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Abstract. Invalid curve attacks are a well-known class of attacks
against implementations of elliptic curve cryptosystems, in which an
adversary tricks the cryptographic device into carrying out scalar mul-
tiplication not on the expected secure curve, but on some other, weaker
elliptic curve of his choosing. In their original form, however, these
attacks only affect elliptic curve implementations using addition and dou-
bling formulas that are independent of at least one of the curve parame-
ters. This property is typically satisfied for elliptic curves in Weierstrass
form but not for newer models that have gained increasing popularity in
recent years, like Edwards and twisted Edwards curves. It has therefore
been suggested (e.g. in the original paper on invalid curve attacks) that
such alternate models could protect against those attacks.

In this paper, we dispel that belief and present the first attack of this
nature against (twisted) Edwards curves, Jacobi quartics, Jacobi inter-
sections and more. Our attack differs from invalid curve attacks proper in
that the cryptographic device is tricked into carrying out a computation
not on another elliptic curve, but on a group isomorphic to the multi-
plicative group of the underlying base field. This often makes it easy to
recover the secret scalar with a single invalid computation.

We also show how our result can be used constructively, especially on
curves over random base fields, as a fault attack countermeasure similar
to Shamir’s trick.

Keywords: Elliptic curve cryptography · Edwards curves · Implemen-
tation issues · Fault attacks · Countermeasures

1 Introduction

Elliptic curve cryptography (ECC) was introduced in the 1980s by Miller [44]
and Koblitz [38], following the successful application of elliptic curves to integer
factorization [39]. Compared to its finite field alternatives, ECC offers shorter
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keys, higher speeds, and additional structure that enables constructions such
as bilinear pairings. ECC rests on the hardness of the elliptic curve discrete
logarithm problem (ECDLP), which has remained intractable so far—for well-
chosen curves.

Regardless of the theoretical security of elliptic curve cryptosystems, attacks
targeting their implementations are numerous. One particularly powerful attack
class is the fault attack [12,13], which consists in injecting faults before or dur-
ing a cryptographic operation, and inspecting the resulting output to recover
key information. Fault attacks directed at elliptic curve scalar multiplication
implementations were first published in [9] and further developed in many other
works, including [11,15,20,36].

A conceptually simpler attack pointed out by Antipa et al. [1] and extended
in several further works [35,37], the invalid curve attack, exploits implementa-
tions that fail to verify that input points to a scalar multiplication belong to the
correct elliptic curve, and where point addition and doubling formulas are inde-
pendent of at least one curve parameter. In such cases, the attacker can query its
target with a specially-crafted point outside of the correct elliptic curve. Then,
because the formulas used in the scalar multiplication do not depend on all curve
parameters, the implementation really computes a normal scalar multiplication
by the same scalar, but on a different curve depending on the invalid input point.
Choosing invalid points in such a way that the corresponding curves are weak,
the attacker can then quickly recover secret keys from observing the outputs (or
the hashed outputs) of the scalar multiplications. Although the attack and rec-
ommended countermeasures are well-known to cryptographers, recent research
has found that a number of widely-used cryptographic libraries in the wild are
vulnerable [29].

The attack of Antipa et al. was originally introduced in the context of elliptic
curves in Weierstrass form y2 = x3 + ax + b, where the usual formulas for point
addition and doubling are independent of the curve parameter b. Nowadays, how-
ever, alternate elliptic curve models and addition laws are gaining prominence:
models such as Montgomery [4,45] and Edwards [7,18] curves are being pro-
posed for wide Internet usage1, and several others are known to have desirable
properties for cryptographic applications [10,33,34,40,53].

Invalid curve attacks generalize directly to those alternate models provided
that the crucial property of independence of the arithmetic on at least one curve
parameter is satisfied. But many of the newer models for elliptic curves, including
Edwards curves, use all parameters in their most common addition formulas. It
is thus reasonable to expect, then, that invalid curve attacks would not apply to
those curves. In fact, the use of addition formulas depending on all curve parame-
ters was specifically mentioned by Antipa et al. [1] as a possible countermeasure
to thwart their attack.

Our Contribution. In this paper, we re-examine the feasibility of invalid curve
attacks against newer elliptic curve models like Edwards curves, and find that
1 See https://tools.ietf.org/html/draft-irtf-cfrg-curves.

https://tools.ietf.org/html/draft-irtf-cfrg-curves
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a new variant of the attack of Antipa et al. will indeed break the security of
implementations that do not carry out proper point validation. The new attack
works by reducing the problem of finding the secret scalar to solving discrete
logarithms not on a weaker elliptic curve, but in the multiplicative group of the
base field, which is easy for typical curve sizes.

The idea behind the attack is roughly to let one of the parameters in the
curve family vary, and consider the degenerate curves (those of genus 0) among
them. On those special curves, the group law degenerates to the multiplicative
group (or in rare cases, the additive group), and while in principle the group
formulas should still involve the curve parameter that was made to vary, it often
ends up being multiplied by the constant zero for all points on the degenerate
curve. As a result, the same formulas as for scalar multiplication on the correct
curve yield an exponentiation in the degenerate group.

When only a hash value of the result of the scalar multiplication is provided
(as in hashed Diffie–Hellman), our new attack is somewhat less flexible than
invalid curve attacks, since it is no longer possible to vary the weak curve as
done by Antipa et al. However, using a baby-step-giant-step-like time-memory
tradeoff, we show that we can still easily break curves over some of the largest
fields commonly used for elliptic curve cryptography, such as F2521−1.

This new attack underscores the importance of point validation even over
newer elliptic curve models.

Finally, the properties we exploit in the attack can also be used construc-
tively, to thwart fault attacks. We present a concrete countermeasure, similar
to Shamir’s trick [50], that detects faults injected during scalar multiplication
particularly efficiently. This is done by lifting the computation on the elliptic
curve over Fp to the composite order ring Z/prZ for some small constant r, and
making sure that the component modulo r of the lifted curve is degenerate in
the sense mentioned above. Then, verifying that the computation modulo r was
correct becomes a simple field exponentiation, which is much faster than the
usual scalar multiplication. This technique applies to Weierstrass curves as well
as newer models.

Organization of the Paper. In Sect. 2, we provide a rundown of some of the
most common curve models and addition laws used in elliptic curve cryptog-
raphy. In Sect. 3, we first recall the traditional invalid curve attack, and then
present our extension of it to newer models of elliptic curves using the degener-
ate curve technique. In Sect. 4, we explain how the new attack can be applied
when only a hash of the result of the scalar multiplication is available. And
finally, in Sect. 5, we present our concrete fault attack countermeasure using
degenerate curves.

2 Elliptic Curve Models

We begin by presenting the elliptic curve forms and respective group laws studied
in this paper. This is not an exhaustive list; there are many other addition
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laws in the literature, and the interested reader can see an overview of many
of them in [8]. Every base field Fp throughout this paper is assumed to have
characteristic ≥ 5.

2.1 Weierstrass Model

The canonical short Weierstrass form of an elliptic curve is given by the equation
y2 = x3 +ax+b, with a point at infinity O = (0 : 1 : 0). Addition on Weierstrass
curves is derived directly from the chord and tangent method [52, Chapter III.2]:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1
where λ =

{
y1−y2
x1−x2

if (x1, y1) �= (x2,±y2),
3x2

1+a
2y1

if (x1, y1) = (x2, y2).
(1)

2.2 Twisted Edwards Model

Edwards curves were introduced in 2007 [7,18]. Here we look at their generaliza-
tion, twisted Edwards curves [5], which cover more curves. A twisted Edwards
curve is defined by the equation ax2 + y2 = 1 + dx2y2, with neutral affine point
O = (0, 1). The general complete group law for twisted Edwards curves is

(x3, y3) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2

)
. (2)

An addition formula, no longer complete, which does not require the d para-
meter, was found by Hisil, Wong, Carter, and Dawson [25]:

(x3, y3) =

⎧⎨
⎩

(
x1y1+x2y2
y1y2+ax1x2

, x1y1−x2y2
x1y2−y1x2

)
if (x1, y1) �= (x2, y2), (−x1,−y1)(

2x1y1
y2
1+ax2

1
,

y2
1−ax2

1
2−y2

1−ax2
1

)
if (x1, y1) = (x2, y2)

. (3)

2.3 Huff’s Model

Huff curves are a recently rediscovered elliptic curve model [34] previously used
in the study of a certain Diophantine equation [27]. They are defined by the
equation ax(y2 − 1) = by(x2 − 1), and have the affine neutral point O = (0, 0).
Huff’s addition formula, complete for points of odd order, is independent of the
curve’s parameters:

(x3, y3) =
(

(x1 + x2)(1 + y1y2)
(1 + x1x2)(1 − y1y2)

,
(y1 + y2)(1 + x1x2)
(1 − x1x2)(1 + y1y2)

)
. (4)

2.4 Hessian Model

The Hessian form of an elliptic curve, introduced in [14] (also in [17,24,33,46,
53]), is defined by the equation x3 + y3 + 1 = 3dxy, with a point at infinity
O = (1,−1, 0) as neutral element. The group law is given by

(x3, y3) =

⎧⎨
⎩

(
y2
1x2−y2

2x1
x2y2−x1y1

,
x2
1y2−x2

2y1
x2y2−x1y1

)
if (x1, y1) �= (x2, y2)(

y1(1−x3
1)

x3
1−y3

1
,
x1(y

3
1−1)

x3
1−y3

1

)
if (x1, y1) = (x2, y2).

(5)
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2.5 Twisted Hessian Model

The twisted Hessian form [6,8] is defined by equation ax3 + y3 + 1 = dxy, with
neutral element O = (0,−1). Unlike the original Hessian form, twisted Hessian
curves have an affine neutral point and complete addition formula

(x3, y3) =
(

x1 − y2
1x2y2

ax1y1x2
2 − y2

,
y1y

2
2 − ax2

1x2

ax1y1x2
2 − y2

)
. (6)

2.6 Twisted Jacobi Intersections

Jacobi intersections were suggested by Chudnovsky and Chudnovsky [14], and
were among the first competitive candidates for fast single-coordinate arith-
metic2. Here we present Hisil et al.’s generalization [26], defined by the intersec-
tion of bs2 + c2 = 1 and as2 + d2 = 1, with neutral affine point O = (0, 1, 1) and
complete addition formula

(s3, c3, d3) =
(

s1c2d2 + c1d1s2
1 − abs21s

2
2

,
c1c2 − bs1d1s2d2

1 − abs21s
2
2

,
d1d2 − as1c1s2c2

1 − abs21s
2
2

)
. (7)

2.7 Extended Jacobi Quartics

Extended Jacobi quartics [14,26] are defined by the equation y2 = dx4+2ax2+1,
with O = (0, 1) and group law

(x3, y3) =
(

x1y2 + y1x2

1 − dx2
1x

2
2

,
(1 + dx2

1x
2
2)(y1y2 + 2ax1x2) + 2dx1x2(x2

1 + x2
2)

(1 − dx2
1x

2
2)2

)
.

(8)

3 Invalid Curve Attacks

3.1 Review of the Weierstrass Curve Case

We begin by describing the classic invalid curve attack against short Weierstrass
curves Ea,b : y2 = x3 + ax + b over the finite field Fp. The key insight is that
formulas defining the arithmetic on that curve, given by Eq. (1), do not depend
on the parameter b of the curve equation. All the curves Ea,b′ for all b′ actually
share the same addition and doubling formulas.

Now consider a cryptographic device that performs scalar multiplications in
Ea,b(Fp) by a constant secret scalar k, and that, furthermore, does not check
that input points actually belong to that curve. An attacker trying to recover
k can then query the device on an invalid point P̃ = (x̃, ỹ) �∈ Ea,b(Fp). That
point belongs to a well-defined curve of the form Ea,b′ , namely Ea,b̃ with b̃ =

2 Miller [44] also suggested x-only arithmetic for Diffie–Hellman. However he suggested
using division polynomials for scalar multiplication, which is far more computation-
ally expensive.
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ỹ2 − x̃3 − ax̃. As a result, on input P̃ , the device actually computes the scalar
multiplication k · P̃ in the group Ea,b̃(Fp) and returns that value.

The discrete logarithm problem in the subgroup 〈P̃ 〉 generated by P̃ in
Ea,b̃(Fp) will typically be much easier than in the original group Ea,b(Fp), and
the attacker can even choose the invalid point and curve to make the problem
particularly easy. This allows him to efficiently recover k modulo the order of
〈P̃ 〉, and then all of k by repeating the process a few times with different invalid
curves.

The whole attack can thus be summarized as follows:

1. Find a curve Ea,b̃(Fp) and a point P̃ on it such that discrete logarithms in
〈P̃ 〉 are easy;

2. Query the cryptographic device on P̃ to get k · P̃ ;
3. Solve the discrete logarithm in the easy group, revealing k mod ord(P̃ );
4. Repeat until k is recovered in its entirety.

Finding a curve and point such that discrete logarithms are easy can be done
in several different ways. The original approach, inspired by [41], was to use
invalid curves containing subgroups of very small orders and an input point in
those subgroups; such curves are easy to find, but quite a few queries are needed
to recover all of k.

Another approach is to use a curve of smooth order [43]: this is somewhat
harder to construct, but may allow a full recovery of k in a single query. Alter-
natively, using a singular curve [35] yields a discrete logarithm problem in a
form of the multiplicative group over Fp (or the additive group when a = 0),
which is typically easy to solve and again makes the single-query recovery of k
possible [28, Sect. 3.7].

The attack also extends to the situation when the cryptographic device only
returns a hash of the resulting point of the scalar multiplication (the hashed
Diffie–Hellman setting): in that case, the small subgroup approach is typi-
cally the most efficient. That is the approach taken by Jager, Schwenk and
Somorovsky in their paper attacking ECDH key exchange in actually deployed
TLS libraries [29].

3.2 Parameter-Independent Formulas

The invalid curve attack translates easily to the case of alternate curve models for
which the addition and doubling formulas are independent of at least one of the
curve parameters: when querying the cryptographic device on a point P̃ outside
of the valid curve E, the computations still amount to a scalar multiplication on
a different curve Ẽ in the same family, obtained by adjusting the independent
parameter appropriately.

This is the case for (twisted) Hessian and Huff curves. Additionally, efficient
d-less formulas exist for Edwards curves (cf. Eq. (3)), Jacobian quartics and
Jacobian intersections [26].

On the other hand, in the case of addition laws depending on all curve para-
meters, the result of sending an arbitrary invalid input point to the device can no
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longer be interpreted as a scalar multiplication on a well-defined invalid curve:
the attack of Antipa et al. does not generalize directly to that setting.

3.3 Our New Approach: The Degenerate Curve Attack Against
Edwards Curves

As is easily observed in Eq. (2), the typical Edwards addition formulas depend
on all curve parameters and are therefore not vulnerable to the original invalid
curve attack as described above. However, there is one interesting property of
this addition law that helps us transfer elliptic curve discrete logarithms to the
curve’s underlying field, rendering them solvable by sieve methods [16,21].

Theorem 1. Let Ea,d be a twisted Edwards curve over Fp. The subset G̃ ⊂ F
2
p

of the affine plane consisting of points of the form (0, y), y �= 0, endowed with
the addition law defined by the same formula as Ea,d, given by Eq. (2), forms a
group isomorphic to F

∗
p under the isomorphism y �→ (0, y).

Proof. The map ϕ : F∗
p → G̃, y �→ (0, y) is by definition a bijection. It suffices to

check that it is a homomorphism to conclude. But this is indeed the case since
adding the points (0, y1) and (0, y2) yields, according to Eq. (2):

ϕ(y1) + ϕ(y2) =
(

0 · y2 + y1 · 0
1 + d · 0 · 0 · y1y2

,
y1y2 − a · 0 · 0

1 − d · 0 · 0 · y1y2

)
= (0, y1y2) = ϕ(y1y2)

as required. 
�
As a result, given a cryptographic device performing scalar multiplications

in the group Ea,d(Fp) without input point validation, as in the original attack of
Sect. 3.1, an attacker can send as input an invalid point P̃ of the form (0, ỹ), and
receive as result the scalar multiplication of P̃ by the secret k in the group G̃,
namely (0, ỹk). Therefore, recovering k is reduced to solving the discrete loga-
rithm problem in the multiplicative group F

∗
p, which as we have mentioned above

is much easier than in Ea,d(Fp) owing to well-known subexponential attacks.
For elliptic curve sizes used in practice (up to 500 or so bits), the finite field

discrete log is easy! By choosing y as a generator of F∗
p (which is always a cyclic

group), the attacker can thus recover all of k in a single query. This yields our
generalization of invalid curve attacks to the case of Edwards curves: we call this
attack a degenerate curve attack for reasons that will become apparent shortly.

Remark 1. An obvious but important observation is that, while we have
described our attack in affine coordinates, it also works in the (likely) case when
the device performs its computation in projective coordinates, using the projec-
tive versions of the same group operations. It is straightforward to check, for
example, that (0 : Y1 : 1) + (0 : Y2 : 1) = (0 : Y1Y2 : 1) (and generalizations with
other values of the Z-coordinates go through similarly).

One can wonder why, despite the dependence of the group law Eq. (2) on all
curve parameters, we can still find an invalid curve in the affine plane where
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the same formulas induce a group structure. A rough explanation is as follows.
First, the y-axis Y : x = 0 in the plane is actually a limit (in the usual sense of
one-parameter families) of the twisted Edwards curves Ea,d for fixed d: it is the
fiber above a = ∞. This is easily seen by rewriting the equation of Ea,d in terms
of a′ = 1/a, as x2 + a′y2 = a′(1 + dx2y2), and setting a′ = 0. Since Y is of genus
0, the Edwards group law should degenerate on Y (minus a finite number of
points) as the additive or the multiplicative group. The expression of the group
law need not a priori be the same as on the original curve Ea,d itself, but it does
turn out to be the case, because the only term depending on the parameter a
cancels out along Y : x = 0.

Now the line Y is not itself singular (although it should perhaps really be seen
as the non-reduced double line x2 = 0), but it is where the family degenerates,
hence the name of our attack.

3.4 Degenerate Curve Attacks Against Other Models

The idea of the previous attack generalizes easily to other models of elliptic
curves, including all of those mentioned in Sect. 2. We now describe those gen-
eralizations in affine coordinates below; they of course also work in projective
coordinates.

Extended Jacobi Quartics. Let Ea,b : y2 = dx4 +2ax2 +1 be an extended Jacobi
quartic curve over Fp, and consider the set G̃ of points in F

2
p of the form (0, y),

y �= 0. Endow this set with the same addition law as Ea,d, defined by Eq. (8).
It then forms a group isomorphic to F

∗
p under the isomorphism ϕ : y �→ (0, y).

Indeed, this map is a bijection and we have:

ϕ(y1) + ϕ(y2) =
(

0 · y2 + y1 · 0
1 − d · 0 · 0

,
(1 + d · 0 · 0)(y1y2 + 2a · 0 · 0) + 2d · 0 · 0 · 0

(1 − d · 0 · 0)2

)
= (0, y1y2) = ϕ(y1y2),

so ϕ is an isomorphism as required.
Therefore, we can carry out our attack as before, by sending to a device

performing scalar multiplications on Ea,d the invalid input point (0, y) for some
generator y of F∗

p.
In this case, the y-axis appears as the degenerate limit of the family Ea,d for

fixed a and varying d, taken for d = ∞.

Twisted Jacobi Intersections. Let Ea,b : as2 + c2 = bs2 + d2 = 1 be a twisted
Jacobi intersection over Fp, and consider the sets G̃1 and G̃2 of points in F

3
p of the

form (0, c, 0), c �= 0, and (0, 0, d), d �= 0, respectively. Endow both of these sets
with the same addition law as Ea,b, defined by Eq. (7). Then they form groups
isomorphic to F

∗
p under the isomorphisms ϕ1 : c �→ (0, c, 0) and ϕ2 : d �→ (0, 0, d)

respectively. Indeed, those maps are both bijections and we have:
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ϕ1(c1) + ϕ1(c2) =

(
0 · c2 · 0 + c1 · 0 · 0

1 − ab · 0 · 0
,
c1c2 − b · 0 · 0 · 0 · 0

1 − ab · 0 · 0
,
0 · 0 − b · 0 · c1 · 0 · c2

1 − ab · 0 · 0

)

= (0, c1c2, 0) = ϕ1(c1c2)

and similarly for ϕ2 by symmetry.
This provides two families of invalid points using which we can carry out our

attack exactly as before.

Twisted Hessian Curves. The case of twisted Hessian curves is somewhat less
interesting, since this model has a group law independent of the curve parameter
d, and hence the original invalid curve attack applies to it. Nevertheless, we can
mention for completeness that our approach generalizes rather directly to those
curves as well.

Indeed, if Ea,d : ax3 + y3 + 1 = dxy is a twisted Hessian curve, the map
ϕ : y �→ (0,−y) defines an isomorphism between F

∗
p and the set of elements of

the form (0, y), y �= 0 in F
2
p endowed with the same addition law as Ea,d, defined

by Eq. (6). Indeed:

ϕ(y1) + ϕ(y2) =
(

0 + y2
1 · 0 · y2

−a · 0 · y1 · 0 + y2
,

−y1y
2
2 − a · 0 · 0

−a · 0 · y1 · 0 + y2

)
= (0,−y1y2) = ϕ(y1y2).

Huff Curves. As with Hessian curves, Huff curves have a parameter-independent
group law and hence are not the most relevant setting for us, but we can again
extend our attack to them.

For the Huff curve Ea,b : ax(y2−1) = by(x2−1) with the group law of Eq. (4),
we can consider the set G̃ of points in F

2
p of the form (0, y). The sum of two such

points under the addition law given by the same formula is given by:

(0, y1) + (0, y2) =
(

0 · (1 + y1y2)
1 · (1 − y1y2)

,
(y1 + y2) · 1
1 · (1 + y1y2)

)
=

(
0,

y1 + y2
1 + y1y2

)
.

Thus, if we consider the map ϕ : F∗
p → G̃ defined outside −1 by ϕ(t) =

(
0, (1 −

t)/(1 + t)
)
, it is easy to check that ϕ(t1) + ϕ(t2) = ϕ(t1t2), and therefore we

again have a group isomorphic to F
∗
p to carry out our attack.

Remark 2. It may be worth noting that for some curve models, we are also able
to find degenerate curves on which the addition law induces a group structure
isomorphic to the twisted form of the multiplicative group (i.e. the subgroup of
order p + 1 of elements of norm 1 in F

∗
p2). Huff curves offer a simple concrete

example: consider the set of points of the form (x, x) ∈ F
2
p with the Huff addition

law of Eq. (4). The sum of two such points is given by (x1, x1)+(x2, x2) = (x3, x3)
where

x3 =
x1 + x2

1 − x1x2
.

When −1 is a quadratic nonresidue in Fp, this is well-known to be the so-called
“compressed form” of the twisted multiplicative group [49].
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4 The Hashed Case

The previous section considered attacks on a cryptographic device that per-
forms elliptic curve scalar multiplications without validation of input points,
and returns the actual result of the scalar multiplication. This is a somewhat
idealized attack model, however.

One real-world protocol where a similar situation arises is (static) Diffie–
Hellman key exchange over elliptic curves, one variant of which is presented in
Fig. 1. In an invalid curve attack on that protocol, Bob would send Alice his
invalid point B, and Alice would use it to compute the product kA ·B where kA
is her static secret key. The resulting point kA · B is not directly sent back to
Bob, however, but used to derive a key K = KDF(kA · B) used in subsequent
communication. In effect, what Bob receives is the image of kA ·B under a fixed,
public one-way function, usually with low collision probability (in Fig. 1, it would
be the authentication message M).

We model that situation by considering an oracle which, on input of a point
P (still unvalidated), computes the scalar multiplication k · P by a fixed secret
k, and returns the image H(k · P ) of the result under a public hash function H.
In that more restrictive setting, degenerate curve attacks are not as devastating
as previously described, but we will see that it is often still possible to recover
k quite quickly in practice, depending on the smoothness of the order p − 1
of F

∗
p (or of p + 1 in the case of degenerate groups isomorphic to the twisted

multiplicative group; we will describe the attack in the F
∗
p case to fix ideas).

The idea is simply to apply the Pohlig–Hellman algorithm [47]. Using the
naive variant of the algorithm, the attacker can, for each prime divisor � of
p − 1, choose a point P̃ of order � in the degenerate group, obtain H(k · P̃ )
from the oracle, and perform an exhaustive search in the subgroup 〈P̃ 〉 to find
the point Q̃ such that H(k · P̃ ) = H(Q̃), revealing k mod �. Prime powers are
dealt with similarly, and in the end the attacker recovers all of k with only a few
oracle queries, in time quasilinear in the largest prime factor P1(p − 1) of p − 1.
Furthermore, if a higher query complexity is acceptable, we can use Shanks’

Fig. 1. Basic unauthenticated elliptic curve Diffie–Hellman protocol, under which
invalid curve attacks may be mounted. The protocol works over a curve Ea,b(Fp),
with a generator point P of prime order n. KDF(·) is an arbitrary key-derivation func-
tion taking points of Ea,b(Fp) as input; E(K, M) is taken to be some authenticated
encryption primitive, e.g., AES–GCM.
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baby-step giant-step time-memory tradeoff [51] to recover k in time quasilinear
in

√
P1(p − 1), also using a number of queries and a space complexity quasilinear

in
√

P1(p − 1).
In general, even

√
P1(p − 1) need not be much smaller than the complexity of

the discrete logarithm problem in the original curve. However, newer models like
Edwards curves are often used over special base fields Fp with particularly effi-
cient arithmetic. Table 1 lists those efficient primes for usual curve sizes together
with the bit size of P1(p − 1), and we can see that for many of them, the degen-
erate curve attack is quite efficient: for example, for curves over the Mersenne
prime field F2521−1 (used to construct the highest security elliptic curves, includ-
ing E-521 [2]), the complexity of an F

∗
p degenerate curve attack would be around

O(244), which is very practical. And it would be O(257.5), also quite fast, over
F2448−2224−1, the field of definition of Ed448-Goldilocks [22].

5 A Fault Attack Countermeasure

Soon after the announcement of the Bellcore attack on RSA, Shamir proposed
a countermeasure [50] that relies on the Chinese remainder theorem to detect
faults during modular exponentiation. The basic idea of Shamir is to replace
computations modulo a prime p by computations in the ring modulo the com-
posite pr, where r is a small randomly-selected integer, and then compare the
result modulo r against an independent equivalent computation modulo r.

While Shamir’s trick3 works well on RSA, due to its simple structure, it is
trickier to apply this countermeasure to the elliptic curve case. Nevertheless,
countermeasures based on Shamir’s trick have been devised. The first one was
invented by Blömer, Otto, and Seifert [11] (BOS), and consisted of two elliptic
curve scalar multiplications—one over Z/prZ, the other over Z/rZ. Baek and
Vasyltov [3] suggested the use of the curve Y 2Z +pY Z3 = X3 +aXZ4 +BZ6 ∈
Z/prZ, where B = y2 + py − x3 − ax, which clearly is equivalent to the original
when reduced modulo p. This method is limited to projective coordinates, since
not every intermediate result may have an inverse in the extended ring. Their
method also has some potential weaknesses owing to its reliance on random
integers r instead of adequately selected primes [31]. It has been recently pointed
out that the original BOS countermeasure is not correct when coupled with
group laws containing exceptions [48], and thus group laws used in BOS-like
countermeasures must be test-free.

More recently, Joye [30,32] proposed a variant of the BOS countermeasure,
where one works instead over Z/pr2Z (resp. Z/r2Z). To accelerate the second
scalar multiplication, Joye takes advantage of the isomorphism between the set of
points of E(Z/r2Z) that reduce to the neutral point modulo r, and the additive
group F

+
r . For example, the set of affine points (αr, 1) ∈ E(Z/r2Z), coupled with

the Edwards group law, yields the useful identity k ·(αr, 1) = (k ·αr, 1) (mod r2),

3 Not to be confused with Shamir’s double-exponentiation trick, pointed out by ElGa-
mal [19, p. 471] and originally discovered by Straus [54].
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Table 1. For primes p suitable for fast elliptic curve cryptography [23], size in bits of
the largest prime factor of p − 1 and p + 1, and complexity of our BSGS-style hashed
Diffie–Hellman attack in F

∗
p ((p − 1) attack) and in the twisted multiplicative group

((p + 1) attack).

p log2 P1(p − 1) (p − 1) attack log2 P1(p + 1) (p + 1) attack

2191 − 19 90 O(245) 93 O(246.5)

2196 − 15 64 O(232) 165 O(282.5)

2216 − 2108 − 1 107 O(253.5) 19 O(29.5)

2221 − 3 73 O(236.5) 42 O(221)

2224 − 296 + 1 46 O(223) 157 O(278.5)

2226 − 5 127 O(263.5) 49 O(224.5)

2230 − 27 101 O(250.5) 136 O(268)

2251 − 9 235 O(2117.5) 70 O(235)

2255 − 19 236 O(2118) 95 O(247.5)

2266 − 3 37 O(217.5) 125 O(262.5)

2285 − 9 237 O(2118.5) 60 O(230)

2291 − 19 259 O(2129.5) 114 O(257)

2322 − 2161 − 1 133 O(266.5) 64 O(232)

2336 − 3 166 O(283) 214 O(2107)

2338 − 15 166 O(283) 204 O(2102)

2369 − 25 192 O(296) 252 O(2126)

2383 − 31 88 O(244) 97 O(248.5)

2389 − 21 247 O(2123.5) 311 O(2155.5)

2401 − 31 48 O(224) 209 O(2104.5)

2416 − 2208 − 1 60 O(230) 96 O(248)

2448 − 2224 − 1 115 O(257.5) 49 O(224.5)

2450 − 2225 − 1 88 O(244) 54 O(227)

2452 − 3 88 O(244) 266 O(2133)

2468 − 17 209 O(2104.5) 164 O(282)

2480 − 2240 − 1 163 O(281.5) 36 O(218)

2489 − 21 263 O(2131.5) 260 O(2130)

2495 − 31 158 O(279) 319 O(2159.5)

2521 − 1 88 O(244) 1 O(20.5)

which can be used to detect a fault very efficiently. Our proposed countermeasure
is conceptually similar, but takes advantage of the multiplicative and additive
identities of degenerate curves described in Sect. 3 instead. The countermeasure
is described, in its most general form, in Algorithm 1.
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Algorithm 1: Fault attack countermeasure for elliptic curves with degen-
erate points allowing “shortcut” scalar multiplications.
Input:
A curve E(Fp);
A point P = (x, y) ∈ E(Fp);
A scalar exponent k ∈ Z;
A security parameter b;
An efficiently-computable “shortcut” map f(k, P ) : E(Fr) → E(Fr)
implementing scalar multiplication by k.
Output: k · P
begin

r ← random b-bit prime
Er ← DegenerateCurve(r) // Pick degenerate curve, model-dependent

Pr ← (xr, yr) ∈ Er(Fr) // Pick appropriate degenerate point on Er

E′ ← E × Er / Z/prZ

P ′ ←
(
CRTp,r(x(P ), xr), CRTp,r(y(P ), yr)

)
∈ E′(Z/prZ)

Q′ ← k · P ′

if Q′ mod r �= f(k, P ′ mod r) then // Check for fault

return “error”
else

return
(
x(Q′) mod p, y(Q′) mod p

)
end

end

One can view our proposed countermeasure as the BOS [11] countermeasure
coupled with a “shortcut” f(k, P ) to compute the second scalar multiplication—
k · P in E(Fr)—much faster than by using the standard formulas. This short-
cut takes different forms depending on which curve shape we are working over.
Generically, we begin by picking a curve Er over Fr for which there is at least
one point for which scalar multiplication is easy to compute. Then, the extended
curve E′ is the direct product E′(Z/prZ) = E(Fp) × Er(Fr), and the counter-
measure consists of checking whether k · P ′ ∈ E′, reduced modulo r, equals
the same multiplication performed independently in Er. The correctness of this
method follows from the correctness of BOS [11]; our concrete contribution is the
shortcuts taken to reduce the computation overhead of the scalar multiplication
in Er. The following considers two popular shapes—Weierstrass and Edwards
curves—but others are similarly easy to derive.

5.1 Weierstrass Curves

In Weierstrass curves, we may take advantage of the unique singular curve y2 =
x3. This curve is notable for degenerating into the additive group F

+
r via the

map (x, y) �→ x/y and ∞ �→ 0, with inverse t �→ (t−2, t−3) and 0 �→ ∞ [28,
Sect. 3.7]. This immediately suggests a very efficient shortcut map for Er:
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f(k, P ) =
(
(kt)−2, (kt)−3

)
,

where t = x/y or t = 0 if P = ∞.
The resulting correctness test only requires a few multiplications modulo

r, which is more efficient than both BOS [11] and Baek–Vasyltsov [3], and is
comparable with Joye’s approach [30]. Note that the inversions are avoidable by
using projective coordinates.

5.2 Edwards Curves

Unlike Weierstrass curves, Edwards curves do not have any additive degenera-
tion. However, we can use the results of Sect. 3.3 to devise a similar countermea-
sure using a multiplicative degeneration. The shortcut map for Er is

f(k, P ) =
(
0, yk

)
,

where P = (0, y) for any y /∈ {0, 1} that generates the group F
∗
r . In this case

the computational overhead is larger than in the Weierstrass case—a modular
exponentiation modulo r—but is still far cheaper than a scalar multiplication.

5.3 Comparison with Previous Countermeasures

The above methods offer some advantages relatively to previous Shamir-inspired
fault attack countermeasures:

Only one full-fledged scalar multiplication is required. This is in
contrast with Blömer–Otto–Seifert [11, Sect. 8] which requires 2 scalar
multiplications—one modulo pr, another modulo r. In the case of Weierstrass
curves, our countermeasure is faster than any other targeting the same curve
shape.

Works both in affine and projective coordinates. This is in contrast with
Baek–Vasyltsov [3], which due to working on Weierstrass curves, breaks down
when faced with the corner cases in the addition and doubling formulas of
those curves.

Although our method may not suit every use case, it is another useful tool for
hardened implementations of elliptic curves. It is particularly suitable for imple-
mentations of curves over random primes, which hardware implementers tend to
favor [42], since multiplication modulo pr is straightforward to implement, and
the overhead remains small. On the other hand, highly structured primes, usu-
ally very close to a power of 2, would likely suffer a higher performance impact,
since modular reduction would no longer be a linear-time operation.
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