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Abstract. Call-by-need calculi are complex to design and reason with.
When adding control effects, the very notion of canonicity is irremediably
lost, the resulting calculi being necessarily ad hoc. This calls for a design
of call-by-need guided by logical rather than operational considerations.
Ariola et al. proposed such an extension of call-by-need with control
making use of Curien and Herbelin’s duality of computation framework.

In this paper, Classical by-need is developed as an alternative exten-
sion of call-by-need with control, better-suited for a programming-
oriented reader.This method is proof-theoretically oriented by relying
on linear head reduction (LHR) — an evaluation strategy coming from
linear logic — and on the Apu-calculus — a classical extension of the A-
calculus.

More precisely, the paper contains three main contributions:

— LHR is first reformulated by introducing closure contexts and
extended to the Apu-calculus;

— it is then shown how to derive a call-by-need calculus from LHR. The
result is compared with standard call-by-need calculi, namely those of
Ariola—Felleisen and Chang—Felleisen;

— it is finally shown how to lift the previous item to classical logic, that
is from the A-calculus to the Au-calculus, providing a classical by-need
calculus, that is a lazy Ap-calculus. The result is compared with the
call-by-need with control of Ariola et al.

Keywords: Call-by-need - Classical logic - Control operators + Lambda-
calculus - Lambda-mu-calculus - Lazy evaluation - Linear head reduction *
Linear logic - Krivine abstract machine * Sigma equivalence

1 Introduction

In his survey on the origins of continuations, Reynolds noticed that “in the
early history of continuations, basic concepts were independently discovered an
extraordinary number of times” [28]. It is actually a well-known fact of the (long)
history of science that deep, structuring ideas, are re-discovered several times.
Computer science and modern proof theory have much shorter history but are no
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exception. Very much related to the question of continuations, we may think of
double-negation translations or, more recently, Girard and Reynolds’ discoveries
of, respectively, System F [17] and of the polymorphic A-calculus [27].

We think that this convergence of structuring ideas and independent discov-
eries is at play, to some extent, with call-by-need evaluation and linear head
reduction: while the first is operationally motivated, the latter comes from the
structure of linear logic proofs. This paper aims at demonstrating this and apply-
ing this in incorporating first-class control in call-by-need.

Computation on Demand. Executing computations which may not be used to
produce a value may obviously lead to unnecessary work being done, potentially
resulting in non-termination even when a value exists. An alternative is to fire
a redex only when it happens to be necessary to pursue the evaluation towards
a value.

For instance, it is well-known that while call-by-value may trigger computa-
tions that could be completely avoided, resulting in potential non-termination,
call-by-name evaluates programs on demand. This is exemplified in:

t=Ax.I) (AA) —epn [
t= ()\.’L‘I) (A A) —>vat—>va ... —cbv ---

In this example!, call-by-value reduction will reduce A A again and again
when the redex is of no use for reaching a value while call-by-name simply
discards the argument.

Call-by-name, and more precisely (weak) head reduction thus realizes a form
of demand-driven computation: a redex is fired only if it contributes to the
(weak) head normal form (usually abbreviated as (w)hnf).

On the other hand, call-by-value will happen to be more parsimonious when
it comes to arguments which are actually used in the computation: they are
evaluated only once, before substituting the value, while call-by-name discipline
will redo the same computation several times, as in:

Uu=AUI) —an LI (I I)—nl (II)—eonlI—conl
’U,EA(II)_%vaI_)vaII_}CbVI

In the above example, call-by-name reduction duplicates the computation of
I I while call-by-value only duplicates value I, resulting in a shorter reduction
path to value.

Interestingly, demand-driven computation resulted in two lines of work, one
motivated by theoretical purposes and rooted in logic, Danos and Regnier’s
linear head reduction, the other being motivated by more practical concerns and
resulting in the study of lazy evaluation strategies for functional languages.

L As is usual, A stands for Az.x x, I for A\y.y and we write —cbn (resp. —cbv) the
reductions associated with call-by-name (resp. by value). The redex which is involved
in a reduction is emphasized by showing it in a grey box. We will be implicitly
working up to a-conversion, and we will use Barendregt’s conventions not to capture
variables unwillingly.
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Fig. 1. Linear head reduction

Linear Head Reduction. Linear head reduction (referred as LHR) was first
described by Regnier [25] in his 1992 PhD thesis, albeit under the name of spinal
reduction. It was then studied again by Danos and Regnier [14,15] following sim-
ilar observations made amongst different computational paradigms, namely the
Krivine abstract machine [20], proof-nets [18,25], and game semantics [19]. The
crucial remark is that the core of these systems does not implement the usual
head reduction as thought commonly, but rather uses some more parsimonious
reduction, which they define under the name of linear head reduction, which real-
izes a stronger form of computation-on-demand than call-by-name: the argument
of a function cannot be said to truly contribute to the result if it never reaches
head position; if it does not, the corresponding redex may only contribute to
the (w)hnf in a non-essential way; for instance by blocking other redexes as in
(Azy.y) t u. Linear head reduction makes this observation formal. LHR has two
main features:

— first it reduces only the [-redex binding to the leftmost variable occurrence
(therefore the “head” from its name) and

— secondly it substitutes for the argument only the head occurrence of the vari-
able (therefore the “linear” from its name) without destroying the fired redex.

A third noticeable point is that linear head reduction is not truly a reduction
since it does not reduce only redexes (at least not only (-redexes), but also
sorts of “hidden (-redexes” that are true S-redexes only up to an equivalence on
A-terms induced by their encoding in proof nets, namely o-equivalence (this
point shall be made clear later on) (Fig. 1).

Lazy Evaluation. Wadsworth introduced lazy evaluation [30] as a way to over-
come defects of both call-by-name and call-by-value evaluation recalled in the
above paragraphs. Lazy evaluation, or Call-by-need, can be viewed as a strategy
conciling the best of the by-value and by-name worlds in terms of reductions: a
computation is triggered only when it is needed for the evaluation to progress
and, in this case, it avoids redoing computations. The price to pay is that the by-
need strategy is tricky to formulate and reason about. For instance, Wadsworth
had to introduce a graph reduction in order to allow sharing of subterms,
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Linear head reduction Call-by-need A-calculus

A(IT)
= (M. z) (A\y-y) I) =
=i (Az. (Ayo.yo) I ) (My.y) I) —Derer (A2 ) (Ay. ) I)

A(IT)
(Az.z z) (Ay.y) 1)

(
= (Az. (Ao 20- 20) I @) ((My-y) 1) (x) | 2 assoc (\y. Az ) I) I
—in (Az. (Ayo z0.2) I z) ((A\y.y) I) —Derer (AY. (Az. (Az.2) z) I) I
=i (Az. (Ayo zo. Ay1.y1) I) I x) (Ay.y) I) —Derer (AY. (Az. (Az.2) I) I) I
= Az, (Ao z0. (Myn- Pz z1) 1) T ) (My-y) I) | = Derer My Az Az Pz z1) 1) 1) 1

Fig. 2. Example of a linear head reduction and a reduction in Ariola-Felleisen calculus.

and the following developments on lazy evaluation essentially dealt with
machines. The essence of call-by-need is summarized by Danvy et al. [16]:

Demand-driven computation € memoization of intermediate results

Designing a proper calculus for call-by-need remained open for about two
decades, until the mid-nineties when, in 1994, two very similar solutions to this
problem were simultaneously presented by Ariola and Felleisen on the one hand,
and Maraist, Odersky and Wadler on the other [8,9,22].

Ariola and Felleisen’s calculus can be presented as follows:

Definition 1. AF-calculus is defined by the following syntax:

Term tus=ax | Az.t|tu

Value v oou= Azt

Answer A =v| (. A)t

Evaluationcontext E =[]|Et|(A.E)t|(\z.E[z]) E
(DEREF) (Az. Elz]) v — (Az. E[v]) v
(LirT) (Az.A) tu — (M. Au)t

(Assoc) (Az. Elz]) (A\y. A) t) —

(Ay. (A\z. Elz]) A) t

Intuitively, the above calculus shall be understood as follows:

— The lazy behaviour of the calculus is coded in the structure of contexts: term
El[z] evidences that variable z is in needed position in term E[z].

— Rule DEREF then gets the argument, in case it has already been computed
and it has been detected as needed. In that case, the argument is substituted
for one copy of the variable x, the one in needed position. As a consequence,
the application is not erased and a single occurrence of the variable has been
substituted. (E is a single-hole context.)

— Rules LiFT and Assoc allow for the commutation of evaluation contexts in
order for deref redexes to appear despite the persisting binders.
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We gave an example of a reduction sequence in Ariola-Felleisen call-by-need
A-calculus in Fig. 2. In the last line we highlighted the term that would remain
after applying the garbage-collection rule considered by Maraist et al. [22]. Even
though this is not part of the calculus, this convention of garbage-collecting
weakening redexes is used in the rest of the paper to ease the reading of values.

Comparison Between LHR and Call-by-Need. Figure 2 shows two reduc-
tions, on the left a LHR reduction and on the right a reduction in AF-calculus.
There are striking common features:

— call-by-need can be seen as an optimization of both call-by-name and call-by-
value while LHR can be seen as an optimization of head reduction;

— both rely on a linear, rather than destructive, substitution (at least in Ariola-
Felleisen calculus presented above);

— more importantly, both share with call-by-name the same notion of conver-
gence and the induced observational equivalences. Being observationally indis-
tinguishable in the pure A-calculus, they require instead side-effects to be told
apart from call-by-name.

LHR made very scarce appearances in the literature for fifteen years, seem-
ingly falling into oblivion except for the original authors. Yet, it made a sur-
prise comeback by the beginning of the 2010’s through a research line initiated
by Accattoli and Kesner [4]. Their article describes the so-called structural -
calculus, featuring explicit substitutions and at-distance reduction, taking once
again inspiration from the computational behaviour of proof-nets and revamping
the o-equivalence relation in this framework. In their system, blocks of explicits
substitutions are stuck where they were created and are considered transparent
for all purposes but the rule of substitution of variables, contrasting sharply
with the usual treatment of explicit substitutions. In practice, this is done by
splitting (-reduction in multiplicative steps (corresponding to the creation of
explicit substitutions) and exponential steps (corresponding to the effective sub-
stitution of a variable by some term). LHR naturally arises from the call-by-name
flavour of the at-distance rules, and indeed the connection with the historical
LHR is made explicit in many articles from the subsequent trend [2,4,6] and
is furthemore used to obtain results ranging from computational complexity to
factorization of rewriting theories of the A-calculus [3,5].

While it took two decades for call-by-need to be equipped with a proper cal-
culus, the way LHR is usually defined is intricate and inconvenient to work with.
We actually view this fact, together with the observational indistinguishability,
as one of the reasons for the almost complete nonexistence of LHR in literature
until rediscovery by Accattoli and Kesner.

Towards a Logical and Classical “By-Need” Calculus. The connections
between the two formalisms are striking and actually not the least contingent.
Understanding the precise relationships between the two may be useful to build
call-by-need on firm, logical grounds. While comparing the merits of various call-
by-need calculi in order to evidence one such calculus as being more canonical
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than the other may be quite dubious?, control we make call-by-name and call-
by-need observational equivalences differ. In presence of first-class continuations,
one can observe intensional behavior discriminating between call-by-name and
call-by-need. Consider the term

let a = callcc (fun k = (true, fun x = throw k x)) in
let p=fst ain

let ¢ =snd a in

if p then ¢ (false, fun x = 0) else 99

In by-name, a is immediately substituted both in p and q, duplicating the
callcc so that it reduces to 0. In by-need, a must be fully evaluated before being
substituted, and the callcc is fired once. This forces the term to reduce to 99
instead. The impact of control is actually deeper: we can actually distinguish
between several call-by-need calculi as evidenced by the second author in joint
work with Ariola and Herbelin [10] about defining call-by-need extensions of Aufi
which are sequent-style Au-calculus [13].

In this context, it does make sense to wonder which calculus to pick and
what observational impact these choices may have. We can summarize the aim
of the present paper as integrating logically call-by-need and control operators.
We take a different approach from that of Ariola et al. [10]: instead of starting
from the sequent calculus which readily integrates control [13], we show how to
transform systematically LHR into call-by-need and show that this derivation
can be smoothly lifted to the case of the Au-calculus.

Contributions and Organization of the Paper. The contributions of the
present paper are threefold.

— First, we reformulate LHR by introducing closure contezts and extend LHR
to the Au-calculus in Sect. 2.
— Then, after recalling Ariola-Felleisen’s call-by-need calculus, we show in Sect. 3
how to derive a call-by-need calculus from LHR in three simple steps:
1. restriction to a weak LHR by specializing closure contexts in Sect. 3.1,
2. then enforcing memoization of intermediate results (by restricting to value
passing) in Sect. 3.2;
3. and finally implementing some sharing (thanks to closure contexts) in
Sect. 3.3.
We validate our constructions by comparing the resulting calculus with well-
known call-by-need calculi, namely Ariola and Felleisen’s or Chang and
Felleisen’s call-by-need. This justifies the following motto:

Lazy = Demand-driven comp + Memoization + Sharing
(weak linear head reduction) (by value) (closure sharing)

— Third, we finally show in Sect. 4 how to lift the previous derivation to classical
logic, that is from the A-calculus to the Au-calculus, synthesizing two classical

2 For instance Maraist, Odersky and Wadler calculus differ in their 1998 journal version
from the calculus introduced by Ariola and Felleisen, but in no essential way since
both calculi share the same standard reductions.
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by-need calculi, that is a call-by-need Ap-calculus, from classical LHR. The
result is compared with Ariola et al. call-by-need with control.

Intuitionistic Classical

h <21 g a1 g Aclh
Th. 3 g =

wlh <= Aun ~, 32 |& P41
)\wlv e H
3.3 { Y

‘\)\wls . )\cwls

Th. 4 34 %4'2

. / -
CF = = >\cfr £ & )\cwls’
= Th. 5
AHS' AHS

The whole picture is summarized in the above diagram. Plain arrows indicate
some form of equivalence between two calculi with the corresponding theorem
indicated. Dashed arrows indicate that a calculus is obtained from another by a
small transformation, which is described in the section aside. Blocks indicate to
which family of reduction a calculus pertains.

2 A Modern Linear Head Reduction

In the introduction, we informally introduced LHR. We now turn to the actual
study of LHR, first recalling its historical presentation [15] and o-equivalence
and then giving a new formulation of the reduction based on closure contexts,
that allows us to provide a classical variant seamlessly.

2.1 Historical Presentation of Linear Head Reduction

We first define Danos and Regnier’s linear head reduction:

Definition 2. The spine of a A-term t is the set | t of left subterms of t, induc-
tively defined as:

relt relt
telt rel (t)u rel Azt

By construction, exactly one element of 1t is a variable, written hoc (t), for
head occurrence; it is the leftmost variable of t.

Definition 3 (Head lambdas, Prime redexes). Let t be a \-term. Head
lambdas, A (t), and prime redexes, p(t), of t are defined by induction on t:
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An(z) =¢ p(z) =0
A(Az.t) = 22 A (1) p(Az.t) =p

_Jeif () =€ (t) if An(t) =€
An(t u) = {f if An(t) = x4 plt ) = {p(t) Up{x —u} if Ap(t) = z::l

Remark 1. To understand head lambdas and prime redexes, it is convenient to
consider blocks applications. We have indeed the following equalities:

An((Az ) ur) = An((2) ) Az t)ur) ={z —u} Up((t)r)

Head lambdas are precisely lambdas from the spine which will not be fed with
arguments during head reduction. Now that we are equipped with the above
notions, we can now formally define the linear head reduction:

Definition 4 (Linear head reduction). Let u be a A-term, let x := hoc (u).
We say that u linear-head reduces to r, written u —p, v, when:

1. there exists some term t s.t. {x «— t} € p(u);
2. r is u where the variable occurrence hoc (u) has been substituted by t.

Remark 2. Linear head reduction only substitutes one occurrence of a variable
at a time and never destroys an application node. Likewise, it does not decrease
the number of prime redexes. Thus terms keep growing, hence the name “linear”
taken for linear substitution. An example of linear head reduction is given in
Fig. 2 where prime redexes are shown in grey boxes.

2.2 Reduction Up to o-equivalence

It is noteworthy that LHR reduces terms which are not yet redexes for 3, i.e. lh
may get the argument of a binder even if it is not directly applied to it. The third
reduction (%) of the example from Fig. 2 features such a cross-redex reduction. In
this reduction, the Ayy binder steps across the prime redex {zy < 2} in order to
recover its argument x. This kind of reduction would not have been allowed by
the usual head reduction ;. This peculiar behaviour can be made more formal
thanks to a rewriting up to equivalence, also introduced by Regnier [25,26].

Definition 5 (o-equivalence). o-equivalence is the reflexive, symmetric and
transitive closure of the binary relation on \-terms generated by:

Az t) uv, Azt v) u with « fresh for v
Az y.t) u, Ay. (A\z.t) u with y fresh for u

Intuitively, o-equivalence allows reduction in a term where it would have
been forbidden by other essentially transparent redexes.

Proposition 1. Ift 2, u, then p(t) = p(u).

Proof. By case analysis on the rules of o-equivalence.
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The following proposition highlights the strong kinship relating LHR and
o-equivalence. Let us recall that a left context L is inductively defined by the
following grammar:

L:=[]|Lt| . L

Proposition 2. Ift —, v then there exist two left contexts Ly, Lo such that

t >, L1[(Ax. La[z]) u] and r 2, Li[(Azx. La[u]) u]

Proof. By induction on p(t). Existence of L; follows from p being inductively
defined over a left context, that of Lo from the fact that the hoc is the leftmost
variable.

The previous result can be slightly refined. The =, relation is reversible, so
that we can rebuild r by applying to Lq[(Az. La[u]) u] the reverse o-equivalence
steps from the rewriting from ¢ to Li[(Az. La[x]) u]. We will not detail this
operation here but rather move to the definition of closure contexts.

2.3 Closure Contexts and the \;,-calculus

With the aim to give a first-class status to the reduction up to o-equivalence
of Proposition 2, we introduce closure contexts, which will allow to reformulate
linear head reduction.

Definition 6 (Closure contexts). Closure contexts are inductively defined as:

Closure contexts feature all the required properties that provide them with a
nice algebraic behaviour, that is, composability and factorization. Composition
of contexts, F1[Es], will be written Fj o Es in the following.

Proposition 3 (Composition). Let Cy, Co be closure contexts. C; o Cy is a
closure context.

Proposition 4 (Factorization). Any term t can be uniquely decomposed as a
mazimal closure context, in the usual meaning of composition, and a subterm tq.

Actually, we get even more: closure contexts precisely capture the notion of
prime redex as asserted by the following proposition.

Proposition 5. Let t be a term. Then {x «— u} € p(t) if and only if there exist
a left context L, a closure context C and a term to such that t = L[C[Az. to] u].

Proof. By induction on p(t). The proof goes same way as for Proposition 2,
except that we make explicit the context C instead of writing it as a
o-equivalence.
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Closures ¢ = (t,0) PusH ((tu,o) | ™) = {(t,o) | (u,0) - m)
Environments o := 0 | o + (2 := ¢) Pop (Az.t,0) | c-m) = {((t,o+ (x:=¢)) | m)
Stacks Tu=c¢lemw GRAB ((zyo0+ (x:=¢)) | 7) = (c| )

Processes p = {c|m) GARBAGE ((z,0+ (y:=¢)) | ) = ((z,0) | 7)

Fig. 3. Krivine abstract machine

Owing to the fact that closure contexts capture prime redexes, we will provide
an alternative and more conventional definition for the LHR. It will result in the
Ain-calculus, based on contexts rather than ad-hoc variable manipulations.

Definition 7 (A\jp-calculus). The N\ -calculus is defined by the reduction rule:
Li[C[Ax. La[z]] u] —x,, L1[C[Az. La[u]] u]

where L1, Lo are left contexts, C is a closure context, t and u are A-terms, with
the usual freshness conditions to prevent variable capture in u.

Proposition 6 (Stability of )\, under o). Lett,u and v be terms such that
t =, u —p v, then there is w such that t — w =, v.

Proof. By induction over the starting o-equivalence, and case analysis of the
possible interactions between contexts. For instance, if the A-abstraction of the
rule interacts with C through the second generator of the o-equivalence, this
amounts to transfer a fragment from C into Lo which is transparent for the
reduction rule. Similar interactions may appear at context boundaries or inside
contexts.

Theorem 1. The A\, -calculus captures the linear head reduction.
t—x\, T iff t —p T,

Proof. Indeed, the = from the rule is precisely the hoc of the term since closure
contexts are in particular left contexts, and because we are reducing up to closure
contexts, Proposition 5 ensures that {z < u} is a prime redex.

2.4 Closure Contexts and the KAM: A Strong Relationship

Remarkably enough, closure contexts are not totally coming out of the blue.
They are indeed already present in Chang-Felleisen call-by-need calculus [12],
even if their intrinsic interest, their properties as well as the natural notion of
LHR stemming from them were not made explicit. Maybe the main contribution
of our work is to put them at work as a design principle.

Closure contexts are morally transparent for some well-behaved head reduc-
tion: one can consider that (C[Az.[]])t is a context that only adds a binding
(z :=t) to the environment, as well as the bindings contained in C. This intuition
can be made formal thanks to the Krivine abstract machine (KAM), recalled in
Fig. 3. As stated by the following result, transitions PUSH and PoP of the KAM
implement the computation of closure contexts.
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Proposition 7. Let t be a term, o an environment, ™ a stack and C a closure
context. We have the following reduction

(Clt], o) | 7) —pusupor ((t,0 +[C,) [ m)

where [C]_ is defined by induction over C as follows:

[ea

[H]a = @ [Cl[)“rCQ] t]a = [Cl}a' + (IE = (t,U)) + [CQ]U+[61]U+(ZEI:(t,U))

Conversely, for all ty and og such that

<(t,0’) | 7T> —>;USH,POP <(t0500) | 7T>
there exists Co such that t = Cylto], where Cy is inductively defined over oyg.

Proof. The first property is given by a direct induction on C, while the second
is done by induction on the KAM reduction.

Actually, the KAM can even be seen as an implementation of a (weak) LHR
rather than the (weak) head reduction. Indeed, the substitution is delayed in
practice until a variable appears in head position, i.e. when it is the hoc of a
term. Such a phenomenon was formalized by Danos and Regnier [15] who proved
that the sequence of substitutions from the LHR and the sequence of closures
substituted by the GRAB rule are the same.

2.5 Classical Linear Head Reduction

Thanks to the intuition provided by the closure contexts, we propose here a
classical variant of the linear head calculus, presented in the Ap-calculus [24].
The additional binder p quantifies over a special class of variable called stack
variables. It allows to capture and reinstate the stack at will. Expressions of the
form [a]t are called processes or commands. We recall the syntax and (call-by-
name) reduction below.

tus=x | Ax.t|tulpac

cu=[0]t
(Az.t) u — t{z = u}
(na.c) u — pa.c{la)r = [a]r u}
[@]pB.c — B :=a}

We will only be interested in the reduction of commands in the remainder
of this section. Our calculus is a direct elaboration of the aforementioned linear
head calculus, and we dedicate this section to its thorough description.

Definition 8 (Classical LHR). We define left stack contexts K by induction,
and then a classical extension of left contexts and closure contexts as follows.
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ocu=-|o+ (a:=m) SAVE ((pac,0) | ) = ((c,0 + (a:=m)) | &)
moa=---|(a,0) RESTORE (([o]t,0) | &) — ((t,0) | o(a))

Fig. 4. p-KAM

[ ] [e] L[pB. K]
[]] C1{Ax. Co] t | Cifpar. K[a] Ca]]
[l Az. L[ Lt]|pp. [a]L

K :
C :
L :

The classical linear head calculus is then defined by the following reduction.
[a] La[C[Az. Lo[x]] t] =, [0o] L1[C[Az. Lat]] 1]

We then adapt the o-equivalence to the classical setting following Lau-
rent [21].

Definition 9 (Classical o-equivalence). The o-equivalence is extended to the
Au-calculus with the following generators.

(Az. po. [B]t) u =y pa. [5] (Az.t) u with o € u
[a] (uB-[7] (b c) w) t =5 [y] (ud. [o] (uB-c) t) u with B & u, 5 ¢t
[a] Aw. p. [7] My pd. ¢ =5 [7] Ay. pd. [a] Az uﬁ c
[a] (uB. [V] Az pd.c) t =5 [y] Az. pd. [o] (uf.c) t withx &t, B &t

Proposition 8 (Stability under o). Let t,u and v be terms such that t =

u —y,, U, then there is w such thatt —, ,, w =, v.

clh clh

We now relate the classical LHR calculus with the classical extension to
KAM [21,29] given in Fig. 4 where only the modifications with respect to Fig. 3
are shown.

Danos and Regnier obtain a simulation theorem relating the KAM with LHR
by defining substitution sequences [15]. This can be lifted to the Ap-calculus:
there is a simulation theorem relating the u-KAM with the classical LHR. In
order to state Theorem 2 which concludes this section, one first needs to intro-
duce some preliminary definitions which are motivated by the following remark.

Remark 3. The A\, reduction rule is actually abusive. Recall that in its defini-
tion, ¢t can be any term. This means that to ensure later capture-free substitution
by preserving the Barendregt condition on terms, one has to rename the variables
of ¢t on the fly, so that the legitimate rule would rather be

[ Ly [CAa. Lofal] 1] —x [a] In[ClAz. Lo[#]] 1]

where #t stands for ¢ where bound variables have been replaced by fresh
variable instances.

We need to define properly the relation between the original and the substituted
terms in the above rule.
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Definition 10 (One-step residual). In the above rule, we say that t is the
residual of #t in the source term.

It turns out that this definition can be extended to a reduction of arbitrary
length thanks to the following lemma.

Proposition 9. For any reduction of the form
[a]t =" [0] La[C[Az. La[x]] ro] =, [a] L1[C[Az. La[#ro]] 7o]
there exists a subterm r of t such that ro = #r, the residual of rq¢ in t.

Proof. By induction on the reduction. The key point is that all along the reduc-
tion, all terms on the right of an application node are subterms of the original
term, up to some variable renaming. The original subterm can then be traced
back by jumping up into the term being substituted at each step.

Definition 11 (Substitution sequence). Given two terms t and to
s.t. to =3, b we define the substitution sequence of t w.r.t. to as the (pos-
sibly infinite) sequence Gy, (t) of subterms of to defined as follows, where o is a
fresh stack variable.

~ If [a]t />y, then &y (t) == 0.
- If [a]t = [o] L1[C[Ax. La[z]] 7] — ., (@]t then Sy (t) = ro 2 Sy (t') where
ro 18 the residual of r in tg.

We finally pose &(t) == &(t).

The p-KAM naturally features a similar behaviour w.r.t. residuals.
Proposition 10. If ((t,-) | €) —=* ((to,o) | ™) then to is a subterm of t.
Proof. By a straightforward induction over the reduction path.

This proposition can (and actually needs to) be generalized to any source
process whose stacks and closures only contain subterms of ¢. This leads to the
definition of a similar notion of substitution sequence for the KAM.

Definition 12 (KAM substitution sequence). For any term t, we define
the KAM substitution sequence of a process p as the possibly infinite sequence of
terms R(p) defined as:

~ If p /> then &(p) == 0.
- Ifp=((z,0) | m) = (({t,7) | m) then K(p) =1t :: R(((t, 7) | T)).
— Otherwise if p — q then K(p) == R(q).

Finally, the KAM substitution sequence of any term t is defined as K(t) :: =

R({(#,) [€))-

By the previous lemma, K(t) is a sequence of subterms of ¢t. We can therefore
formally relate it to &(t).



Classical By-Need 629

Proposition 11. Let t be a term. Then R(t) is a prefiz of &(t).

Proof. By coinduction, for each step of &(t), it is sufficient either to construct
a matching step in R(¢) or to stop. Let us assume that

[a]t = [a] L1 [C[Ax. La[x]] o] —a,,, [a] L1[C[Az. La[# ]| ro] = [a] t

clh

There are now two cases, depending on the KAM reduction of R({(¢,-) | €)).
By a simple generalization of Lemma 7, the normal form of this process in the
GRraAB-free fragment of the KAM rules can be one of the two following form:

— either ((z,0 + (z := (ro,7)) | m) for some o, 7 and 7
— or a blocked state of the KAM for all rules

The second case can occur if there are too many A-abstractions in the left
contexts of the above reduction rule or if there is an free stack variable appearing
in a command part of the left contexts. In this case £(t) = 0, which is indeed a
prefix of &(¢).

Otherwise, one has &(t) = ro = R({(ro,7) | m)) and &(t) = ro::6¢(t,). It
it therefore sufficient to show that the property holds for the tail of those two
sequences.

It is a noteworthy fact that, when we put ¢, in the KAM, we obtain a reduc-
tion of the form

((try-) | &) =" ((#ro,0 + (z:= (r0,7)) + 00) | )

for some o, where the GRAB rule does not appear. This reduction follows indeed
the very same transitions as the process made of the source term. Moreover, a
careful inductive analysis of the possible transitions shows that o = 7 4+ o7 for
some o1, where the variables bound by o7 are not free in #ry. Therefore,

R(tr) = &((#ro,0 + (2 := (ro, 7)) + 00) [ m)) = R({(#70,7) | 7))

because the KAM reduction is not affected by extension of closure environe-
ments with variables absent from the closure term. By applying the coinduction
hypothesis, we immediatly obtain than &(¢,) is a prefix of &(¢;).

But now, we can conclude, because K({(#rg,7) | 7)) and R({(ro,7) | 7))
(resp. 6(t,) and G(t,)) are the same sequence up to a renaming of the bound
variables coming from #ry which is common to both kinds of reduction. Thus
RK({(ro,7) | m)) is a prefix of &,(¢,) and we are done.

The following theorem is a direct corollary of Proposition 11.

Theorem 2. Let ¢; —,, c2 where ¢y := [a] L1[C[A\x. La[x]] t], then the substi-
tution sequence of process ci is either empty or of the form t::{ where ¢ is the
substitution sequence of process cs.

Proposition 8 and Theorem 2 validate our calculus as a sound classical exten-
sion of LHR.
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3 Towards Call-by-Need

Our journey from LHR to call-by-need will now follow three steps: first restricting
LHR to a weak reduction, imposing a value-restriction and finally adding an
amount of sharing.

3.1 Weak Linear Head Reduction

The LHR as given at paragraph 2.3 is a strong reduction: it reduces under
abstractions. We now adapt \;,-calculus to the weak case. It is easy to give a
weak version of the reduction in the historical LHR, which inherits the same
defects as its strong counterpart.

Definition 13 (Historical wlh-reduction). We say that t weak-linear-head
reduces to r, written t —qp 7, iff t = v and t does not have any head \.

On the other hand, the \;;, reduction can be denied the possibility to reduce
under abstractions by restricting the evaluation contexts inside which it can
be triggered. This requires some care though. Indeed, the contexts may con-
tain A-abstractions, assuming they have been compensated by as many previ-
ous applications. That is, those binders must pertain to a prime redex as in
(Az1...2px. E®[z]) r1 ... 7y u. Plain closure contexts are not expressive enough
to capture this situation.

To solve this issue, we extend the A-calculus in a way which is inspired
both by techniques used for studying reductions, residuals and developments in
A-calculus [11] and by Alet-calculi [8] or explicit substitutions [1], and in par-
ticular the structural A-calculus [4]. We are indeed going to recognize when a
prime redex has been created by marking them explicitly. Yet, contrarily to stan-
dard A-calculus rewriting theory, we will mark lambdas which are not necessarily
actually involved in (-redexes and contrarily to Alet-calculi or the structural
A-calculus, we will preserve the underlying structure of the A-term by only mark-
ing abstractions rather than creating let-bindings and making them transparent
for all rules. We shall discuss the significance of this design choice in Sect. 3.5.

Definition 14 (Marked A-calculus). The marked \-calculus is thus induc-
tively defined as
to=z|dx.t|tu|lat

where lx.t is a marked version of Ax.t. For any marked A-term t, we will write
[t] for the usual A-term obtained from t by unmarking all abstractions. Likewise,
o-equivalence is adapted in a straightforward fashion.

We have to update the definition of closure contexts to fit into this presenta-
tion. It is actually enough to restrict all abstractions appearing inside a closure
context to marked abstractions.

Definition 15 (Closure contexts). From now on, closure contexts C will be
defined by the inductive grammar below.

C:= [] | Cl[ngQ] t
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In general, arbitrary marked terms do not make sense, because marked
abstractions may not have a matching application. This is why we define a
notion of well-formed marked terms.

Definition 16 (Well-formed marked terms). A marked term t is well-
formed whenever for any decomposition t = E[fx.u] where E is an arbitrary
context, E can be further decomposed as E = Ey[C r] where Ey is an arbitrary
context, C a marked closure context and r a marked term.

In the rest of the paper, we will only work with well-formed marked terms
even when this remains implicit: all our constructions and reductions will pre-
serve well-formedness as in the following definition:

Definition 17 (A\n-calculus). The weak linear head calculus Aan is defined
by the rules:

Clhz.t] u = Cllx.t] u
Clez. E¥[z]] u —x,, Cllz. E¥[u]] u
together with compatibility with E* contexts, inductively defined as follows.
EY:=[]|EYt]|lx. EY.

Proposition 12 (Stability of A, by o). Let t,u and v be terms such that

t =5 u —n,,, U, then there is w such thatt —y ,, w =, v.

This property is proved similarly to Proposition 6. We can now prove that A,
and the historical wlh-reduction coincide:

Theorem 3. t —,,,, 7 iff t —win 7.

Proof. They correspond since not having a head lambda is exactly equivalent to
having all its subcontexts starting with an abstraction marked.

3.2 Call-by-“Value” Linear Head Reduction

In order to obtain a call-by-value LHR, we will restrict contexts that trigger
substitutions to react only in front of a value. In addition, the up-to-closure
paradigm used so far will also incite us to consider values up to closures defined
as W:: = C[V] when V:: = A\x.t stands for values.

Going from the usual call-by-name to the usual call-by-value is then simply
a matter of adding a context forcing values. Likewise, we just add a context
forcing up-to values. This construction is made in a systematic way according
to the standard call-by-value encoding.

Definition 18 (Call-by-value contexts). We define the call-by-value contexts
inductively as follows.

E°:=[]|E’t|lx. E”|C[lx. E{[z]] E3

The call-by-value weak linear head reduction is obtained straightforwardly.
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Definition 19 (\;y-calculus). The Agy-calculus is the calculus defined by the
E¥-compatible closure of following rules.

ClAz.t] u — A Cllx.t] u
Cllx. EV[z]] W —»,, Cllx. EV[W]] W

It is easy to check that the reduction was not deeply modified, the difference
lies in the clever choice of contexts. Stability by o is proved as in Proposition 6.

Proposition 13 (Stability of A\, by o). Let t,u and v be terms such that
t =, u—x.,. v, then there is w such thatt — ) =~ 0.

wlv wlv

Although we branded this calculus as a call-by-value one, it already imple-
ments a call-by-need strategy since it triggers the reduction of an argument if
and only if it was made necessary by the encounter of a corresponding variable
in (call-by-value) hoc position. We give the reduction on our running example:

A(II) = )

I
—uv (lz.z x) (Ly.y) I;

(

(

(

(lz.z x) ((Ly. 1) I)
—uv (lz. (Cy1. Az1.21) I )

(Lx

(Lx

(

((by. I) I)
—wlv (gyl Z1. Zl) 1 :U) ((éy I) I)
—av (bz. (tyr z1.21) 1 ((Ly. 1) 1)) ((by. 1) 1)
—a (o (yr 21 (. [I) 1) T ((y. 1) 1) ((¢y. 1) 1)

In the first transition, the reduction occurs in the argument required by =z,
returning a value (up to closure) that will then be substituted.

3.3 Closure Sharing

The Ay1,-calculus does not realize call-by-need reduction schemes from the lit-
erature [8]. The above example reveals a duplication of computation:

C'lex. B [2]) Clo] =, C'[lx. EV[CI0]]] Clv]

In that case, C is copied, which will end up in recomputing its bound terms
if ever they are going to be used throughout the reduction. While our running
example A (I I) does not feature such a behaviour, this can instead be seen

n (Az.z I ) (Ayz.y) (I I) because while (A\yz.y) (I I) is already an up-to
value, it also uses the argument I I from its closure. During the substitution,
this subterm is copied as-is, resulting in its recomputation at each call to x in
the body of the abstraction.

It is possible to solve this issue in an elegant way akin to the ASSOC rule of
Ariola-Felleisen calculus. This is achieved by the extrusion of the closure of the
value at the instant it is substituted. There is no need to refine contexts further,
because everything is already in order. We obtain the calculus below:
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Values v oou= ATt
Answers a = Al
Answer contexts A =[] Ai[Az. Ag]u
Inner answer contexts A* =[] | A[Az. A*]
Outer answer contexts A® =[] | A[A®]u

[

Contexts E ==[]|Eu|A[E]
| A®[A[\z. AME[z]]] E]
where A®[A* € A

AC A . AME[2])] Az[v]] — A[AL[A2[(AMNE[z]]){z := v}]]
if A[A* € A (Ber)

Fig. 5. Chang and Felleisen’s call-by-need calculus

Definition 20. The call-by-value LHR with sharing is defined by the rules:

Clhz.t] u —a
C'[fx. E¥[z]] C[v] —x

Cllx.t] u
C[C'[bx. E¥[v]] V]

wls

wls

with the usual freshness conditions to prevent variable capture in C’.

3.4 Ay is a Call-by-Need Calculus

Remarkably enough, the resulting calculus is almost exactly Chang and
Felleisen’s call-by-need calculus [12] (CF-calculus) which is presented in Fig. 5.
The main difference lies in the fact that the latter features the usual destructive
substitution, while ours is linear. One can convince oneself that their answer
contexts correspond to our closure contexts, while the balancing of inner and
outer contexts is transparent in our calculus thanks to the restriction to marked
terms. There is a reduction mismatch though, which is that CF-calculus plugs
closures in the reverse order compared to Ays. The reduction B.s (see below)
can be described in our formalism in a straightforward manner.

Definition 21 (CF-calculus revisited). The marked CF-calculus is given by
the E,-compatible closure of the rules below.

C[Az.t] u A Cllx.t] u
C'llw. EV[x]] Clv] —=x., C'ICIEY[2]{z := v}]]

*

Theorem 4. For any well-formed marked terms t and v, if t —3_r then
[t] —5,, [r] where the length of the second reduction is the number of uses of
the second rule in the first reduction. Conversely, for any unmarked terms t and
T s.t. t —p., 1 there exist markings t' and v’ of t and r where t' —3__ 1’ using

exactly once the second rule.

Proof. 1t is sufficient to observe that well-formedness in the marked calculus is
equivalent to the existence of a decomposition into inner and outer contexts that
are balanced in the unmarked calculus.
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The difference in the order of closure plugging may seem irrelevant in Chang
and Felleisen’s framework because they use non-linear destructive substitutions
and both orders are possible: an ad-hoc choice was made there. On the con-
trary, our design — strongly guided by logic — directly led us to a plugging order
compatible with linear substitution.

3.5 Comparison with Other Call-by-Need Calculi

CF-calculus is a bit peculiar in works on call-by-need. It would be better to also
compare our approach to more standard calculi such as AF-calculus. Moreover,
a third variant of call-by-need calculus has been defined recently by considering
the linear substitution A-calculus [2] (LS-calculus), and it turns out to be very
close to our presentation. This section is devoted to the comparison of A\, with
those calculi.

The major source of difference between the three calculi lies in the handling
and encoding of term bindings.

— AF-calculus uses a microscopic reduction (simple, small steps) and relies on
rewriting rules to build up flat binding contexts;

— LS-calculus uses a macroscopic reduction (“at distance”, relying on a very-
elaborated and structured context) and enforces reduction rules to be trans-
parent w.r.t. binding contexts;

— Aw1s does the same thing but uses a refined version of explicit substitutions
embodied by closure contexts.

We now explain to which extent these calculi are essentially the same except
for the technology used for the implementation of binding contexts. Both for
AF-calculus and LS-calculus, it would be natural to switch to a calculus featuring
let-binders, or equivalently explicit substitutions [1]. Yet, we will describe them
in the usual A-calculus for uniformity with the rest of the paper and because
marked A-abstractions are not needed in this case.

Micro-Steps Linear Head Reduction. In order to compare our approach to
AF-calculus, we now propose another approach to linear head reduction which
starts from the rules of o-equivalence and integrate them in the LHR calculus.
It will serve to rearrange the term in order to create appropriate G-redexes: as a
consequence, we will not work with redexes up to closure context (or equivalently
up to o-equivalence) but will have reductions dedicated to the creation of the
linear head redex. Still, while rearranging terms, we do not want to keep the (-
redexes which are not triggered by a hoc-variable yet; a restricted form of closure
context will remain, which would naturally be expressed with let-bindings or
explicit substitutions:

Lo:=[]](x.L)t

Because of the slight mismatch between usual closure contexts and restricted
context closures, there is a choice to be made in the microscopic reduction rule.
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While the original closure contexts made prime redexes appear naturally, now
we need to explicitly create S-redexes by making the potential redexes commute
with the surrounding context. There are two ways to do so, each one correspond-
ing to a generating rule of the o-equivalence, either by pushing the application
node inside closure contexts (LIFT) or by extruding applied A-abstractions from
the surrounding context (DIG):

((Ax. LAy t])u)v — (Az. (L[Ay.t])v)u (LIFT)
(LlAz. Ay. t)u]) v — (L[Ay. Az t)u])v  (D1G)

These rules admit extensions, taking opportunity of the structure of restricted
closure contexts:

(L[Ay.t])v — L[(A\y.t)v] (LiFTx)
(LDy.t)v— (Ay. L[t]) v  (Dicx)

Reduction (LIFT) is the most common in literature, probably because it is easier
to formulate without a clear notion of closure contexts. Equipped with (LIFT),
we actually obtain a calculus which precisely (up to the use of explicit lets) to
the calculus considered by Danvy et al. in the preliminary section of [16], where
answers A are no more than terms of the form £[A\z.t]. Reduction (D1G) is an
alternative choice. The two reductions are not only different, but also incompat-
ible, in the sense that their left-hand sides are the same while their right-hand
sides are not convertible, thus breaking confluence. Yet, the reduced terms still
agree up to g-equivalence by construction. Finally, the last rule performs the
linear substitution:
(Az. E[z])t — (Az. E[t]) t

Here, FE[z] represents a left context: E::= [] | E't | Az. E so that the substitution
only replaces exactly one variable.

Any choice between rules (LIFT) or (Di1G) will lead to call-by-need calculi.
Still we consider it is more interesting to opt for (LIFT) since it allows us to
recover known calculi. From the microscopic linear head calculus with (LIFT),
we can apply the same three transformations as in the macroscopic case:

1. weak reduction constrain evaluation contexts to be applicative contexts up to

closures: E:=[]|Et|(Az. E)t
2. restriction to value (up to closure) substitutions, which creates new call-by-
value, evaluation contexts: E:=---|(\z.Elz])E

3. sharing of closures, introducing the rule for commutation of closure contexts
and which happens to be, with the simplified contexts, the usual (Assoc)
rule: (Az. E[z]) (A\y. A)t — (Ay. (\z. E[z]) A)t  (Assoc)

Proposition 14. The resulting calculus is precisely AF-calculus.

Closure Contexts as Refined Explicit Substitutions. It turns out that LS-
calculus is essentially A,1s where closure contexts are collapsed to a flat list of
binders, i.e. £ contexts (once again, up to the use of an explicit 1let construction).
The rules can be rephrased with the previous notations as follows.
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N =[] L[N]|Nt|(Az.N[z]) N
LAz.t] u — e L[(Az. 1) u)
(Az. Nz]) L[v] =, L][(Az. N[v]) v]

As one can witness, the first rule, known as the distant by-name B-rule,
is just (LIFTx). The second rule corresponds to the dereferencing rule of Ayis
without a closure context around the A-abstraction because (LIFT%) builds up
explicit substitutions by putting every abstraction in front of its corresponding
argument.

We can easily translate any well-formed marked term into a term with explicit
substitutions: it is indeed sufficient to collapse all closure contexts C into flat
binding contexts £(C) inductively:

LD =[] LCillx.Co] 1) := L(C1)[(Az. L(C2)) 1]

Up to this translation, which is no more than taking a normal form for o-
equivalence, LS-calculus and A5 describe the same calculus. Our calculus incurs
a small technical penalty because we need to restrict the set of terms w.r.t. well-
formedness, while this comes for free in LS-calculus as explicit substitutions
pertain to the syntax and force balancing of prime redexes.

Nonetheless, we advocate that Ay1s is more fine-grained and that there are
cases where this may matter. Indeed, Proposition 7 shows that closure contexts
are faithful reifications of KAM environments. This is not the case for flat £
contexts which may represent several KAM environments. This mismatch can
be indeed observed in presence of side-effects sensitive to the structure of envi-
ronments, most notably forcing [23], but probably linear effects as well. As we
precisely want to extend call-by-need with effects, we claim that closure contexts
should be preferred over flat context in this setting.

4 Classical By-Need

To extend our classical LHR calculus to a fully-fledged call-by-need calculus, we
follow the same three-step path that led us from LHR to call-by-need. We will
not give the full details for the three steps though, and we will instead only give
the final calculus.

The most delicate point is actually the introduction of weak reduction. In
a classical setting, the actual applicative context of a variable may be strictly
larger than it seems, because in commands of the form [a] ¢, the « variable may
be bound to a stack featuring supplementary applications. This means that we
need to take into account supernumerary abstractions at the beginning of com-
mands. Yet, the marking procedure allows us to remember which abstractions
are actually paired with a corresponding application in a direct way.

We present in this section two variants of a classical by-need calculus, one
effectively taking into account supernumerary arguments as described above, and
a less smart variant that perfoms classical substitution upfront without caring
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for abstraction-application balancing on command boundaries. The advantage
of the latter over the former is that it can be easily linked to a previous classical
by-need calculus [10].

4.1 Classical By-Need with Classical Closure Contexts

To implement the mechanism described above, we simply need to acknowledge
the requirement to go through g binders in our contexts. This leads to the
mutual definition of classical-by-value contexts EV and closure stack fragments
K", where closure contexts are updated as well to handle classical binders.

C :u=[]]|Ci[lzx.Cq] t | Ci[pa. KV[[a] C2]]
EY :=[]| E" t|lx.E" | C[fzx. E{[x]] EY | pa. K¥[[a] EV]
K" = []] o] B”[p6. K]

Definition 22 (Classical-by-need with classical closure contexts). The
classical-by-need calculus with classical closure contexts, cwls, is defined by the
following reduction rules.
Clhz.t] u =2
C'ltx. EV[x]] C[v] —2A
C'llx. E”[z]] Clpar. c] —x

Cllx.t] u
C[C'[lx. E”[v]] v]
Clua. c{o := [a] C'[lx. EV[z]] _}]

cwls
cwls

cvls

The issue of this calculus is that the delayed classical substitution is a quite
novel phenomenon that does not ressemble anything from the literature as far
as we know. It is, in particular, difficult to compare with previous attempts at
a call-by-need variant of the Au-calculus.

4.2 Classical By-Need with Intuitionistic Closure Contexts

We describe here a modification of the above calculus whose laziness has been
watered down. Instead of delaying classical substitutions, it performs them as
soon as possible. The main difference with the smart calculus lies in the fact
that closure contexts remain intuitionistic and do not allow to go down under
pu-binders. The corresponding contexts are inductively defined as follows.

C ==[]]|Ci[lx.Co] t
EY :=[]|E"t|lx. EY|C[lx. EY[z]] EY
Kv s = []] [o] B*[uf. K]

Definition 23 (Classical-by-need with intuitionistic closure contexts).
The classical-by-need calculus with intuitionistic closure contexts, cwls’, is
defined by the following reduction rules.
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ClAz.t] u =i, Cllx.t] u
C'ltx. E[z]] Clv]  —x_,, C[C'[tx. E¥[v]] V]
[o] B [uB. KV[[B]] =0 [0] BV [u5. K [[a] EV[t]

cwls’

4.3 Comparison with Existing Classical Call-by-Need Calculus

In order to better understand the calculi of the previous section, we now turn to
the comparison with another classical-by-need calculus [10], referred to as AHS,
which is obtained from a calculus derived from Curien and Herbelin’s duality
of computation. As a consequence, AHS features plain call-by-value 3 reduction
and not a linear, non-destructive, deref rule la Ariola-Felleisen:

Az.t) v — t{z:=v} withv = z | Ax.t

Comparing precisely our calculi with AHS is tricky because AHS is built on
destructive substitution which additionally is plain 3,. The reason for such a
presentation of AHS is to be found in its sequent calculus origin [10]. As we did
for the comparison with Chang-Felleisen calculus, we will consider a variant of
AHS with a deref rule la Ariola-Felleisen described, in sequent style, in the last
section of [7] for which we will prove that established cwls-reduction is sound
and complete. We conjecture that the same result holds for AHS but do not yet
have a proof of this fact.

AHS Modified Calculus. We now consider a slightly modified version of
the previous calculus from [10]. AHS-calculus consists in AHS-calculus where
the beta reduction has been replaced by a deref rule la Ariola-Felleisen (where
variables are not values) and the notion of evaluation context has been adapted
accordingly. This calculus has been first described, in sequent style, in [7].

Definition 24 (Ariola-Herbelin-Saurin modified calculus). AHS’ reduc-
tion for the Ap-calculus is defined below.

(A\z.t) u — Azt r)u
v o= Az.t (Az.Clz ]) — (Az.C]) v
n = z|tu|lpac (Az.Clz]) (Az.t) u) — (Az. (Az. C[z]) t) u
Ex=[]|Et (nev.c) t — pa.c{[a]r:=[a]r t}
Ci=E|(wC)t] (aCl)) (po) — pacllo]r = o] (\z.Cla]) r}
Ow.CW) E O po (81t — po 6] (e t) m
[ p.c —c{fi=a}

Theorem 5. For any command c, there exists an infinite standard reduction in
AHS’-calculus starting from c iff there exists an infinite reduction starting from
c in cwls’-calculus.

Proof. We show this by giving the sketch of a pair of simulation theorems. We
will separate AHS’ reduction rules in three groups:
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— The structural rules (S) which are made of the LIFT and AssOC rules, together
with the rule (Az. pa. [G]t) n — pa. [B] (Az.t) n.

— The performing rules (P) which is only the dereferencing rule.

— The classical rules (C') which are the three remaining rules.

Transforming reductions in cwls’-calculus into AHS’ is straightforward. First,
assuming a closure stack fragment K, one can see that AHS’ will normalize it
into a delimited C' context in the following way. For each splice of K, of the
form [a] B, [1f. [-]], the E, context will be simplified by a series of applications
of the (S) rules. According to the form of K, either the reduction stops (if
there is no remaining splice) or it performs a certain number of (C') rules, until
which the normalization procedure recursively applies. A dereferencing cannot
occur at this point because while there are remaining splices, the current needed
context cannot contain variables, as the splices all have a y binder in needed
position. Note that the resulting normalized context is still a closure stack frag-
ment up to unmarking. By a simple size argument, this normalization procedure
must terminate, so that we will consider it transparent for the simulation.

Now, assume that

Ci[lx. E,[z]] Calv] — Co[Cy[lx. E,[v]] v]

with the associated conditions for this rule. The (S) rules apply to C; and Cs.
This effectively transforms them into answer contexts, so that a derefencing rule
can occur after the E, has been flattened as well. The important thing to observe
is that the same normalization steps apply to the reduct Co[Cy[lx. E,[v]] v] so
that each step from cwls’ is going to be matched by a growing but finite quantity
of normalization steps followed by a derefencing.

The second reduction rule, corresponding to stack substitutions, is actually
directly handled by the normalization procedure described just above.

We turn to the simulation of the AHS’ reduction by the cwls’-calculus. First,
the standard reduction contexts are a degenerated case of K, contexts with one
splice and flattened closure contexts, which allows to easily transfer rules from
the source to the target. We actually match each class of reduction (S), (P) and
(C) to a given behaviour in the target calculus.

— The (5) rules are transparent for the cwls’-calculus, because they are natively
handled by closure contexts. So a (S)-reduction does not give rise to a Agyp-
reduction.

— A group of (C) rules can be matched by an arbitrary number of reductions,
including none. This depends on the way the corresponding stack variable is
used.

— The (P) rule is conversely matched by exactly one rule in the cwls’ reduction.

The trick is to use the fact that (C' + S) is normalizing, as we already did
in the previous case. Moreover, such reductions do not change the possibility to
perform a derefencing in the corresponding cwls’ term. So we actually consider
groups of reductions (C' + S)*, P in the source calculus. This is always possible
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to decompose a sequence of AHS’ reductions as such thanks to the normalization
of (C+S). It it then easy to witness that the S part will have no effect, each C
reduction will be matched by a finite number of context reductions in A, and
that the final (P) will correspond to exactly one derefencing reduction in Agyp,.

5 Conclusion

Nevertheless, the early history of continuations is a sharp reminder that
original ideas are rarely born in full generality, and that their communi-
cation is not always a simple or straightforward task.

John C. Reynolds [28]

Reaching this point of the paper, we hope to have convinced the reader, thanks
to the above developments and results, that linear head reduction can be a useful
tool in order to develop a classy call-by-need with control.

Contributions. After reformulating linear head reduction in a way which is some-
how intermediate between traditional LHR and Accattoli et al.’s approach via
explicit substitutions, we demonstrated the deep connections between LHR and
call-by-need by showing that weak call-by-value LHR with sharing is a call-by-
need calculus. We then strengthened this result to the case of Au-calculus, that is
we introduced a call-by-need calculus with control operator obtained from clas-
sical LHR, another contribution of this paper. We obtained such a calculus by
a systematic derivation from LHR in three steps: (i) by restricting it to a weak
reduction, (ii) by ensuring substitution of values, and (iii) by sharing closures.
Closure contexts play a central role in LHR: all the structures we consider are
actually closed by this construction, making them a methodological feature of
our approach. While they are not novel in the intuitionistic case, it is the first
time they are put in use in an explicit and articulated way, not to speak of the
classical extension of closure contexts which is properly a contribution of this
work. We validated our development in two ways:

— our approach to linear head reduction (using closure contexts and, to deal
with weak reduction, marked terms) is validated by the fact that it transfers
smoothly to Ap-calculus, a new result of this paper. Additionally, one can see
the use of closure contexts, in particular when dealing with marked terms,
as a generalization of LSC where the structure of substitutions is encoded in
closure contexts, a tree-like structure, and not in substitution contexts, which
are linearized: we keep closer to the original structure of the term which is
important when dealing with computational effects.

— The call-by-need A\ and Ap-calculi that we obtain in the paper are related
with previously known versions of call-by-need calculi. In the case of the \-
calculus, they are related with Ariola-Felleisen’s and Chang-Felleisen’s calculi.
In the case of Au-calculi, two classical by-need calculi are actually proposed,
one being related to a variant of Ariola-Herbelin-Saurin’s calculus, and the
other calling for further investigations.
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Related Works. The most closely related works are certainly the works of Ariola
et al. [7,10] and Accattoli et al. [2]. Their relations with the present work have
been discussed throughout the paper. Summing up:

— we developed a different methodology from that of Ariola et al. in that we
stayed within the framework of natural deduction and analyzed the systematic
synthesis of call-by-need from LHR in a careful way resulting in the ability to
lift this to the Ap-calculus.

— Compared with LSC, our approach can be viewed as less specified and some-
how more general than that of LSC, which obviously prevents us from having
results as precise as those of LSC, for instance regarding complexity analysis.
On the other hand, maintaining the structure of A-terms suggests interesting
perspectives for handling various computational effects.

Future Work. We finally describe some perspectives of future work.

More Computational Effects. The robustness of our approach is encouraging
for testing other computational effects where maintaining the term structure may
be even more crucial than for control effects.

Classical by-Need. The comparisons with other proposals for classical variants
of the call-by-need reduction [7,10] remain to be established more precisely.
We conjecture that our calculus is sound and complete not only with AHS’
but also with AHS-calculus [10]. Moreover, the classical-by-need calculus with
classical closure contexts remains difficult to connect to already known calculi.

Towards Full Laziness. Our design guided by o-equivalence can do more than
call-by-need and can actually already encompass a weak form of full laziness.
Future work will pursue this direction.

Reduction Strategies Versus Calculi. The original motivation of our work
was to relate formally LHR and call-by-need. As a result, instead of focusing on
proper calculi we concentrated our attention on a specific evaluation strategy for
several reasons: macroscopic and weak reductions are more naturally expressed
with strategies. However, the \;;-calculus can very easily be studied as a calculus
and we shall develop it as such in the future.

Acknowledgements. The authors would like to thank Beniamino Accattoli, Thibaut
Balabonski, Olivier Danvy and Delia Kesner for discussions regarding this work as well
as anonymous reviewers.
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