assumption about the signature scheme.
The first property says that no master key is necessary in order to generate a key-pair and the
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second property demands that signatures on message of equal length have the same size. More
precisely, a signature scheme S has a simple key generation algorithm if the key generation does
not depend on a master secret key.

Definition 8. (Simple Key Generation). A signature scheme S = (SetupS ,KGenS , SigS ,VfS)) has
a simple key generation algorithm if there exists an ε such that for ll (pp,msk) ∈ [SetupS ] it holds
that msk = ε.

A signature scheme S has length preserving signatures if the length of a signature does only
depend on public parameters and on the length of the underlying message.

Definition 9. (Length Preservation). A signature scheme S = (SetupS ,KGenS , SigS ,VfS)) has
length preserving signatures if for all m1,m2 ∈M, for all (pp,msk) ∈ [SetupS ], and for all (sk, vk) ∈
[KGenS(pp,msk)] it holds that

|σ1 ← SigS(pp, sk,m1)| = |σ2 ← SigS(pp, sk,m2)|.

Encryption. A public key encryption scheme E is a tuple of efficient algorithms E = (SetupE ,KGenE ,
EncE ,DecE), where SetupE(λ) returns some public parameters pp and a master secret key msk,
KGenE(pp,msk) outputs a secret decryption key dk and a public encryption key ek, EncE encrypts
messages using ek and DecE decrypts cipher texts using dk.

Definition 10. (Correctness of a public key encryption scheme). A public-key encryption scheme
E = (SetupE ,KGenE ,EncE ,DecE) correct, if for all λ ∈ N, all m ∈ {0, 1}`m(λ), and for all (pp,msk) ∈
[SetupE(λ)] and all (dk, ek) ∈ [KGenE(pp,msk)] the following property holds: DecE(pp, dk, (EncE(pp,
ek,m))) = m.

A public key encryption scheme is secure against chosen plaintext attack (CPA) if no adversary
with access to the public parameters pp and the public (encryption) key ek is able to distinguish
between the encryptions of two messages of its own choice.

Definition 11. (Security against chosen plaintext attacks (CPA)). A public-key encryption scheme
E = (Setup,KGen,EncE ,DecE) is secure against chosen plaintext attacks (CPA), if for all PPT
adversaries A

AdvCPA
E,A =

∣∣∣∣Pr [CPA(E ,A, λ) = 1]− 1

2

∣∣∣∣ ,
is negligible in λ, where CPA(E ,A, λ) is defined in Figure 5.

Non-interactive zero-knowledge (NIZK). A non-interactive zero-knowledge proof system for
a relation R is a tuple of efficient algorithms NIZK = (KGen, P,Vf), where the key generation
algorithm KGen produces a common reference string CRS, the prover P on a CRS, a statement x
and a witness ω returns a proof Π that x ∈ LR := {x|∃ω. (x, ω) ∈ R} (or an error symbol ⊥) and
the verifier Vf on a CRS, a statement x and a proof Π outputs 1 if Π is a correct proof that x ∈ LR
and 0 otherwise [25, 31].

Definition 12. (Correctness of a non-interactive zero knowledge scheme). A non-interactive zero
knowledge scheme NIZK = (Setup,KGen, P,Vf) for a relation R is correct, if for all λ ∈ N, all
x ∈ LR, all ω s.t. (x, ω) ∈ R, and for all CRS ∈ [KGen(1λ)] the following property holds:
Vf(CRS, P, (CRS, x, ω)) = 1.
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A non-interactive zero-knowledge proof system for a relation R is sound if no malicious prover
can construct a proof for a wrong statement (x /∈ LR) for which the verification succeeds.

Definition 13. (Soundness of a NIZK scheme). Let NIZK = (KGen, P,Vf) be a non-interactive
zero knowledge scheme for a relation R. NIZK is sound, if for all λ ∈ N, all x /∈ LR, and for all ppt
A, the following probability is negligible in λ.

Pr[Vf(CRS, x,Π∗) = 1 | CRS← KGen(1λ),Π∗ ← A(CRS, x)]

A non-interactive zero-knowledge proof system for a relation R is zero knowledge if a proof leaks
no information other than the fact that the statement is correct. This is formalized via a simulator
that may choose the common reference string CRS itself such that this simulator can produce proofs
for arbitrary statements x ∈ LR without knowledge of a witness. If those (simulated) proofs are
indistinguishable from real proofs, the real proofs can not leak information.

Definition 14. (Zero knowledge). Let NIZK = (Setup,KGen, P,Vf) be a proof scheme for a relation
R. NIZK is zero knowledge, if for all x ∈ LR with |x| = λ, and any witness w for x, there exists
a (possibly stateful) efficient simulator S = (S0,S1) such that the following two experiments are
computationally indistinguishable for any (possibly stateful) algorithm D = (D0, D1):

Game REAL

CRS← KGenNIZK(1λ)

(x,w)← D0(CRS)

π ← P(CRS, x, w)

b← D1(CRS, x, π)

Game Sim

CRS← S0(1λ)

(x,w)← D0(CRS)

π ← S1(x)

b← D1(CRS, x, π)

Commitment schemes. Here we recall the formal definitions of commitment schemes. A com-
mitment scheme C = (Commit,Open) is a tuple of efficient algorithms, where

Commit (λ,m) on input m (and a security parameter λ) returns both a commitment c and open
information o.

Open (c,o) either returns a message m, if or an error symbol ⊥

Definition 15. A commitment scheme C = (Commit,Open) is correct if for all messages m and
for all (c, o) ∈ [Commit(m)] it holds that

Open(c, o) = m

Definition 16. A commitment scheme C = (Commit,Open) is binding, if for all PPT adversaries
A the following probability is negligible in λ.

Pr[m0 6= m1 ∧m0 6= ⊥ 6= m1;m0 := Open(c, o0),m1 := Open(c, o1), (c, o0, o1)← A(λ)]

Definition 17. A commitment scheme C = (Commit,Open) is hiding, if for all PPT adversaries A
and for all messages m0,m1 the following is negligible in λ.

|Pr[m0 ← A(c); (c, o)← Commit(λ,m0)]− Pr[m0 ← A(c); (c, o)← Commit(λ,m1)]|
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5.2 Our scheme

Our construction follows the encrypt and proof strategy and is completely general with respect
to efficiently computable functionalities F with the exception that F may allow only for up to n
applications of EvalF . We let the signer choose how many applications he allows by defining f as a
tuple (f ′, k) ∈ Pf×{0, . . . , n}. We achieve the strong notion of privacy under chosen function attack
(CFA) according to Definition 5 by applying the following idea : If the signer choses a number of k
possible applications of EvalF , we still create n+1 encryptions, but place the encryption a signature
on m at the k + 1th position (and only encryptions of zero-strings at the other positions). The
evaluators fill up the encryptions from the kth position to the first one. Although each evaluator
receives information from his predecessor in the chain of delegations (the first evaluator will know,
that the signature originates from the signer), even the second evaluator in the chain will be unable
to find out more than its predecessor and the number of applications of EvalF that are still allowed.
Figure 6 shows the construction in more detail.

Setup(1λ) :

CRS← KGenNIZK(1λ)

(mskS , ppS)← SetupS(1λ)

(mskE , ppE)← SetupE(1
λ)

(d̃k, ẽk)← KGenE(ppE ,mskE)

pp := (CRS, ppS , ppE , ẽk)
msk := (mskS ,mskE)
output (pp,msk)

KGensig(pp,msk) :

parse pp = (CRS, ppS , ppE , ẽk)
parse msk = (mskS ,mskE)
(sskS , vkS)← KGenS(ppS ,mskS)

pksig := vkS
sksig := (sskS , pksig)

output (sksig, pksig)

KGenev(pp,msk) :

parse pp = (CRS, ppS , ppE , ẽk)
parse msk = (mskS ,mskE)
(sskF , vkF )← KGenS(ppS ,mskS)

(dk, ek)← KGenE(ppE ,mskE)
skev := (sskF , dk)
pkev := (vkF , ek)
output (skev, pkev)

Sig(pp, sksig, pkev, (f, k),m) :

parse pp = (CRS, ppS , ppE , ẽk)
parse pkev = (vkF , ek)
parse sksig = (sskS , pksig))

hk := (f,m, pkev, k)

σk ← SigS(ppS , sskS , hk; rS)

sk ← EncE(ppE , ẽk, (σk, hk); rsk)

For i ∈ {0, . . . , n} \ {k}
σi := 0|σk|

hi := (0`f (λ), 0`m(λ), 0|pkev |, 0)

si ← EncE(ppE , ẽk, (σi, hi); rsi)
d← EncE(ppE , ek, (f, k, σk); rd)
S := (s0, . . . , sn)

x = (pp, pksig, pkev, S, d,m)

ω = (f, n, rd)

with ωk = (σk, rS , k)

Π← PNIZK(CRS, x, ω)

σ := (S, d,Π)

output σ

Vf(pp, pksig, pkev,m, σ) :

parse pp = (CRS, ppS , ppE , ẽk)

parse pksig = (vkS , ẽk)

parse pkev = (vkF , ek)
parse σ = (S, d,Π)

x := (ppS , ppE , pksig, pkev, S, d,m,CRS)

b← VfNIZK(CRS, x,Π)

output b

EvalF (pp, skev, pksig, α,m, pk
′
ev, σ) :

parse pp = (CRS, ppS , ppE , ẽk)
parse skev = (sskF , dk)
parse pk′ev = (vk′F , ek

′)

parse σ = (S, d,Π)

(f, i, σi)← DecE(ppE , dk, d)

x = (pp, pksig, pkev, S, d,m)

if pkev = (vkF , ek) belongs to skev
∧ VfNIZK;Zi

(CRS, x,Π) = 1

(f̂ , m̂) := F(λ, f, α, pk′ev,m)

hi−1 := (f̂ , m̂, pk′ev, i− 1)

σ̂i−1 ← SigS(ppS , sskF , hi−1; rS)

si−1 ← EncE(ppE , ẽk, (σ̂i−1, hi−1); rs)

d← EncE(ppE , ek
′, (f̂ , i− 1, σi−1); rd)

x̂ = (pp, pksig, pk
′
ev, S, d, m̂)

ω = (f̂ , i− 1, rd)

with ωi−1 = (σi−1, rS ,Π, pkev,m, f, α)

Π̂← PNIZK(CRS, x, ω)

σ̂ := (S, d,Π)

output σ̂
else
output ⊥

Figure 6: Construction of a DFSS

Given a signature scheme S = (SetupS ,KGenS , SigS ,VfS) with a simple key generation algorithm
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(cf. Section 5.1) and with signatures of equal length, an encryption scheme E = (SetupE ,KGenE ,
EncE ,DecE) and a zero-knowledge scheme NIZK = (KGenNIZK, PNIZK,VfNIZK) for languages in NP
we construct a delegatable functional signature scheme DFSS as follows: We define a recursive class
of languages Li, where Ln : x = (ppS , ppE , pksig, pkev, S,m,CRS, f, σ) ∈ Ln means that there exists
a witness ω = (r, k) such that

pksig = (vkS , ẽk) ∧ sk = EncE(ppE , ẽk, (σ, (f,m, pkev, k)); r) ∧ VfS(ppS , vkS , (f,m, pkev, k), σ) = 1

and where Li for 0 ≤ i < n : x = (ppS , ppE , pksig, pkev, S,m,CRS, f, σ) ∈ Li if there exists a witness
ω = (r,Π, pk′ev,m′, f ′, α) s.t. pksig = (vkS , ẽk) and

∧ si = EncE(ppE , ẽk, (σ, (f,m, pkev, k)); r) ∧ VfS(ppS , vk
′, (f,m, pkev, k), σ) = 1

∧ x′ := (ppS , ppE , pksig, pk
′
ev, S

′,m′,CRS, f ′) ∧ S = S′
{
s′i := si

}∧
pk′ev = (vk′, ·)

∧ (f,m) = F(λ, f ′, α, pk′ev,m
′) ∧

(
VfNIZKi+1

(CRS, x′) = 1 ∨ VfNIZKn(CRS, x′) = 1
)
.

The signer proves that x = (pp = (CRS, ppS , ppE), pksig, pkev = (vkF , ek), S, d,m) ∈ L, where L
contains tuples for which there exists a witness ω = (f, i, rd) such that

VfNIZKi
(CRS, (ppS , ppE , pksig, pkev, S,m,CRS, f, σ)) = 1 ∧ d← EncE(ppE , ek, (f, i, σ); rd).

5.3 Security

Concerning security, we show the following theorem.

Theorem 3. If E is a public key encryption scheme that is secure against chosen ciphertext attacks
(CCA-2), S a length preserving unforgeable signature scheme with a simple key generation, and
NIZK is a sound non-interactive proof scheme (Definition 13) that is zero knowledge (Definition
14), the construction presented in this section is unforgeable against outsider and (strong) insider
attacks and secure against chosen function attacks (CFA) against outsiders and (strong) insiders

Proof. The theorem follows directly from Lemma 2 and Lemma 4.

Lemma 1. If E is a public key encryption scheme, S a length preserving unforgeable signature
scheme with a simple key generation, and NIZK is a sound non-interactive proof scheme (Definition
13), then the construction DFSS presented in Section 5 is unforgeable against outsider and (strong)
insider attacks according to Definition 4.

Lemma 2. If E is a public key encryption scheme, S a length preserving unforgeable signature
scheme with a simple key generation, and NIZK is a sound non-interactive proof scheme (Definition
13), then the construction DFSS presented in Section 5 is unforgeable against outsider and (strong)
insider attacks according to Definition 4.

Given an adversary A that breaks the unforgeability of our construction we construct an efficient
adversary B that breaks the underlying signature scheme .

Proof. By Proposition 1 it suffices to show unforgeability against an S-Insider adversary. Assume
towards contradiction that DFSS is not unforgeable against strong insider attacks. Then there
exists an efficient adversary A := AS-Insider that makes at most p(λ) many steps for a polynomial p
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and that wins the game Unf(DFSS,F ,AS-Insider, λ), formalized in Definition 4, with non-negligible
probability. Since A makes at most p(λ) many steps, A invokes the oracle Query[KgenP] at most
p(λ) many times. We show how to build an adversary B that runs A in a black-box way in order to
break the unforgeability of S with non-negligible probability. In the following we denote the values
and the oracles that the challenger C from the game Unf(S,B, λ) provides to B with the index C.

The algorithm B, upon receiving as input a tuple (ppC , vkC) from InitializeC , simulates a challenger
for the game Unf(DFSS,F ,A, λ). First, the algorithm B generates the public parameters and the
master public/private key-pair, computing (ppE ,mskE) ← SetupE(1λ),CRS ← KGenNIZK(1λ)and
setting pp := (CRS, ppC , ppE),msk := (ε,mskE).

Subsequently, B computes (d̃k, ẽk) ← KGenE(ppE ,mskE), (skS , vkS) ← KGenS(ppC , ε) and sets
pksig := vkS .

The algorithm B embeds its own challenge key vkC in a randomly chosen position z ∈ {0, . . . , p(λ)};
if z = 0, then B replaces vkS by vkC . Finally, B runs a black-box simulation of A on input
(pp, pksig), where pksig = vkS or pksig = vkC , depending on z and B simulates the oracles Query[Sign],
Query[Trans],Query[KGenP] and Query[Finalize]. The inputs of these oracles are provided by A upon
calling them and are thus sent to B. The algorithm B handles the oracle queries from A as follows:

Query[KGenP] (): The algorithm B answers the ith invocation of Query[KgenP] as follows. First,
B generates a key pair for encryption and decryption (dk, ek) ← KGenE(ppE ,mskE). Then it
behaves differently depending on i:

If i = z, then B sends vkC to A. Otherwise, B generates a new key-pair (skev, pkev) ←
KGenS(ppC , ε), stores this pair, and sends pkev to A.

Query[Sign] (pk∗ev, f, g,m): If z 6= 0, the algorithm B computes all necessary values locally exactly
as a challenger for Unf(DFSS,F ,A, λ) would. For computing the values locally, B needs to
know pp (publicly known), sksig = (sskS , vkS) (generated by B since z 6= 0) and the values
pk∗ev, f and m (provided to B by A).
If z = 0, this local computation is not possible since B replaced vkS with vkC . Thus, the
algorithm B sets hk := (f,m, pkev, k) and invokes Query[Sig]C(hk). It sets σk to the output of
the challenger and otherwise proceeds as above.

Query[Eval] (pk∗ev, α,m,pk
′
ev, σ): Parse pk∗ev = (vk, ek). B behaves differently depending on the

value of vk.

If the key pk∗ev is a key for which B knows a secret key (in particular it does not contain
the challenge key vkC), B computes all necessary values locally exactly as a challenger for
Unf(DFSS,F ,A, λ) would. For computing the values locally, B needs to know pp (publicly
known), a value for sk∗ev corresponding to pk∗ev (discussed below), pksig (known to B) and the
values for α,m, pk′ev and σ (provided by A). There are four cases for sk∗ev. If pk

∗
ev was output

by Query[KGenP] (and since vk 6= vkC , this was not the zth invocation of Query[KGenP]),
B has generated the value sk∗ev = (sskF , dk) itself. The same applies if pk∗ev was output
by Query[KGenS]. If pk∗ev was registered by A via Query[RegKey], B uses the corresponding
(registered) key sk∗ev. If none of the three cases applies, then the key pk∗ev is unknown and B
returns ⊥ instead.

If the key pk∗ev is the key in which B has embedded its own challenge key (vk = vkC), a
corresponding value sskF (the first part of the secret key sk∗ev corresponding to pk∗ev) is not
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known to B. This key is necessary to sign the value h = (f̂ , m̂, pk′ev, k − 1). Thus, instead of
computing a signature with some key sskF , B calls its own oracle Query[Sig]C(h) and otherwise
proceeds as above.

Finalize(m∗, σ∗,pk∗ev): Eventually, A invokes Finalize on a tuple (m∗, σ∗, pk∗ev), then B parses
σ∗ = (S, d, π) with S = (s0, . . . , sn+1). Now, the algorithm B checks the validity of the
signature computing Vf(pp, pksig, pk

∗
ev,m

∗, σ∗). If the verification algorithm outputs 0, then
B stops. Otherwise B decrypts all signatures (σi, hi) := DecE(ppE , d̃k, si). B tries to find a
pair (σx, hx) that verifies under the key vkC and that has not been sent to Query[Sign]C by B,
, then B sends (hx, σx) to its own FinalizeC oracle. Otherwise it halts.

Claim 3. The algorithm B is efficient.

Proof for Claim 3. The algorithm B simulates a challenger for Unf(DFSS,F ,A, λ) that consists of
efficient algorithms (except for the algorithm Finalize).
B performs local computations to initialize the game. All algorithms of the underlying schemes

that are used in a black-box manner are efficient (key generation, signature creation and verifica-
tion, encryption and decryption, proof and verify). B also performs a black-box simulation of the
(polynomially bounded) algorithm A and answers A’s queries. Both the simulation of A and all of
the (polynomially many) computations of answers to oracle calls are efficient.

The only part of the simulation of a challenger for Unf(DFSS,F ,A, λ) that might not be effi-
ciently possible is the Finalize algorithm. However, if eventually A calls Finalize, then B diverges
from the simulation of a challenger in that B does not check whether the supposed forgery is in the
transitive hull of a specific signature. Thus, B is an efficient algorithm.

Claim 4. The algorithm B perfectly simulates a challenger for Unf(DFSS,F ,A, λ).

Proof for Claim 4. We investigate the simulation of all oracles and local computations.

Simulation of Initialize: Observe that by construction and by the fact that S has a simple key
generation as in Definition 8 the values pp and msk are identically distributed to values for
pp and msk generated by a challenger for Unf(DFSS,F ,A, λ). Thus, the keys generated out
of them are also identically distributed. If z 6= 0 then B uses only pp and msk to compute the
keys (sksig, pksig) and thus they are identically distributed as keys (sksig, pksig) generated by
Unf(DFSS,F ,A, λ).

If z = 0, then B replaces the verification vkS of the signer with the verification key vkC of the
challenger. However, since S has a simple key generation algorithm (Definition 8), the key vkC
is identically distributed as the key vkS . Moreover, B does not use the corresponding signing
key sskS in any way and queries its own signing oracle instead.

Simulation of Query[KGenP]: On any but the zth invocation, B perfectly simulates a challenger
for Unf(DFSS,F ,A, λ) and computes a new key pair based on pp and msk. As pp and msk are
identically distributed as for a challenger, the resulting keys are also identically distributed.

On the zth invocation, however, B replaces the verification key vkF with the verification key vkC
of the challenger. However, since S has a simple key generation algorithm (Definition 8), the
key vkC is identically distributed as the key vkS . Moreover, B does not use the corresponding
signing key sskF in any way and queries its own signing oracle instead.
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Simulation of Query[KGenS]: B uses the values pp and msk that are identically distributed to the
corresponding values of a challenger for Unf(DFSS,F ,A, λ). On them it performs a perfect
simulation of Query[KGenS]. Thus, the resulting keys have the same distribution as the keys
output by Query[KGenS] of the challenger.

Simulation of Query[RegKey]: This oracle does not return an answer.

Simulation of Query[Sign] and Query[Eval]: B perfectly simulates these oracles as long as it
does not have to create a signature with the key corresponding to vkC . However, in these
cases B calls its own signature oracle. Since the keys are identically distributed, this still is a
perfect simulation.

Since all messages that B sends toA are identically distributed to the messages that Unf(DFSS,F ,A, λ)
sends to A, the algorithm B perfectly simulates a challenger for Unf(DFSS,F ,A, λ).

Claim 5. Whenever A produces a forgery, then with probability at least 1
p(λ)+1 B also produces a

forgery.

Proof of Claim 5. First we show the following statement: WheneverA produces a forgery (m∗, σ∗, pk∗ev),
then σ∗ is of the form σ∗ = (S, d, π). Moreover, S = (s0, . . . , sn+1) contains the encryption sx of a
signature σx such that:

• σx verifies for a message mx under a key vk∗

• vk∗ either equals pksig or that has been sent to A as an answer to an oracle query Query[KGenP]

• mx a message that has not been sent to Query[Sign] or achieved as result of Query[Eval].

Assume that A invokes Finalize with (m∗, σ∗, pk∗ev) such that (m∗, σ∗, pk∗ev) constitutes a forgery
for DFSS. Technically: If our algorithm B would simulate the Finalize algorithm (as in Figure 7), it
would output 1.2

2Note that simulating Finalize is not necessarily possible in polynomial time, which is of no concern, since B does
not simulate Finalize.
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proc Finalize(m∗, σ∗, pk∗ev) :

if ∃(f, g,m, pkev, ·) ∈ Q, s.t.
pkev ∈ KA ∧m∗ ∈ F∗(λ, (f,m))

output 0

else
if (·, ·,m∗, ·, ·) ∈ Q
output 0

else
retrieve (pp, pksig)

parse pp = (CRS, ppS , ppE , ẽk)

parse pksig = (vkS , ẽk)

parse pk∗ev = (vkF , ek)
parse σ∗ = (S, d,Π)

x := (ppS , ppE , pksig, pk
∗
ev, S, d,m

∗,CRS)

b← VfNIZK(CRS, x,Π)

output b

Figure 7: A simulated version of Finalize for our construction DFSS

If Finalize would output 1, (·,m∗, ·, ·) /∈ Q. This especially means that σ∗ can not be output
of Query[Sign] or Query[Eval]. Moreover, there was no query to Query[Sign](pk′ev, f,m) for an ad-
versary key pk′ev such that m∗ is in the transitive hull F∗(λ, (f,m)). Also, there was no query to
Query[Eval](pkev, α,m, pk

′
ev, σ

′) for an adversary key pk′ev such that f was extracted from σ′ and
such that m∗ is in the transitive hull F∗(λ, (f ′,m′)) for (f ′,m′) := F(λ, f, α, pk′ev,m).

If the NIZK Π verifies then there is a signature that verifies under pksig and that marks the start
of the delegation chain. Let σk be this signature for a value hk = (f,m, pkev, k). The NIZK makes
sure that m∗ is in the transitive hull F∗(λ, (f,m)) and that all transformations are legitimized by
the previous ones (depending on the intermediate α’s).

We distinguish the following cases:

i = 0: There was no call to Query[Sig] with parameters (pkev, (f, k),m). Thus, B never sent hk to
Query[Sig]C . and thus, S contains a signature σx = σk that verifies with pksig for the message
hk.

0 < i < k: There was a call to Query[Sig] with parameters (pkev, (f, k),m). And for all 0 < j ≤ i
there was a call to Query[Eval] with parameters (pkevj , αj ,mj , pk′evj , σ

′
j), such that hk−j =

(fj ,mj , pk′evj , k − j) with (fj ,mj) = F(λ, fj−1, αj , pk′evj ,mj−1), but there was no call to
Query[Eval] with parameters (pkevi, αi,mi, pk′evi, σ

′
i), such that hk−i = (fi,mi, pk′evi, k − i)

with (fi,mi) = F(λ, fi−1, αi, pk′evi,mi−1), where f0 = f and m0 = m.

Thus, B never sent hi to Query[Sig]C and thus, σi and hi fulfill our claim.

27



i = k: There was a call to Query[Sig] with parameters (pkev, (f, k),m). And for all 0 < j ≤ k
there was a call to Query[Eval] with parameters (pkevj , αj , βj ,mj , pk′evj , σ

′
j), such that hk−j =

(fj ,mj , pk′evj , k − j) with (fj ,mj) = F(λ, fj−1, αj , pk′evj ,mj−1. The NIZK makes sure that
at most k transformations of the original message exist. Thus, all transformations have been
done via calls to Query[Eval], which means that (m∗, σ∗, pk∗ev) is not a forgery.

Thus, each forgery of A constitutes a forgery of a signature σx that verifies with a key vk∗ that
either equals pksig or a key that has been given to A as answer to an oracle query Query[KGenP].
Note that if, by chance, vk∗ = vkC , then σx is a valid forgery for the message hx. By Claim 4,
B performs a perfect simulation of a challenger for Unf(DFSS,F ,A, λ) (from A’s point of view),
independent of the value z that B has chosen in the beginning. As vkC is randomly placed in the
set of possible honest keys (p(λ) many), B produces a forgery for vkC with probability at least

1
p(λ)+1 .

For the analysis of the success of B let us assume that A produces a forgery with a non-negligible
probability. However, by Claim 5, whenever A produces a forgery, there is a chance of 1

p(λ)+1 that
B will produce a forgery. Since A is assumed to succeed with a non-negligible probability, B will
also succeed with a non-negligible probability, losing a polynomial factor of p(λ) + 1. By Claim 3,
B is an efficient algorithm. This concludes the proof.

Lemma 3. If E is a public key encryption scheme that is secure against chosen ciphertext at-
tacks (CCA-2), and the interactive proof scheme NIZK is zero knowledge (Definition 14), then the
construction DFSS presented in Section 5 is secure against chosen function attacks (CFA) as in
Definition 5.

Lemma 4. If E is a public key encryption scheme that is secure against chosen ciphertext at-
tacks (CCA-2), and the interactive proof scheme NIZK is zero knowledge (Definition 14), then the
construction DFSS presented in Section 5 is secure against chosen function attacks (CFA) as in
Definition 5.

For showing this lemma we will first give a game-based proof for an adversary that only uses the
oracle Query[Sign-F ] once. We proceed using a hybrid argument that shows that the existence of a
successful adversary that makes polynomially many calls to Query[Sign-F ] implies the existence of
a successful adversary that only makes one call.

Proof. Let DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf) be our construction for functionalities
F and G. Assume towards contradiction that DFSS is not secure against chosen function attacks
against a strong insider. Then there exists an efficient adversary AS-Insider that wins the game
CFA(DFSS,F ,AS-Insider, λ) from Definition 5 with non negligible advantage. For simplicity we will
write A for AS-Insider in this proof.

Claim 6. If A invokes the challenge oracle Query[Sign-F ] at most once, then the advantage of A is
negligible.

Proof for Claim 6. The challenger uses the uniformly distributed value b only when Query[Sign-F ]
is called. Thus, if A does not call Query[Sign-F ], the advantage of A is 0.
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For the case that A calls Query[Sign-F ] exactly once, we show the claim via a series of indistin-
guishable games that start with a game where b = 0 and end with a game b = 1. Our proof shows
that all intermediate games are indistinguishable.

Let Game G0 be the original game from Definition 5 where b = 0. As by our claim A calls
Query[Sign-F ] only once we will simplify the notation of the game by making the call to Query[Sign-F ]
explicit. Moreover we make the invokation of Initialize explicit as we will modify it in the following
games. The oracles that A can access (aside from Query[Sign-F ]) are as they are formalized in
Definition 5.

Notation: We use the following notation for describing the games. We assign a number to
each line where the first digit marks the game and the remaining digits the line in this game. Thus,
234 marks the 34th line of game 2. Moreover we do not write down all lines explicitly. All lines
that are not explicitly stated are as they were defined in the last game that defined them. If, e.g.,
we write for Game G5 the line

536XY Z

this means that Game G5 differs from Game G4 in line 36 which is replaced by XY Z for Game G5.
Game G0
−−Initialize −−
001 b := 0

−−Setup −−
002 CRS← KGenNIZK(1λ)

003 (mskS , ppS)← SetupS(1λ)

004 (mskE , ppE)← SetupE(1
λ)

005 (d̃k, ẽk)← KGenE(ppE ,mskE)

006 pp := (CRS, ppS , ppE , ẽk)
007 msk := (mskS ,mskE)
−−KGensig −−
008 (sskS , vkS)← KGenS(ppS ,mskS)

009 pksig := vkS
010 sksig := (sskS , pksig)

− output of (pp, sksig, pksig) to A−

011 c← AOpp,msk,ssks
1 (pp, pksig)

−−Query[Sign-F ] −−
012 parse c = ([pkev, α]t0, t,m0, σ0)

013 if (·, pkev[t]) /∈ KC out := ⊥
014 if Vf(pp, pksig, pkev[0],m0, σ0) 6= 1

then output ⊥
015 if ¬∃sk∗ev. (sk∗ev, pkev[0]) ∈ KC

then output ⊥

016 extract (f0, k) from σ0 using sk∗ev
017 for i ∈ {1, . . . , t}
018 if ¬∃sk∗ev = (sskF , dk). (sk∗ev, pkev[i− 1]) ∈ KF
019 out := ⊥
020 (fi,mi) := F(λ, fi−1, α, pkev[i],mi−1)

021 qi := (pp, sk∗ev, pksig, α[i],mi−1, pkev[i], σi−1)

022 parse pkev[i] = (vkF , ek)
023 parse σi−1 = (S, d,Π)

024 (fi−1, j, ςj)← DecE(ppE , dk, d)

025 x = (pp, pksig, pkev[i− 1], S, d,mi−1)

026 if VfNIZK;Zj
(CRS, x,Π) = 1

027 hj−1 := (fi,mi, pkev[i], j − 1)

028 ς̂j−1 ← SigS(ppS , sskF , hj−1; rS)

029 sj−1 ← EncE(ppE , ẽk, (ς̂j−1, hj−1); rs)

030 d̂← EncE(ppE , ek, (fi, j − 1, ςj−1); rd)

031 x̂ = (pp, pksig, pkev[i], S, d̂,mi)

032 ω = (fi, j − 1, rd)

033 with ωj−1 = (ςj−1, rS ,Π, pkev[i− 1],

mi−1, fi−1, α[i], )

034 Π̂← PNIZK(CRS, x, ω)

035 σi := (S, d̂, Π̂)

036 else
037 σi := ⊥
038 if σt 6= ⊥
039 hk−t := (ft,mt, pkev[t], k − t)
040 ςk−t ← SigS(ppS , sskS , hk−t; rS)

041 sk−t ← EncE(ppE , ẽk, (ςk−t, hk−t); rsk−t
)

042 For j ∈ {0, . . . , n} \ {k − t}
043 ςj := 0|ςk−t|

044 hj := (0`p(λ), 0`m(λ), 0|pkev [t]|, 0)

045 sj ← EncE(ppE , ẽk, (ςj , hj); rsi)
046 d← EncE(ppE , ek, (ft, k − t, ςk−t; rd))
047 S := (s0, . . . , sn)

048 x := (pp, pksig, pkev[t], S, d,mt)

049 ω := (ft, n, rd)

050 with ωk−t := (ςk−t, rS , k − t)
051 Π← P(CRS, x, ω)

052 σ := (S, d,Π)

053 else
054 σ := σt

055 if out 6= ⊥ then out := σ

056 b∗ ← A2(out)
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Game G1
102 (CRS, state)← S0(1λ)

134 Π̂← S1(state, x)

151 Π← S1(state, x)

Game G2
229 sj−1 ← EncE(ppE , ẽk, (0

|ςj−1|, (0`p(λ), 0`m(λ), 0|pkev [t]|, 0)); rs)

230 d̂← EncE(ppE , ek, (0
|ft|, 0, 0|ςj−1|); rd)

241 sk−t ← EncE(ppE , ẽk, (0
|ςk−t|, (0`p(λ), 0`m(λ), 0|pkev [t]|, 0); rsk−t

)

246 d← EncE(ppE , ek, (0
|ft|, 0, 0|ςk−t|); rd)

Game G3
301 b := 1

338 if false

Game G4
429 sj−1 ← EncE(ppE , ẽk, (ςj−1, hj−1); rs)

430 d̂← EncE(ppE , ek, (ft, j − 1, ςj−1); rd)

Game G5
501 CRS← KGenNIZK(1λ)

534 Π← P(CRS, x, ω)

Game G0 ⇒Game G1: Since NIZK is zero knowledge, there exists an efficient simulator S =
(S0,S1). In Game G1, Initialize calls this simulator S0 to compute the common reference
string CRS, instead of the algorithm SetupNIZK. The simulator is allowed to keep state from
S0 to S1. Moreover, in Query[Sign-F ] we call S1 to simulate the proof Π instead of computing
it by calling the prover P.

Claim 7. Game G0 and Game G1 are computationally indistinguishable.

Proof. The indistinguishability follows from the fact that NIZK is zero knowledge (Definition 14).
If a PPT distinguisher could distinguish between Game G0 and Game G1, we could construct an
efficient distinguisher for NIZK.

Game G1 ⇒Game G2: The game Game G2 is identical to Game G1 except for the fact that now
S and d contain only descriptions of zero-strings: we put encryptions of zero strings in all sj
for j ∈ {0, . . . , n} instead of leaving an encryption of a signature ςk−t together with its message
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hk−t at position k − t and in an encryption of a zero string in d instead of an encryption of
ςk−t together with ft and k − t.
To compensate for the loss of information in d, we store the tuple (ft, k − t, ςk−t) together
with the (supposed) ciphertext d. Whenever Query[Eval] is called and within the call one of
the ciphertexts d is placed, we look up the values (ft, k− t, ςk−t) instead of decrypting d. The
same applies to the decryption in line 22 of our game.

Claim 8. Game G1 and Game G2 are computationally indistinguishable.

Proof. If the games could be distinguished by a PPT distinguisher, then we could construct an
efficient distinguisher that breaks the CCA-2 security of E . We distinguish two cases:

• The simulator S = (S0,S1) behaves differently. Although the simulatability of the NIZK only
is defined for valid statements x ∈ LR, a simulator that can distinguish with a non-negligible
probability between a “normal” S or d (as in Game G1) and an S or d that consists only of
encryptions of zero-strings (as in Game G2) can also be used to break the CCA-2 security of
E .

• The adversary distinguishes the games. If the adversary is able to distinguish Game G1 and
Game G2 with a non-negligible probability, it can be used to break the CCA-2 security of E .

Thus, Game G1 and Game G2 are computationally indistinguishable.

Game G2 ⇒Game G3: In Game G3, the bit b is set to 1 instead of 0. However, b is never used
explicitly in the game. Moreover we always use the signature generated by EvalF (from line
33) instead of the fresh signature (from line 50).

Claim 9. Game G2 and Game G3 are computationally indistinguishable.

Proof. In both cases S and d are encryptions of zero strings (under the same keys) and in both
cases Π is a proof generated by S1 for the same statement x = (pp, pksig, pkev[t], S, d,mt). Since S1
does not receive a witness, the proofs are based on the same arguments.

Game G3 ⇒Game G4: The game Game G4 is identical to Game G3 except for the fact that S
and d are “normal” encryptions again (not encryptions of zero strings).

Claim 10. Game G3 and Game G4 are computationally indistinguishable.

Proof. The same argument as for Game G1 and Game G2 applies here. If the games could be
distinguished, we could construct an efficient distinguisher for the encryption scheme.

Note that we do not need to revert the encryptions in lines 39 and 44 as they are within the “if
false”-block.

Game G4 ⇒Game G5: In Game G5 we replace the simulator S = (S0,S1) with the original
SetupNIZK and P algorithms again.

Claim 11. Game G4 and Game G5 are computationally indistinguishable.
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Proof. As for Claim 7, the indistinguishability again follows from the fact that NIZK is zero knowl-
edge. If a PPT distinguisher could distinguish between Game G4 and Game G5, we could construct
an efficient distinguisher for NIZK.

As we have shown, the games Game G0 and Game G5 are computationally indistinguishable.
However, Game G0 perfectly models the case, where an adversary plays against a challenger for
CFA when b = 0, whereas Game G5 perfectly models the case, where an adversary plays against
a challenger for CFA when b = 1. Since the games are (pairwise) computationally distinguishable,
the cases are also computationally indistinguishable and thus the advantage of A is negligible. This
concludes the proof for Claim 6

Via hybrid argument we reduce the case in which the adversary might make polynomially many
calls to Query[Sign-F ] to the case of Claim 6 where the adversary makes at most one call to
Query[Sign-F ]. We can simulate the calls to Query[Sign-F ] both for b = 0 and for b = 1 using the
oracle access to Sig and to EvalF .
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A Relation between DFS and FS

In an independent work, Boyle, Goldwasser, and Ivan [14] presented functional signatures, a concept
that is closely related to a weaker variant of delegatable functional signatures In this section we
investigate the relation of their work with delegatable functional signatures. First we show how
to build functional signatures from delegatable functional signatures. Furthermore we argue why
building delegatable functional signatures our of functional signatures alone seems hard.

A.1 Constructing functional signatures (from DFSS)

Given a DFS scheme DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf), we construct a functional
signature scheme FSS = (Setup,KGen, Sig,Vf) satisfying both unforgeability and function privacy
as defined in [14].

The setup algorithm generates two key-pairs of the DFS, where we use (sksig, pksig) for signing
and (skev, pkev) for evaluating functions on the messages. The signing key skf for a function f is
modeled as a signature (on an empty message) that can be transformed into all messages in the
range of f . This means that we consider the following functionality: F(λ, f, α, pkev,m) := f(α).
We give a formal description of the algorithm in the following.

FSS.Setup(λ) :
(pp,msk)← DFSS.Setup(λ)

(sksig, pksig)← DFSS.KGensig(pp,msk)

(skev, pkev)← DFSS.KGenev(pp,msk)
FSS.msk := (pp, sksig, skev, pksig, pkev)

FSS.mvk := (pp, pksig, pkev)

output (FSS.msk,FSS.mvk)

FSS.KGen(FSS.msk, f) :
FSS.msk = (pp, sksig, skev, pksig, pkev)

σf ← DFSS.Sig(pp, sksig, pkev, f,⊥)

FSS.skf := (pp, skev, σf , pksig)

output FSS.skf
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FSS.Sig(FSS.skf ,m) :
FSS.skf = (pp, skev, σf , pksig)

FSS.σ ← DFSS.EvalF (pp, skev, pksig,m,⊥,⊥, σf )

output FSS.σ

FSS.Vf(FSS.mvk,m∗,FSS.σ) :

FSS.mvk = (pp, pksig, pkev)

FSS.b← DFSS.Vf(pp, pksig, pkev,m
∗,FSS.σ)

output FSS.b

DFSS.UnfI implies FS.Unforgeability

The unforgeability notion of a functional signature scheme is closely related to our notion of unforge-
ability against insider attacks. Given an adversary A that is able to forge a signature for a message
that is not in the range of any function f for which it has been given a key skf we build an adversary
B against UnfI as follows. B simulates the algorithm from Section A.1, but uses Query[KGenS] to
acquire a key skev and Query[Sign] to acquire signatures σf for functions f whenever A asks for a
key skf .

Eventually A produces a forgery (m∗, σ∗), i.e., σ∗ is a signature for m∗ and m∗ is not in the
range of any function f for which A has asked for a key skf . By construction m∗ is not in the
transitive closure F∗(λ, (f,m)) for any message m that was signed for B together with functionality
f and thus (m∗, σ∗) also constitutes a forgery for UnfI.

DFSS.CFA implies FS.FunctionPrivacy

Given an adversary A against FS.FunctionPrivacy, we construct an adversary B against DFSS.CFA.
B translates the queries as follows. First, B uses Query[KGenS] to acquire a key skev and initializes
A. Eventually, A outputs a tuple m0.m1, f0, f1 s.t. f0(m0) = f1(m1). Now B flips a coin bB ←
{0, 1} and sends Query[Sign-F ](fb, (pkev,⊥), (pkev⊥,mb), 1,m⊥) to its challenger for DFSS.CFA. It
forwards the signature that the challenger sends to A. This signature now either is constructed
exactly as in the game of FS.FunctionPrivacy (if the signature has been generated via EvalF ) or
a fresh signature on m′ = f0(m0) = f1(m1). In the latter case, A can only guess the bit bB with
probability exactly 1

2 . In the first case, however, by assumption A guesses the bit with probability
noticeably higher than 1

2 . Thus, If A guesses the bit b correctly, B outputs 1, otherwise it outputs
0. This way the (noticeable) advantage of A translates to an advantage of B that is at least half
the advantage of A and thus still noticeable.

A.2 Constructing delegatable functional signatures (from FS)

A DFS scheme provides one significant property, which a functional signature scheme does (triv-
ially) not provide: delegation. Without delegation, i.e., if we disallow an evaluator to delegate
its capabilities, delegatable functional signature schemes are closely related to functional signature
schemes. One could encode the functionality F together with an identity ID of an evaluator into
the functions fF ,ID for which keys skf are generated. The (original) signer then signs the message
together with capabilities DFSS.f and the identity of the evaluator. The main idea lies in defining
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fF ,ID such that it generates a new message m′ only on input of all the relevant values: A signature
on (m,DFSS.f, ID) and the value α. If furthermore the functional signature scheme has the property
that whenever an adversary can create a signature on f ′ = f(x), there is an adversary that also
can output x, we can prove both unforgeability and privacy against chosen function attack both
against insider adversaries. Obtaining delegation, however, appears to be a more complicated task
and we currently do not see how to achieve it. In the following section we show that DFS imply
several seemingly different signature primitives. Using only black-box access to a given delegatable
functional signature scheme DFSS = (Setup,KGensig,KGenev, Sig,EvalF ,Vf), we construct (among
others) identity based signature schemes, sanitizable signature, and redactable signature schemes.
Signature Schemes. As a warm-up, we show that DFS imply the notion of standard signature
schemes that are clearly non-malleable: Only the signer in possession of the secret signing key can
generate signatures on messages of its choice.

We use the following, straight-forward functionality:

FS(λ, f, α, pkev,m) := (⊥,⊥)

Proposition 9 (Signatures). If unforgeable delegatable functional signatures exist, then unforgeable
signatures exist.

Unforgeability against outsider adversaries (UnfO) suffices for regular signatures.

Identity Based Signatures. In an identity based signature scheme (IBS), publicly known iden-
tifiers ID serve as verification keys for signatures that were generated by the entity with identifier
ID. We follow the general construction of [10], in which a trusted party generates a master secret
key msk and extracts a signing key skID from (msk,ID) for each entity with identifier ID. Formally,
an IBS scheme is a tuple IBS = (SetupIBS,ExtractIBS, SigIBS,VfIBS) of efficient algorithms.

SetupIBS(λ) :

(pp,msk)← Setup(λ)

(sksig, pksig)← KGensig(pp,msk)

(skev, pkev)← KGenev(pp,msk)

set IBS.pp := (pp, pksig, pkev)

set IBS.msk := (msk, sksig, skev)

output (IBS.msk, IBS.pp)

ExtractIBS(pp,msk, ID) :

parse IBS.pp = (ppF , pksig, pkev)

parse IBS.msk = (mskF , sksig, skev)

σID ← Sig(pp, sksig,
pkev, 1, (ID,⊥))

set skID := (skev, σID, ID)

output skID

SigIBS(pp, skID,m) :

parse IBS.pp = (pp, pksig, pkev)

parse skID = (skev, σID, ID)

σ ← EvalF (ppF , skev, pksig,

m, (ID,⊥), σID)

output σ
VfIBS(pp, ID,m, σ) :

parse IBS.pp = (pp, pksig, pkev)

b← Vf(pp, pksig, pkev, (ID,m), σ)

output b

Figure 8: Construction of an IBS out of a DFSS

For our implication we derive a secret signing key sksig that is never given to any entity except
for the trusted party. With this signing key, we generate secret keys by signing the individual
entity’s ID. This signature σID constitutes the secret that a participant can use in order to sign
their own messages. Signing means modifying σID in a controlled way: We add the (real) message
to the (signed) ID. (see Figure 8).
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We define the functionality FIBS as follows.

FIBS(λ, 1, α, pkev, (ID,⊥)) := (0, (ID, α))

Naturally, FIBS(λ, f, ·, ·, ·) := ⊥ for all f 6= 1. The security of the scheme comes from the fact that
σID cannot be generated by any entity but the trusted party.

Proposition 10 (Identity based signatures). If unforgeable private delegatable functional signatures
exist, then unforgeable identity based signatures exist.

Unforgeability against insider adversaries (UnfI) and privacy against insider adversaries is neces-
sary for this construction. The fact that privacy is necessary might be somewhat surprising at first
glance. However, since we use signatures as keys, the original signature σID has to be kept secret.
If it can be extracted from a derived signature, other participants can sign in the name of ID.

Sanitizable Signatures. Sanitizable signature schemes as in [18] allow a signature on m to be
enriched with certain admissions adm. All possible modifications mod such that adm(mod) = 1
can be applied to the signature to derive signatures on m′ = mod(m). The sanitizable signature
scheme we create does not have a notion of accountability. However, extending the scheme to an
accountable sanitizable signature scheme is an interesting future work. We construct a functionality
F as follows, where adm⊥ always returns 0.

F(λ, adm,mod, pkev,m) :=

{
(adm⊥,mod(m)) if adm(mod) = 1

⊥ otherwise

Proposition 11. If unforgeable, private delegatable signature schemes exist, then unforgeable, im-
mutable, private sanitizable signature schemes exist.

Redactable Signatures. Redactable signatures as in [17] allow signatures that can be modified in
specific ways by anyone that holds access to the signature. Intuitively we can construct a redactable
signature scheme RSS from a functional signature scheme by making the secret evaluator key skev
public. This allows everyone to modify signatures according to a functionality F that implements
the desired redaction predicate P as follows.

FP (λ, f, α, pkev,m) :=

{
(0, α) if P (m,α) = 1 ∧ f = 1
⊥ otherwise

Proposition 12 (Redactable signatures). If unforgeable, private delegatable signatures exist then
unforgeable private redactable signatures exist.

Blind signatures. Delegatable functional signatures also imply blind signatures. We explore this
subject in detail in Section 4.1.

B Blind signatures

We follow the notation and the definitions from [35]. Blind signature schemes are, in contrast to
traditional signature schemes, interactive. Thus we define interactive executions of two algorithms
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X and Y as (x, y)← 〈X(a),Y(b)〉, where x is the output of X and y is the output of Y. These outputs
are not necessarily public. We write X〈O(a),·〉 if X has access to an interactive oracle O with input a.
In such an oracle interaction, X does not receive the private output of O and vice versa. If X may
only interact with O once, we write X〈O(a),·〉1 . Note that if X has access to several oracles, it does
not have to invoke all of them and might invoke them in an arbitrary order.

Definition 18 (Interactive signature scheme). We define an interactive signature scheme as a tuple
of efficient algorithms BS = (KGBS, 〈S,U〉 ,VfBS), consisting of the key-generation algorithm KGBS,
the signer S, the user U , and the verification algorithm VfBS, where

KGBS(λ): The key generation for parameter λ generates a key pair (skBS, pkBS).

〈S,U〉: The signature issuing, consisting of the execution of algorithm S(skBS) and algorithm U(pkBS,m)
for message m ∈ {0, 1}∗ generates an output σ of the user, and some possibly empty output
out for the signer (such as a status message like ok or ⊥), (out , σ)← 〈S(skBS),U(pkBS,m)〉.

VfBS(pkBS,m, σ): The verification algorithm VfBS outputs a bit b ∈ {0, 1}.

We call an interactive signature scheme complete, if for any function f , with overwhelming
probability in λ ∈ N the following holds: when executing (skBS, pkBS) ← KGBS(λ), setting m :=
f(λ, pkBS, skBS), and letting σ be the output of U in the joint execution of S(skBS) and U(pkBS,m),
then we have VfBS(pkBS,m, σ) = 1.

B.1 Basic security notions for blind signatures

Security of blind signature schemes is defined by unforgeability and blindness [33, 37].

Unforgeability. An adversary U∗ against unforgeability tries to generate k+1 valid message/signatures
pairs with different messages after at most k completed interactions with the honest signer, where
the number of executions is adaptively determined by U∗ during the attack. To identify completed
sessions we assume that the honest signer returns a special symbol ok when having sent the final
protocol message in order to indicate a completed execution (from its point of view). We remark
that this output is “atomically” connected to the final transmission to the user.

Definition 19 (Unforgeability). An interactive signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) is
called unforgeable if for any efficient algorithm A (the malicious user) the probability that experiment
UnforgeBSA (λ) evaluates to 1 is negligible (as a function of λ) where

Experiment UnforgeBSA (λ)
(skBS, pkBS)← KGBS(λ)

((m∗1, σ
∗
1), . . . , (m∗k+1, σ

∗
k+1))← A〈S(skBS),·〉

∞
(pkBS)

Return 1 iff
m∗i 6= m∗j for all i, j with i 6= j, and
VfBS(pkBS,m∗i , σ

∗
i ) = 1 for all i, and

S has returned ok in at most k interactions.
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Blindness. The blindness condition says that it should be infeasible for a malicious signer S∗ to
decide which of two messages m0 and m1 has been signed first in two executions with an honest
user U . The traditional definition considers maliciously generated keys by the S∗ [1, 26]. For our
purpose, however, it is sufficient to consider honestly generated keys. If one of these executions has
returned ⊥ then the signer is not informed about the other signature (Otherwise the signer could
trivially identify one session by making the other abort.).

Definition 20 (Blindness). A blind signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) is called blind
if for any efficient algorithm S∗ (working in modes find, issue and guess) the probability that the
following experiment BlindBS

S∗ (λ) evaluates to 1 is negligibly bigger than 1/2, where

Experiment BlindBS
S∗ (λ)

(skBS, pkBS)← KGBS(λ)
(m0,m1, stfind)← S∗(find, skBS, pkBS)
b← {0, 1}
stissue ← S∗〈·,U(pkBS,mb)〉1,〈·,U(pkBS,m1−b)〉1(issue, stfind)

and let σb, σ1−b denote the (possibly undefined) local outputs
of U(pkBS,mb) resp. U(pkBS,m1−b).

set (σ0, σ1) = (⊥,⊥) if σ0 = ⊥ or σ1 = ⊥
b∗ ← S∗(guess, σ0, σ1, stissue)
return 1 iff b = b∗.
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