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Abstract. This paper is concerned with the shape invariants satisfied
by the communication topology of m-terms, and the automatic inference
of these invariants. A w-term P is hierarchical if there is a finite forest
T such that the communication topology of every term reachable from
P satisfies a T-shaped invariant. We design a static analysis to prove a
term hierarchical by means of a novel type system that enjoys decidable
inference. The soundness proof of the type system employs a non-standard
view of w-calculus reactions. The coverability problem for hierarchical
terms is decidable. This is proved by showing that every hierarchical term
is depth-bounded, an undecidable property known in the literature. We
thus obtain an expressive static fragment of the m-calculus with decidable
safety verification problems.

1 Introduction

Concurrency is pervasive in computing. A standard approach is to organise con-
current software systems as a dynamic collection of processes that communicate
by message passing. Because processes may be destroyed or created, the number
of processes in the system changes in the course of the computation, and may
be unbounded. Moreover the messages that are exchanged may contain process
addresses. Consequently the communication topology of the system—the hyper-
graph [19, 18] connecting processes that can communicate directly—evolves over
time. In particular, the connectivity of a process (i.e. its neighbourhood in this
hypergraph) can change dynamically. The design and analysis of these systems
is difficult: the dynamic reconfigurability alone renders verification problems
undecidable. This paper is concerned with hierarchical systems, a new subclass of
concurrent message-passing systems that enjoys decidability of safety verification
problems, thanks to a shape constraint on the communication topology.

The 7m-calculus of Milner, Parrow and Walker [19] is a process calculus designed
to model systems with a dynamic communication topology. In the w-calculus,
processes can be spawned dynamically, and they communicate by exchanging
messages along synchronous channels. Furthermore channel names can themselves
be created dynamically, and passed as messages, a salient feature known as
mobility, as this enables processes to modify their neighbourhood at runtime.

It is well known that the m-calculus is a Turing-complete model of computation.
Verification problems on m-terms are therefore undecidable in general. There are
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however useful fragments of the calculus that support automatic verification. The
most expressive such fragment known to date is the depth-bounded m-calculus of
Meyer [12]. Depth boundedness is a constraint on the shape of communication
topologies. A m-term is depth-bounded if there is a number k such that every
simple path? in the communication topology of every reachable 7-term has length
bounded by k. Meyer [14] proved that termination and coverability (a class of
safety properties) are decidable for depth-bounded terms.

Unfortunately depth boundedness itself is an undecidable property [14], which
is a serious impediment to the practical application of the depth-bounded frag-
ment to verification. This paper offers a two-step approach to this problem.
First we identify a (still undecidable) subclass of depth-bounded systems, called
hierarchical, by a shape constraint on communication topologies (as opposed to
numeric, as in the case of depth-boundedness). Secondly, by exploiting this richer
structure, we define a type system, which in turn gives a static characterisation of
an expressive and practically relevant fragment of the depth-bounded m-calculus.

Ezample 1 (Client-server pattern). To illustrate our approach, consider a simple
system implementing a client-server pattern. A server S is a process listening on
a channel s which acts as its address. A client C' knows the address of a server
and has a private channel ¢ that represents its identity. When the client wants
to communicate with the server, it asynchronously sends ¢ along the channel s.
Upon receipt of the message, the server acquires knowledge of (the address of)
the requesting client; and spawns a process A to answer the client’s request R
asynchronously; the answer consists of a new piece of data, represented by a new
name d, sent along the channel c. Then the server forgets the identity of the
client and reverts to listening for new requests. Since only the requesting client
knows c at this point, the server’s answer can only be received by the correct
client. Figure la shows the communication topology of a server and a client, in
the three phases of the protocol.

The overall system is composed of an unbounded number of servers and
clients, constructed according to the above protocol. The topology of a reachable
configuration is depicted in Fig. 1b. While in general the topology of a mobile
system can become arbitrarily complex, for such common patterns as client-server,
the programmer often has a clear idea of the desired shape of the communication
topology: there will be a number of servers, each with its cluster of clients; each
client may in turn be waiting to receive a number of private replies. This suggests
a hierarchical relationship between the names representing servers, clients and
data, although the communication topology itself does not form a tree.

T-compatibility and hierarchical terms Recall that in the m-calculus there
is an important relation between terms, =, called structural congruence, which
equates terms that differ only in irrelevant presentation details, but not in
behaviour. For instance, the structural congruence laws for restriction tell us that
the order of restrictions is irrelevant—vz.vy.P = vy.vz.P—and that the scope

3 a simple path is a path with no repeating edges.
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Fig. 1. Evolution of the communication topology of a server interacting with a client.
R represents a client’s pending request and A a server’s pending answer.

of a restriction can be extended to processes that do not refer to the restricted
name—i.e., (vz.P) || @ = va.(P || Q) when x does not occur free in Q—without
altering the meaning of the term. The former law is called exchange, the latter is
called scope extrusion.

Our first contribution is a formalisation in the m-calculus of the intuitive
notion of hierarchy illustrated in Example 1. We shall often speak of the forest
representation of a w-term P, forest(P), which is a version of the abstract syntax
tree of P that captures the nesting relationship between the active restrictions
of the term. (A restriction of a m-term is active if it is not in the scope of a
prefix.) Thus the internal nodes of a forest representation are labelled with
(active) restriction names, and its leaf nodes are labelled with the sequential
subterms. Given a w-term P, we are interested in not just forest(P), but also
forest(P’) where P’ ranges over the structural congruents of P, because these
are all behaviourally equivalent representations. See Fig. 4 for an example of
the respective forest representations of the structural congruents of a term. In
our setting a hierarchy 7T is a finite forest of what we call base types. Given
a finite forest 7, we say that a term P is T-compatible if there is a term P,
which is structurally congruent to P, such that the parent relation of forest(P’)
is consistent with the partial order of 7.

In Example 1 we would introduce base types srv, cl and data associated with
the restrictions vs, ve and vd respectively, and we would like the system to be
compatible to the hierarchy 7 = srv < cl < data, where < is the is-parent-of
relation. That is, we must be able to represent a configuration with a forest that,
for instance, does not place a server name below a client name nor a client name
below another client name. Such a representation is shown in Fig. 1c.

In the Example, we want every reachable configuration of the system to be
compatible with the hierarchy. We say that a m-term P is hierarchical if there is
a hierarchy T such that every term reachable from P is T-compatible. Thus the
hierarchy 7 is a shape invariant of the communication topology under reduction.
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Fig. 2. Standard view of w-calculus reactions

It is instructive to express depth boundedness as a constraint on forest
representation: a term P is depth-bounded if there is a constant k£ such that
every term reachable from P has a structurally congruent P’ whereby forest(P’)
has height bounded by k. It is straightforward to see that hierarchical terms are
depth-bounded; the converse is however not true.

A type system for hierarchical terms While membership of the hierarchical
fragment is undecidable, by exploiting the forest structure, we have devised
a novel type system that guarantees the invariance of T-compatibility under
reduction. Furthermore type inference is decidable, so that the type system can
be used to infer a hierarchy 7 with respect to which the input term is hierarchical.
To the best of our knowledge, our type system is the first that can infer a shape
invariant of the communication topology of a system.

The typing rules that ensure invariance of 7-compatibility under reduction
arise from a new perspective of the m-calculus reaction, one that allows compati-
bility to a given hierarchy to be tracked more readily. Suppose we are presented
with a T-compatible term P = C[S, R| where C[-,-] is the reaction context, and
the two processes S = a(b).S" and R = a(z).R’ are ready to communicate over
a channel a. After sending the message b, S continues as the process S’, while
upon receipt of b, R binds z to b and continues as R” = R'[b/x]. Schematically,
the traditional understanding of this transaction is: first extrude the scope of b
to include R, then let them react, as shown in Fig. 2.

Instead, we seek to implement the reaction without scope extrusion: after the
message is transmitted, the sender continues in-place as S’, while R” is split in

two parts Iy, || .., one that uses the message (the migratable part) and one
that does not. As shown in Fig. 3, the migratable part of R”, Ry ., is “installed”

under b so that it can make use of the acquired name, while the non-migratable
one, R'ﬁmig7 can simply continue in-place.

Crucially, the reaction context, C[-,-], is left unchanged. This means that if the
starting term is 7-compatible, the reaction context of the reactum is 7-compatible
as well. We can then focus on imposing constraints on the use of names of R’
so that the migration does not result in R;nig escaping the scope of previously
bound names.

By using these ideas, our type system is able to statically accept m-calculus
encodings of such system as that discussed in Example 1. The type system can
be used, not just to check that a given 7 is respected by the behaviour of a
term, but also to infer a suitable 7 when it exists. Once typability of a term
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is established, safety properties such as unreachability of error states, mutual
exclusion or bounds on mailboxes, can be verified algorithmically. For instance, in
Example 1, a coverability check can prove that each client can have at most one
reply pending in its mailbox. To prove such a property, one needs to construct an
argument that reasons about dynamically created names with a high degree of
precision. This is something that counter abstraction and uniform abstractions
based methods have great difficulty attaining.

Our type system is (necessarily) incomplete in that there are depth-bounded,
or even hierarchical, systems that cannot be typed. The class of w-terms that
can be typed is non-trivial, and includes terms which generate an unbounded
number of names and exhibit mobility.

Outline. In Section 2 we review the m-calculus, depth-bounded terms, and
related technical preliminaries. In Section 3 we introduce 7-compatibility and the
hierarchical terms. We present our type system in Section 4. Section 5 discusses
soundness of the type system. In Section 6 we give a type inference algorithm;
and in Section 7 we present results on expressivity and discuss applications. We
conclude with related and future work in Sections 8 and 9. All missing definitions
and proofs can be found in Appendix.

2 The m-calculus and the depth-bounded fragment

2.1 Syntax and semantics

We use a m-calculus with guarded replication to express recursion [16]. Fix a
universe N of names representing channels and messages. The syntax is defined
by the grammar:

P>5PQ:u=0|vz.P | P||P | M | M process

M:=M+M | n.P choice
mu=a(z) | @) | T prefix
Definition 1. Structural congruence, =, is the least relation that respects -

conversion of bound names, and is associative and commutative with respect to +
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(choice) and || (parallel composition) with O as the neutral element, and satisfies
laws for restriction: va.0 = 0 and va.vb.P = vb.va.P, and

\P=P|!P Replication
Plva.Q =va.(P| Q) (ifadin(P)) Scope Extrusion

In P = n.QQ, we call Q the continuation of P and will often omit @Q altogether
when @@ = 0. In a term vz. P we will occasionally refer to P as the scope of x. The
name z is bound in both vz.P, and in a(x).P. We will write fu(P), bn(P) and
bn, (P) for the set of free, bound and restriction-bound names in P, respectively.
A sub-term is active if it is not under a prefix. A name is active when it is bound
by an active restriction. We write acty (P) for the set of active names of P. Terms
of the form M and !M are called sequential. We write S for the set of sequential
terms, acts(P) for the set of active sequential processes of P, and P! for the
parallel composition of 7 copies of P.

Intuitively, a sequential process acts like a thread running finite-control
sequential code. A term 7.(P | Q) is the equivalent of spawning a process
@ and continuing as P—although in this context the roles of P and @ are
interchangeable. Interaction is by synchronous communication over channels.
An input prefizx a(z) is a blocking receive on the channel a binding the variable
x to the message. An output prefiz a(b) is a blocking send of the message b
along the channel a; here b is itself the name of a channel that can be used
subsequently for further communication: an essential feature for mobility. A
non-blocking send can be simulated by spawning a new process doing a blocking
send. Restrictions are used to make a channel name private. A replication !(7.P)
can be understood as having a server that can spawn a new copy of P whenever
a process tries to communicate with it. In other words it behaves like an infinite
parallel composition (w.P || w.P || ---).

For conciseness, we assume channels are unary (the extension to the polyadic
case is straightforward). In contrast to process calculi without mobility, replication
and systems of tail recursive equations are equivalent methods of defining recursive
processes in the m-calculus [17, Section 3.1].

We rely on the following mild assumption, that the choice of names is unam-
biguous, especially when selecting a representative for a congruence class:

Name Uniqueness Assumption. Each name in P is bound at most once and
fn(P) Nbn(P) = 0.

Normal Form. The notion of hierarchy, which is central to this paper, and
the associated type system depend heavily on structural congruence. These are
criteria that, given a structure on names, require the existence of a specific
representative of the structural congruence class exhibiting certain properties.
However, we cannot assume the input term is presented as that representative;
even worse, when the structure on names is not fixed (for example, when inferring
types) we cannot fix a representative and be sure that it will witness the desired
properties. Thus, in both the semantics and the type system, we manipulate
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a neutral type of representative called normal form, which is a variant of the
standard form [19]. In this way we are not distracted by the particular syntactic
representation we are presented with.

We say that a term P is in normal form (P € Py) if it is in standard form
and each of its inactive subterms is also in normal form. Formally, normal forms
are defined by the grammar

P DN u=vay.- v, (AL ] - || Am)
Au=m.Ny+- - +7m,. N, | (m1. Ny + - +71,.Ny)

where the sequences x1 ...z, and Ay ... A,, may be empty; when they are both
empty the normal form is the term 0. We further assume w.l.o.g. that normal
forms satisfy Name Uniqueness. Given a finite set of indexes I = {i1,...,i,} we
write [[;c;As for (A, || --- || As,), which is 0 when I is empty; and ), m;.N;
for (m; Ny + -+ + m,.N;, ). This notation is justified by commutativity and
associativity of the parallel and choice operators. Thanks to the structural laws
of restriction, we also write vX.P where X = {z1,...,2z,}, or v&y 9 x,.P,
for vay.---va,.P; or just P when X is empty. When X and Y are disjoint sets
of names, we use juxtaposition for union.

Every process P € P is structurally congruent to a process in normal form. The
function nf: P — Py, defined in Appendix, extracts, from a term, a structurally
congruent normal form.

Given a process P with normal form vX.[],.; As, the communication topology™
of P, written G[P], is defined as the labelled hypergraph with X as hyperedges
and I as nodes, each labelled with the corresponding A;. An hyperedge x € X is
connected with ¢ just if = € fn(A;).

Semantics. We are interested in the reduction semantics of a m-term, which can
be described using the following rule.

Definition 2 (Semantics of m-calculus). The operational semantics of a term
Py € P is defined by the (pointed) transition system (P, —, Py) on m-terms, where
P, is the initial term, and the transition relation, — C P?, is defined by P — Q
if either (i) to (i) hold, or (v) and (vi) hold, where

(i) P=vW.(S || R| C) € P,

(ii) S = (a(b).vY;.5") + M, (v) P=vW.(tVY.P'| C) € Py,
(iii) R = (a(z).VY,..R') + M,, (i) Q=vWY.(P' || C).

(iv) Q =vVWY,Y,.(S" || R'[b/z] || C),
We define the set of reachable terms from P as Reach(P) := {Q | P —* Q},
writing —* to mean the reflexive, transitive closure of —. We refer to the

restrictions, VYs, VY, and VY, as the restrictions activated by the transition
P—Q.

Notice that the use of structural congruence in the definition of — takes unfolding
replication into account.

4 This definition arises from the “flow graphs” of [19]; see e.g. [14, p. 175] for a formal
definition.
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Ezample 2 (Client-server). We can model a variation of the client-server pattern
sketched in the introduction, with the term vsc.P where P = 1S || IC || |M,
S = s(x).vd.T(d), C = c(m).(5{(m) || m(y).¢(m)) and M = 7.vm.¢(m). The term
1S represents a server listening to a port s for a client’s requests. A request is a
channel z that the client sends to the server for exchanging the response. After
receiving = the server creates a new name d and sends it over x. The term !M
creates unboundedly many clients, each with its own private mailbox m. A client
on a mailbox m repeatedly sends requests to the server and concurrently waits
for the answer on the mailbox before recursing.

In the following examples, we use CCS-style nullary channels, which can be
understood as a shorthand: ¢.P := ¢(z).P and ¢.P := vaz.¢(x).P where x & fu(P).

Ezample 3 (Resettable counter). A counter with reset is a process reacting to
messages on three channels inc, dec and rst. An inc message increases the value
of the counter, a dec message decreases it or causes a deadlock if the counter is
zero, and a rst message resets the counter to zero. This behaviour is exhibited
by the process C; = !(p;(t).(inc;.(E || Di(t)) + dec;.(t.pi(t)) + rst;.(VEL.Di(t])))).
Here, the number of processes ¢ in parallel with p;(t) represents the current value
of the counter i. A system (vp1 t1.(Cy || Pi(t1)) || vp2 t2.(C2 || P2(t2))) can for
instance simulate a two-counter machine when put in parallel with a finite control
process sending signals along the channels inc;, dec; and rst;.

Ezample 4 (Unbounded ring). Let R = vm.vso.(M || m(so) || S0), S = !(s.7)
and M = !(m(n).so.vs.(S || m(s) || 5)). The term R implements an unboundedly
growing ring. It initialises the ring with a single “master” node pointing at
itself (sg) as the next in the ring. The term M, implementing the master node’s
behaviour, waits on sy and reacts to a signal by creating a new slave with address
s connected with the previous next slave n. A slave S simply propagates the
signals on its channel to the next in the ring.

2.2 Forest representation of terms

In the technical developement of our ideas, we will manipulate the structure of
terms in non-trivial ways. When reasoning about these manipulations, a term is
best viewed as a forest representing (the relevant part of) its abstract syntax tree.
Since we only aim to capture the active portion of the term, the active sequential
subterms are the leaves of its forest view. Parallel composition corresponds to
(unordered) branching, and names introduced by restriction are represented by
internal (non-leaf) nodes.

A forest is a simple, acyclic, directed graph, f = (Ny,<y), where the edge
relation n1 <y ng means “n; is the parent of ny”. We write <; and <, for
the reflexive transitive and the transitive closure of <y respectively. A path is a
sequence of nodes, np ... ng, such that for each ¢ < k, n; <y n;41. Henceforth
we drop the subscript f from <, <f and <; (as there is no risk of confusion),
and assume that all forests are finite. Thus every node has a unique path to a
root (and that root is unique).



On Hierarchical Communication Topologies in the m-calculus 9

a c a b c
\ \ A/\ A/\ \ A/\ \
Z‘) A/(‘L\A Al/l‘)\A 1A 2 3 QA/GA 5
//C\\ 1 /b\ 3 2 f 4 2 Ay 1 4
Al A2 A3 A4 A2 A4 A3

Fig. 4. Examples of forests in F[P] where P =vabec.(A; || A2 || As || As), A1 = a(x),
Az = b(z), Az = c¢(z) and Ay = a(b).

An L-labelled forest is a pair ¢ = (f,,{,) where f, is a forest and £,: N, — L
is a labelling function on nodes. Given a path n;...n; of f,, its trace is the
induced sequence £, (n1) ... 4,(ng). By abuse of language, a trace is an element
of L* which is the trace of some path in the forest.

We define L-labelled forests inductively from the empty forest (0, ). We write
1 W g for the disjoint union of forests ¢1 and o, and [[p] for the forest with a
single root, which is labelled with [ € L, and whose children are the respective
roots of the forest . Since the choice of the set of nodes is irrelevant, we will
always interpret equality between forests up to isomorphism (i.e. a bijection on
nodes respecting parent and labeling).

Definition 3 (Forest representation). We represent the structural congru-
ence class of a term P € P with the set of labelled forests F[P] := {forest(Q) |
Q = P} with labels in acty(P) W acts(P) where forest(Q) is defined as

(0,0) ifQ=0
) Ql0,0)] if Q is sequential
forest(Q) := wlforest(Q')] i Q= va.Q

forest(Q1) W forest(Q2) if Q = Q1 || Q2

Note that leaves (and only leaves) are labelled with sequential processes.
The restriction height, height, (forest(P)), is the length of the longest path
formed of nodes labelled with names in forest(P).

In Fig. 4 we show some of the possible forest representations of an example term.

2.3 Depth-bounded terms

Definition 4 (Depth-bounded term [12]). The nesting of restrictions of a
term is given by the function

nesty (M) := nesty(!M) := nest,(0) := 0
nesty (vz.P) := 1 + nesty (P)
nesty (P || Q) := max(nesty(P), nest,(Q)).
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The depth of a term is defined as the minimal nesting of restrictions in its
congruence class, depth(P) := min {nesty(Q) | P = Q}. A term P € P is depth-
bounded if there exists k € N such that for each Q € Reach(P), depth(Q) < k.
We write Py, for the set of terms with bounded depth.

Notice that nesty is not an invariant of structural congruence, whereas depth
and depth-boundedness are.

Ezxample 5. Consider the congruent terms P and @
P =vaxvb.ve.(a(z) || ble) || ¢(y)) = va.a(z) || ve.((vb.b(c)) || c(y)) = Q
We have nesty (P) = 3 and nesty(Q) = 2; but depth(P) = depth(Q) = 2.

It is straightforward to see that the nesting of restrictions of a term coincides
with the height of its forest representation, i.e., for every P € P, nesty(P) =
height, (forest(P)).

Ezample 6 (Depth-bounded term). The term in Example 2 is depth-bounded: all
the reachable terms are congruent to terms of the form

Qijr =Vsc.(P || N' | Req | Ansk)

for some 7,7,k € N where N = vm.¢(m), Req = vm.(5{(m) || m(y).¢(m)) and
Ans = vm.(vd.m(d) | m(y).¢(m)). For any 1, j, k, nesty(Qi;r) < 4.

Ezample 7 (Depth-unbounded term). Consider the term in Example 4 and the
following run:

R —* v so.(M || vs1.(!(s1.50) || mils1) || 57))
% v so.(M || vs1.(1(51.50) || vs2.(1(s2.57) || milsa) || 52))) —

*

The scopes of sg, s1, s2 and the rest of the instantiations of vs are inextricably
nested, thus R has unbounded depth: for each n > 1, a term with depth n is
reachable.

Depth boundedness is a semantic notion. Because the definition is a universal
quantification over reachable terms, analysis of depth boundedness is difficult.
Indeed the membership problem is undecidable [14]. In the communication
topology interpretation, depth has a tight relationship with the maximum length
of the simple paths. A path viejvs ... v,€,0,41 in G[P] is simple if it does not
repeat hyper-edges, i.e., e; # e; for all + # j. A term is depth-bounded if and only
if there exists a bound on the length of the simple paths of the communication
topology of each reachable term [12]. This allows terms to grow unboundedly in
breadth, i.e., the degree of hyper-edges in the communication topology.

A term P is embeddable in a term Q, written P < Q, if P = vX.[[,c;Ai € Ps
and Q = VXY.(J[,c;A: || R) € By for some term R. In [12] the term embedding
ordering, <, is shown to be both a simulation relation on 7-terms, and an effective
well-quasi ordering on depth-bounded terms. This makes the transition system
(Reach(P)/=,—/=, P) a well-structured transition system (WSTS) [7, 1] under
the term embedding ordering. Consequently a number of verification problems
are decidable for terms in Pyp.
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Theorem 1 (Decidability of termination [12]). The termination problem
for depth-bounded terms, which asks, given a term Py € Py, if there is an infinite
sequence Py — Py — ..., is decidable.

Theorem 2 (Decidability of coverability [12, 24]). The coverability prob-
lem for depth-bounded terms, which asks, given a term P € Py, and a query
Q € P, if there exists P’ € Reach(P) such that Q < P’, is decidable.

3 7T-compatibility and hierarchical terms

A hierarchy is specified by a finite forest (77, <). In order to formally relate active
restrictions in a term to nodes of the hierarchy 7, we annotate restrictions with
types. For the moment we view types abstractly as elements of a set T, equipped
with a map base: T — 7. An annotated restriction v(x:7) where 7 € T will be
associated with the node base(7) in the hierarchy 7. Elements of T are called
types, and those of T are called base types. In the simplest case and, especially for
Section 3, we may assume T = 7 and base(t) = ¢. In Section 4 we will consider a
set T of types generated from 7, and a non-trivial base map.

Definition 5 (Annotated term). A T-annotated 7-term (or simply annotated
m-term) P € PT has the same syntax as ordinary w-terms except that restrictions
take the form v(x:7) where 7 € T. In the abbreviated form vX, X is a set of
annotated names (x:7).

Structural congruence, =, of annotated terms, is defined by Definition 1, with
the proviso that the type annotations are invariant under a-conversion and
replication. For example, !(W.V(m : T).P) = n.v(z:7).P | !(W.V(.’L’ : T).P) and
v(z:7).P=v(y:7).P[y/z]; observe that the annotated restrictions that occur
in a replication unfolding are necessarily inactive.

The forest representation of an annotated w-term is obtained from Definition 3
by replacing the case of Q@ =Vv(z:7).Q" by

forest(v(z:7).Q") := (x,t)[forest(Q")]

where base(7) = t. Thus the forests in F[P] have labels in (acty(P) x T )Wacts(P).
We write Fr for the set of forests with labels in (M x 7) W S. We write P for
the set of T-annotated m-terms in normal form.

The definition of the transition relation of annotated terms, P — (@, is
obtained from Definition 2, where W,Y,,Y, and Y are now sets of annotated
names, by replacing clauses (iv) and (vi) by

(w’) Q =vWY!Y!.(S" || R'[b/x] | C) (vi’) Q@ =vWY'.(P"| C)
respectively, such that Yy [N =Y/ [N, Y, [N =Y/ [ N,andY [N =Y [ N,
where X [ N :={x e N | Ir.(x : 7) € X}. Le. the type annotation of the names
that are activated by the transition (i.e. those from Yj, Y, and V') are not required

to be preserved in Q. (By contrast, the annotation of every active restriction in
P is preserved by the transition.) While in this context inactive annotations can
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be ignored by the transitions, they will be used by the type system in Section 4,
to establish invariance of 7-compatible.

Now we are ready to explain what it means for an annotated term P to be
T-compatible: there is a forest in F[P] such that every trace of it projects to a
chain in the partial order 7.

Definition 6 (7-compatibility). Let P € PT be an annotated w-term. A forest
¢ € F[P] is T-compatible if for every trace ((x1,t1)...(xk, tr) A) in ¢ it holds
that t1 < to < ... < tg. The w-term P is T-compatible if F[P] contains a
T-compatible forest. A term is T-shaped if each of its subterms is T-compatible.

As a property of annotated terms, 7-compatibility is by definition invariant
under structural congruence.

A term P’ € PT is a type annotation (or simply annotation) of P € P if its
type-erasure, written " P, coincides with P. (We omit the obvious definition
of type-erasure.) A consistent annotation of a transition of terms, P — @Q, is a
choice function that, given an annotation P’ of P, returns an annotation @’ of @
such that P’ — @Q’. Note that it follows from the definition that the annotation of
every active restriction in P’ is preserved in )'. The effect of the choice function
is therefore to pick a possibly new annotation for each restriction in @’ that is
activated by the transition. Thus, given a semantics (P, —, P) of a term P, and
an annotation P’ of P, and a consistent annotation for every transition of the
semantics, there is a well-defined pointed transition system (PT, -’ P’) such
that every transition sequence of the former lifts to a transition sequence of the
latter. We call (PT, =/, P') a consistent annotation of the semantics (P, —, P).

Definition 7 (Hierarchical term). A term P € P is hierarchical if there exist
a finite forest T =T and a consistent annotation (PT,—', P') of the semantics
(P,—, P) of P, such that all terms reachable from P’ are T-compatible.

Ezample 8. The term in Examples 2 and 6 is hierarchical: take the hierarchy
T =s <c~<m=d and annotate each name in Q;;x as follows: s:s, c:c, m: m
and d:d. The annotation is consistent, and forest(Q;;x) is 7T-compatible for all
1,7 and k.

Example 4 gives an example of a term that is not hierarchical. The forest
representation of the reachable terms shown in Example 7 does not have a
bounded height, which means that if 7 has n base types, there is a reachable
term with a representation of height bigger than n, which implies that there will
be a path repeating a base type.

Let us now study this fragment. First it is easy to see that invariance of
T-compatibility under reduction —, for some finite 7, puts a bound |7| on the
height of the T-compatible reachable forests, and consequently a bound on depth.

Theorem 3. FEvery hierarchical term is depth-bounded. The converse is false.

Thanks to Theorem 2, an immediate corollary of Theorem 3 is that coverability
and termination are decidable for hierarchical terms.
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Unfortunately, like the depth-bounded fragment, membership of the hierar-
chical fragment is undecidable. The proof is by adapting the argument for the
undecidability of depth boundedness [14].

Lemma 1. Every terminating w-term is hierarchical.

Proof. Since the transition system of a term, quotiented by structural congruence,
is finitely branching, by Konig’s lemma the computation tree of a terminating
term is finite, so it contains finitely many reachable processes and therefore
finitely many names. Take the set of all (disambiguated) active names of the
reachable terms and fix an arbitrary total order 7 on them. The consistent
annotation with (z : x) for each name will prove the term hierarchical.

Theorem 4. Determining whether an arbitrary w-term is hierarchical, is unde-
cidable.

Proof. The m-calculus is Turing-complete, so termination is undecidable. Suppose
we had an algorithm to decide if a term is hierarchical. Then we could decide
termination of an arbitrary m-term by first checking if the term is hierarchical; if
the answer is yes, we can decide termination for it by Theorem 1, otherwise we
know that it is not terminating by Lemma 1.

Theorem 4—and the corresponding version for depth-bounded terms—is a
serious impediment to any practical application of hierarchical terms to verifcation:
when presented with a term to verify, one has to prove that it belongs to one of
the two fragments, manually, before one can apply the relevant algorithms.

While the two fragments have a lot in common, hierarchical systems have a
richer structure, which we will exploit to define a type system that can prove a
term hierarchical, in a feasible, sound but incomplete way. Thanks to the notion
of hierarchy, we are thus able to statically capture an expressive fragment of the
m-calculus that enjoys decidable coverability.

4 A type system for hierarchical topologies

The purpose of this section is to devise a static check to determine if a term is
hierarchical. To do so, we define a type system, parametrised over a forest T,
which satisfies subject reduction. Furthermore we prove that if a term is typable
then 7-shapedness is preserved by reduction of the term. Typability together
with 7-shapedness of the initial term would then prove the term hierarchical.

As we have seen in the introduction, the typing rules make use of a new
perspective on mw-calculus reactions. Take the term

P =va.(vb.a(b).S || ve.a(x).R) = Cla(b).S, a(z).R]

where C[—1, —2] = va.(vb.[—1] || ve.[—2]) is the reaction context. Standardly the
synchronisation of the two sequential processes over a is preceded by an extrusion
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of the scope of b to include ve.a(x).R, followed by the actual reaction:

va.(vb.(@(b).S) || ve.a(z).R) = va.vb.(a(b).S || ve.a(z).R)
— va.vb.(S || ve.(R[b/x]))

This dynamic reshuffling of scopes is problematic for establishing invariance
of T-compatibility under reduction: notice how vc is brought into the scope of
vb, possibly disrupting 7-compatibility. (For example, the preceding reduction
would break 7-compatibility of the forest representations if the tree T is either
a=<c=<borb>a=c) We therefore adopt a different view. After the message is
transmitted, the sender continues in-place as S, while R is split into two parts
Ruig || R-mig, one that uses the message (the migratable one) and one that does
not. The migratable portion R, is “installed” under vb so that it can make use
of the acquired name, while the non-migratable one can simply continue in-place:

va.(vb.(a(b).S) || ve.a(z).R) = va.(vb.(S || Rmig[b/x]) || ve.Romig)

C[E(b)S, a(x)R] C[S”Rmig[b/w]; Rﬁmig]

Crucially, the reaction context C is unchanged. This means that if the starting
term is 7-compatible, the context of the reactum is T-compatible as well. Naturally,
this only makes sense if R;; does not use c. Thus our typing rules impose
constraints on the use of names of R so that the migration does not result in
Rpig escaping the scope of bound names such as c.

The formal definition of “migratable” is subtle. Consider the term

vf.a(z).vede.(T(c) || e(d) || ale).e(f))

Upon synchronisation with vb.@(b), surely Z(c) will need to be put under the scope
of vb after substituting b for x, hence the first component of the continuation,
T(c), is migratable. However this implies that the scope of ve will need to be
placed under vb, which in turn implies that ¢(d) needs to be considered migratable
as well. On the other hand, ve.@(e).€(f) must be placed in the scope of f, which
may not be known by the sender, so it is not considered migratable.The following
definition makes these observations precise.

Definition 8 (Linked to, tied to, migratable). Given a normal form P =
VX.I[;c;Ai we say that A; is linked to A; in P, written i < p j, if fn(A;)Nfn(A;)N
X # (. We define the tied-to relation as the transitive closure of <+p. Le. A; is
tied to Aj, written i ~p j, if Fk1,... . kp € l.i<>p k1 <p ka... <p ky, < p 7,
for some n > 0. Furthermore, we say that a name y is tied to A; in P, written
y<p i, if 3j € I.y € (A;) A j ~p i. Given an input-prefized normal form
a(y).P where P =VvX.[[,.;Ai, we say that A; is migratable in a(y).P, written
Mig, (. p(i); if y <p i.

icl

These definitions have an intuitive meaning with respect to the communication
topology of a normal form P: two sequential subterms are linked if they are
connected by an hyperedge in the communication topology of P, and are tied to
each other if there exists a path between them.
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The following lemma indicates how the tied-to relation fundamentally con-
strains the possible shape of the forest of a term.

Lemma 2. Let P = VX.[[,.;A; € P, if i ~p j then if a forest ¢ € F[P] has
leaves labelled with A; and A; respectively, they belong to the same tree in ¢ (i.e.,
have a common ancestor in ).

Ezample 9. Take the normal form P = vabc.(A; || A2 || As || A4) where
Ay = a(z), Az = b(x), As = ¢(z) and Ay = a(b). We have 1 <3p 4, 2 < p 4,
therefore 1 ~p 2 ~p 4 and a<p 2. In Fig. 4 we show some of the forests in F[P].
Forest 1 represents forest(P). The fact that A, As and Ay are tied is reflected
by the fact that none of the forests place them in disjoint trees. Now suppose we
select only the forests in F[P] that respect the hierarchy a < b: in all the forests
in this set, the nodes labelled with Ay, As and A4 have a as common ancestor
(as in forests 1, 2, 3 and 4). In particular, in these forests Ay is necessarily a
descendent of a even if a is not one of its free names.

In Section 3 we introduced annotations in a rather abstract way by means
of a generic domain of types T. In Definition 7 we ask for the existence of an
annotation for the semantics of a term. Specifically, one can decide an arbitrary
annotation for each active name. A type system however will examine the term
statically, which means that it needs to know what could be a possible annotation
for a variable, i.e., the name bound in an input action. This information is directly
related to the notion of data-flow, that is the set of names that are bound to a
variable during runtime. Since a static method cannot capture this information
precisely, we make use of sorts [17], also known as simple types, to approximate
it. The annotation of a restriction will carry not only which base type should
be associated with its instances, but also instructions on how to annotate the
messages received or sent through those instances. Concretely, we define

To7a=t]t]

where t € T is a base type.

A name with type t cannot be used as a channel but can be used as a message;
a name with type ¢[7] can be used to transmit a name of type 7. We will write
base(7) for t when 7 = ¢[7'] or 7 = t. By abuse of notation we write, for a set of
types X, base(X) for the set of base types of the types in X.

As is standard, we keep track of the types of free names by means of a typing
environment. An environment I is a partial map from names to types, which
we will write as a set of type assignments, z:7. Given a set of names X and
an environment I', we write I'(X) for the set {I'(z) | x € X Ndom(I")}. Given
two environments " and I with dom(I") Ndom(I") = ), we write I'I"" for their
union. For a type environment I we define

ming(I') :=={(z:7) € ' |V(y:7") € I. base(r’) &£ base(r)}.

A judgement I' F+ P means that P € 733 can be typed under assumptions
I, over the hierarchy 7; we say that P is typable if ' -4 P is provable for some
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Vie .T,X b1 A
VieI.Ve:1, € X.x<4pt = base(I'(fn(4;))) < base(r) P

7 VX [T A

AR

Viel. I'tr m.P; '+ A I'tr P
CHOICE —— REPL —— TAU
I'tr Zielﬂ—i'Pi I'r1A I'tr1.P

a:te[m] €T by eI’ I'rQ

— Out
't ab).Q

a:tyfr) €1 Loz B vX e A
base(7z) < ta V (Vi € I. Mig,,) p(i) = base(I'(fn(4;) \ {a})) < ta)

INn
I'tra(z) vX. [[e A

Fig.5. A type system for hierarchical terms. The term P stands for vX.J],. A

I' and 7. An arbitrary term P € PT is said to be typable if its normal form is.
The typing rules are presented in Fig. 5.

The type system presents several non-standard features. First, it is defined on
normal forms as opposed to general m-terms. This choice is motivated by the fact
that different syntactic presentations of the same term may be misleading when
trying to analyse the relation between the structure of the term and 7. The rules
need to guarantee that a reduction will not break 7-compatibility, which is a
property of the congruence class of the term. As justified by Lemma 2, the scope
of names in a congruence class may vary, but the tied-to relation puts constraints
on the structure that must be obeyed by all members of the class. Therefore
the type system is designed around this basic concept, rather than the specific
scoping of any representative of the structural congruence class. Second, no type
information is associated with the typed term, only restricted names hold type
annotations. Third, while the rules are compositional, the constraints on base
types have a global flavour due to the fact that they involve the structure of 7
which is a global parameter of typing proofs.

Let us illustrate intuitively how the constraints enforced by the rules guarantee
preservation of 7-compatibility. Consider the term

P = vea.(vb.(a(h)-A0) || vi.(a(x).Q) )

with @ = ve.(A4; || A || 43), Ao = b(y), A1 = T{c), A2 = ¢(z).a(e) and A3 = a(d).
Let T be the forest with t. < t, < t, < t. and t, < tgq, where t, is the base type of
the (omitted) annotation of the restriction vz, for x € {a,b,¢,d, e}. The reader
can check that forest(P) is T-compatible.

In the traditional understanding of mobility, we would interpret the commu-
nication of b over a as an application of scope extrusion to include vd. (a(gc)Q)
in the scope of b and then syncronisation over a with the application of the
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substitution [b/x] to Q; note that the substitution is only valid because the
scope of b has been extended to include the receiver.

Our key observation is that we can instead interpret this communication as a
migration of the subcomponents of @ that do get their scopes changed by the
reduction, from the scope of the receiver to the scope of the sender. For this
operation to be sound, the subcomponents of () migrating to the sender’s scope
cannot use the names that are in the scope of the receiver but not of the sender.

In our specific example, after the synchronisation between the prefixes a(b) and
a(z), b is substituted to x in A; resulting in the term A} = b(c) and Ao, A}, Ay
and Az become active. The scope of Ag can remain unchanged as it cannot know
more names than before as a result of the communication. By contrast, A; now
knows b as a result of the substitution [b/z]: A; needs to migrate under the
scope of b. Since Ay uses ¢ as well, the scope of ¢ needs to be moved under b;
however Ay uses ¢ so it needs to migrate under b with the scope of ¢. A3 instead
does not use neither b nor ¢ so it can avoid migration and its scope remains
unaltered.

This information can be formalised using the tied-to relation: on one hand, A,
and Ap need to be moved together because 1 ~g 2 and they need to be moved
because x < 1,2. On the other hand, As is not tied to neither A; nor Ay in @
and does not know z, thus it is not migratable. After reduction, our view of the
reactum is the term

Va.(vb.(AO | ve.(4; || Az)) | vd.Ag)

the forest of which is 7-compatible. Rule Par, applied to A; and As, ensures
that ¢ has a base type that can be nested under the one of . Rule IN does not
impose constraints on the base types of Az because Az is not migratable. It does
however check that the base type of e is an ancestor of the one of a, thus ensuring
that both receiver and sender are already in the scope of e. The base type of a
does not need to be further constrained since the fact that the synchronisation
happened on it implies that both the receiver and the sender were already under
its scope; this implies, by 7-compatibility of P, that ¢ can be nested under a.

We now describe the purpose of the rules of the type system in more detail.
Most of the rules just drive the derivation through the structure of the term. The
crucial constraints are checked by PAr, IN and OuT.

The OUT rule. The main purpose of rule Out is enforcing types to be consistent
with the dataflow of the process: the type of the argument of a channel a must
agree with the types of all the names that may be sent over a. This is a very
coarse sound over-approximation of the dataflow; if necessary it could be refined
using well-known techniques from the literature but a simple approach is sufficient
here to type interesting processes.

The PAr rule. Rule PAR is best understood imagining the normal form to be
typed, P, as the continuation of a prefix 7. P. In this context a reduction exposes
each of the active sequential subterms of P which need to have a place in a
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T-compatible forest for the reactum. The constraint in PAR can be read as follows.
A “new” leaf A; may refer to names already present in the forests of the reaction
context; these names are the ones mentioned in both fn(A4;) and I'. Then we
must be able to insert A; so that we can find these names in its path. However,
A; must belong to a tree containing all the names in X that are tied to it in
P. So by requiring every name tied to A; to have a base type greater than any
name in the context that A; may refer to, we make sure that we can insert the
continuation in the forest of the context without violating 7-compatibility. Note
that I'(fn(A;)) contains only types that annotate names both in I" and fn(4;),
that is, names which are not restricted by X and are referenced by A; (and
therefore come from the context).

The In rule. Rule IN serves two purposes: on the one hand it requires the type
of the messages that can be sent through a to be consistent with the use of the
variable  which will be bound to the messages; on the other hand, it constrains
the base types of a and x so that synchronisation can be performed without
breaking 7-compatibility.

The second purpose is achieved by distinguishing two cases, represented by
the two disjuncts of the condition on base types of the rule. In the first case, the
base type of the message is an ancestor of the base type of a in 7. This implies
that in any 7-compatible forest representing a(x).P, the name b sent as message
over a is already in the scope of P. Under this circumstance, there is no real
mobility, P does not know new names by the effect of the substitution [b/x],
and the T-compatibility constraints to be satisfied are in essence unaltered.

The second case is more complicated as it involves genuine mobility. This case
also requires a slightly non-standard feature: not only do the premises predicate
on the direct subcomponents of an input prefixed term, but also on the direct
subcomponents of the continuation. This is needed to be able to separate the
continuation in two parts: the one requiring migration and the one that does
not. The situation during execution is depicted in Fig. 6. The non migratable
sequential terms behave exactly as the case of the first disjunct: their scope is
unaltered. The migratable ones instead are intended to be inserted as descendents
of the node representing the message b in the forest of the reaction context.

For this to be valid without rearrangement of the forest of the context, we
need all the names in the context that are referenced in the migratable terms, to
be also in the scope at b; we make sure this is the case by requiring the free names
of any migratable A; that are from the context (i.e. in I") to have base types
smaller than the base type of a. The set base(I'(fn(4;) \ {a})) indeed represents
the base types of the names in the reaction context referenced in a migratable
continuation A;. In fact a is a name that needs to be in the scope of both the
sender and the receiver at the same time, so it needs to be a common ancestor of
sender and receiver in any 7-compatible forest. Any name in the reaction context
and in the continuation of the receiver, with a base type smaller than the one of
a, will be an ancestor of a—and hence of the sender, the receiver and the node
representing the message—in any 7-compatible forest. Clearly, remembering a
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b

-

ab) a(z).P

Fig. 6. Explanation of constraints imposed by rule IN. The dashed lines represent
references to names restricted in the reduction context.

is not harmful as it must be already in the scope of receiver and sender, so we
exclude it from the constraint.

Ezxample 10. Take the normal form in Example 2. Let us fix 7 to be the forest
s < ¢ < m < d and annotate the normal form with the following types: s: 75 = s[7p],
¢:Te = ¢|[Tm], m: Ty = m[d] and d:d. We want to prove ) -7 vs c.P. We can
apply rule Par: in this case there are no conditions on types because, being
the environment empty, we have base((}(fn(A))) = () for every active sequential
term A of P. Let I' = {(s:75), (c:7.)}. The rule requires I -7 1S, I' b+ IC and
I' =4 M, which can be proved by proving typability of S, C' and M under I" by
rule REPL.

To prove I' =7 S we apply rule In; we have s:s|r,,] € I' and we need to prove
that I'yx : 7, b7 vd.ZT(d). No constraints on base types are generated at this step
since the migratable sequential term vd.z(d) does not contain free variables typed
by I making I'(fn(vd.Z(d)) \ {a}) = I'({z}) empty. Next, I,z : 7, F7 vd.ZT(d)
can be proved by applying rule PAR which amounts to checking I, x : 7, d:d F7
T(d).0 (by a simple application of Out and the axiom I',z:7,,,d:d 7 0) and
verifying the condition—true in 7T—base(,,) < base(7y): in fact d is tied to Z(d)
and, for I = I'U {z: 7, }, base(I" (fu(z(d)))) = base(I"’'({z, d})) = base({rm}).
The proof for I' -+ M is similar and requires ¢ < m which is true in 7.

Finally, we can prove I' 7 C using rule In; both the two continuations A; =
5(m) and Ay = m(y).¢(m) are migratable in C' and since base(r,,) < base(7.)
is false we need the other disjunct of the condition to be true. This amounts
to checking that base(I'(fn(A1) \ {c})) = base(I'({s,m})) = base({7s}) =s < c
(note m & dom(I")) and base(I'(fn(A4,) \ {c¢})) = base(I'(#)) < c (that holds
trivially).

To complete the typing we need to show I',m: 7, b+ Ay and I, m: 7, B As.
The former can be proved by a simple application of Out which does not impose
further constraints on 7. The latter is proved by applying IN which requires
base(7;) < m, which holds in 7.

Note how, at every step, there is only one rule that applies to each subproof.

Ezxample 11. The term Example 4 is not typable under any 7. To see why,
one can build the proof tree without assumptions on 7 by assuming that each
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restriction vz has base type ¢,. When typing m(s) we deduce that ts = t,,, which
is in contradiction with the constraint that ¢, < ts required by rule PAr when

typing vs.(S || 7 (s) || 5)-

5 Soundness of the type system

We now establish the soundness of the type system. Theorem 5 will show how
typability is preserved by reduction. Theorem 6 establishes the main property
of the type system: if a term is typable then 7-shapedness is invariant under
reduction. This allows us to conclude that if a term is 7-shaped and typable,
then every term reachable from it will be 7-shaped.

The subtitution lemma states that substituting names without altering the
types preserves typability.

Lemma 3 (Substitution). Let P € ang and I' be a typing environment such
that I'(a) = I'(b). Then it holds that if ' b7 P then I' =3 P[b/a].

Before we state the main theorem, we define the notion of P-safe type
environment, which is a simple restriction on the types that can be assigned to
names that are free at the top-level of a term.

Definition 9 (P-safe environment). A type environment I' is said to be P-
safe if for each x € fn(P) and (y:7) € bn,(P), base(I'(x)) < base(r).

Theorem 5 (Subject Reduction). Let P and Q be two terms in Pr and I’
be a P-safe type environment. If I' =7 P and P — Q, then I' =7 Q.

The proof is by careful analysis of how the typing proof for P can be adapted
to derive a proof for (). The only difficulty comes from the fact that some of the
subterms of P will appear in () with a substitution applied. However, typability
of P ensures that we are only substituting names for names with the same type,
thus allowing us to apply Lemma 3.

To establish that 7-shapedness is invariant under reduction for typable terms,
we will need to show that starting from a typable 7-shaped term P, any step will
reduce it to a (typable) 7-shaped term. The hypothesis of T-compatibility of P
can be used to extract a T-compatible forest ¢ from F[P]. While many forests in
F[P] can be witnesses of the T-compatibility of P, we want to characterise the
shape of a witness that must exist if P is T-compatible. The proof of invariance
relies on selecting a ¢ that does not impose unnecessary hierarchical dependencies
among names. Such forest is identified by &7 (nf(P)): it is the shallowest among
all the T-compatible forests in F[P].

Definition 10 (®7). The function ®7: Ps — Fr is defined inductively as

T([ierA) = {4}

el
D7 (P) = (Lﬂ{ (w, base(r))[B7(VYa-ILcp Aj)] | (2:7) € ming(X) })
W ¢T<VZ HTGR )



On Hierarchical Communication Topologies in the m-calculus 21

where X #0, P=vX.J[,.;A: I, ={i €1 | z<pi} and

el
Y, ={(y:r) € X | Ji € L.y € fn(A;)} \ ming(X)
7 = X\(U(gg:r)EminT(X) Yw U {JZ:T})

R= I\(U(x:T)EminT(X) Ix)

Forest 4 of Fig. 4 is &7 (P) when every restriction va has base type z (for
x € {a,b,c}) and T is the forest with nodes a, b and ¢ and a single edge a < b.

Lemma 4. Let P € Pn?; Then:

a) @1(P) is a T-compatible forest;
b) &1 (P) € F[P] if and only if P is T-compatible;
c) if P=Q € P then &7(P) € F[Q] if and only if Q is T-compatible.

Theorem 6 (Invariance of 7-shapedness). Let P and Q be terms in Py
such that P — @Q and I be a P-safe environment such that I' -1 P. Then, if P
s T-shaped then Q is T-shaped.

The key of the proof is a) the use of @7(P) to extract a specific T-compatible
forest, b) the definition of a way to insert the subtrees of the continuations of
the reacting processes in the forest of reaction context, in a way that preserves
T-compatibility. Thanks to the constraints of the typing rules, we will always
be able to find a valid place in the reaction context where to attach the trees
representing the reactum.

6 Type inference

In this section we will show that it is possible to take any non-annotated normal
form P and derive a forest 7 and an annotated version of P that can be typed
under 7.

Inference for simple types has already been proved decidable in [8, 23]. In our
case, since our types are not recursive, the algorithm concerned purely with the
constraints imposed by the type system of the form 7, = t[r,] is even simpler.
The main difficulty is inferring the structure of 7.

Let us first be more specific on assigning simple types. The number of ways
a term P can be annotated with types are infinite, simply from the fact that
types allow an arbitrary nesting as in ¢, t[t], t[t[t]] and so on. We observe that,
however, there is no use annotating a restriction with a type with nesting deeper
than the size of the program: the type system cannot inspect more deeply nested
types. Thanks to this observation we can restrict ourselves to annotations with
bounded nesting in the type’s structure. This also gives a bound on the number
of base types that need to appear in the annotated term. Therefore, there are
only finitely many possible annotations and possible forests under which P can
be proved typably hierarchical. A naive inference algorithm can then enumerate
all of them and type check each.
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Theorem 7 (Decidability of inference). Given a normal form P € P, it is
decidable if there exists a finite forest T, a T-annotated version P' € PT of P
and a P'-safe environment I' such that P’ is T-shaped and I' =+ P’.

While enumerating all the relevant forests, annotations and environments is
impractical, more clever strategies for inference exist.

We start by annotating the term with type variables: each name = gets typed
with a type variable t,. Then we start the type derivation, collecting all the
constraints on types along the way. If we can find a 7 and type expressions to
associate to each type variable, so that these constraints are satisfied, the process
can be typed under 7.

By inspecting rules PAar and IN we observe that all the “tied-to” and “migrat-
able” predicates do not depend on T so for any given P, the type constraints
can be expressed simply by conjuctions and disjuctions of two kinds of basic
predicates:

1. data-flow constraints of the form t, = t,[t,] where t, is a base type variable;
2. base type constraints of the form base(t,;) < base(t,) which correspond to
constraints over the corresponding base type variables, e.g. t, < t,.

Note that the P-safety condition on I translates to constraints of the second
kind. The first kind of constraint can be solved using unification in linear time.
If no solution exists, the process cannot be typed. This is the case of processes
that cannot be simply typed. If unification is successful we get a set of equations
over base type variables. Any assignment of those variables to nodes in a suitable
forest that satisfies the constraints of the second kind would be a witness of
typability. An example of the type inference in action can be found in Appendix.

First we note that if there exists a 7 which makes P typable and 7-compatible,
then there exists a 77 which does the same but is a linear chain of base types (i.e.
a single tree with no branching). To see how, simply take T’ to be any topological
sort of T .

Now, suppose we are presented with a set C of constraints of the form ¢ < ¢/
(no disjuctions). One approach for solving them could be based on reductions to
SAT or CLP(FD). We instead outline a direct algorithm. If the constraints are
acyclic, i.e. it is not possible to derive t < t by transitivity, then there exists a
finite forest satisfying the constraints, having as nodes the base type variables. To
construct such forest, we can first represent the constraints as a graph with the
base type variables as vertices and an edge between ¢t and ¢’ just when ¢t < t' € C.
Then we can check the graph for acyclicity. If the test fails, the constraints are
unsatisfiable. Otherwise, any topological sort of the graph will represent a forest
satisfying C.

We can modify this simple procedure to support constraints including disjuc-
tions by using backtracking on the disjuncts. Every time we arrive at an acyclic
assigment, we can check for T-shapedness (which takes linear time) and in case
the check fails we can backtrack again.

To speed up the backtracking algorithm, one can merge the acyclicity test
with the 7-compatibility check. Acyclicity can be checked by constructing a
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topological sort of the constraints graph. Every time we produce the next node
in the sorting, we take a step in the construction of @(P) using the fact that the
currently produced node is the minimal base type among the remaining ones. We
can then backtrack as soon as a choice contradicts 7-compatibility.

The complexity of the type checking problem is easily seen to be linear in
the size of the program. This proves, in conjuction with the finiteness of the
candidate guesses for 7 and annotations, that the type inference problem is in
NP. We conjecture that inference is also NP-hard.

We implemented the above algorithm in a tool called ‘James Bound’ (jb),
available at http://github.com/bordaigorl/jamesbound.

7 Expressivity and verification

7.1 Expressivity

Typably hierarchical terms form a rather expressive fragment. Apart from includ-
ing common patterns as the client-server one, they generalise powerful models of
computation with decidable properties.

Relations with variants of CCS are the easiest to establish: CCS can be seen
as a syntactic subset of m-calculus when including 0-arity channels, which are
very easily dealt with by straightforward specialisations of the typing rules for
actions. One very expressive, yet not Turing-powerful, variant is CCS' [9] which
can be seen as our m-calculus without mobility. Indeed, every CCS' process is
typably hierarchical [4, Section 11.4].

Reset nets can be simulated by using resettable counters as defined in Ex-
ample 3. The full encoding can be found in Appendix. The encoding preserves
coverability but not reachability.

CCS' was recently proven to have decidable reachability [J] so it is reasonable
to ask whether reachability is decidable for typably hierarchical terms.

We show this is not the case by introducing a weak encoding of Minsky
machines (in Appendix). The encoding is weak in the sense that not all of the
runs represent real runs of the encoded Minsky machine; however with reachability
one can distinguish between the reachable terms that are encodings of reachable
configurations and those which are not. We therefore reduce reachability of
Minsky machines to reachability of typably hierarchical terms.

Theorem 8. The reachability problem is undecidable for (typably) hierarchical
terms.

Theorem 8 can be used to clearly separate the (typably) hierarchical fragment
from other models of concurrent computation as Petri Nets, which have decidable
reachability and are thus less expressive.

7.2 Applications

Although reachability is not decidable, coverability is often quite enough to prove
non-trivial safety properties. To illustrate this point, let us consider Example 2
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again. In our example, each client waits for a reply reaching its mailbox before
issuing another request; moreover the server replies to each request with a single
message. Together, these observations suggest that the mailboxes of each client will
contain at most one message at all times. To automatically verify this property we
could use a coverability algorithm for depth-bounded systems: since the example is
typable, it is depth-bounded and such algorithm is guaranteed to terminate with a
correct answer. To formulate the property as a coverability problem, we can ask for
coverability of the following query: vs m.(1S || m(y).¢(m) || vd.m(d) || vd'.m(d")).
This is equivalent to asking whether a term is reachable that embeds a server
connected with a client with a mailbox containing two messages. The query is
not coverable and therefore we proved our property.”

Other examples of coverability properties are variants of secrecy properties.
For instance, the coverability query vs m m/.(1S || m(y).¢(m) || m'(y).¢{m’) ||
vd.(m(d) || m’(d))) encodes the property “can two different clients receive the
same message?”, which cannot happen in our example.

It is worth noting that this level of accuracy for proving such properties
automatically is uncommon. Many approaches based on counter abstraction [22, 6]
or CFA-style abstractions [5] would collapse the identities of clients by not
distinguishing between different mailbox addresses. Instead a single counter is
typically used to record the number of processes in the same control state and of
messages. In our case, abstracting the mailbox addresses away has the effect of
making the bounds on the clients’ mailboxes unprovable in the abstract model.

A natural question at this point is: how can we go about verifying terms
which cannot be typed, as the ring example? Coverability algorithms can be
applied to untypable terms and they yield sound results when they terminate. But
termination is not guaranteed, as the term in question may be depth-unbounded.

However, even a failed typing attempt may reveal interesting information
about the structure of a term. For instance, in Example 11 one may easily see that
the cyclic dependencies in the constraints are caused by the names representing
the “next” process identities. In the general case heuristics can be employed
to automatically identify a minimal set of problematic restrictions. Once such
restrictions are found, a counter abstraction could be applied to those restrictions
only yielding a term that simulates the original one but introducing some spurious
behaviour. Type inference can be run again on the the abstracted term; on failure,
the process can be repeated, until a hierarchical abstraction is obtained. This
abstract model can then be model checked instead of the original term, yielding
sound but possibly imprecise results.

8 Related work

Depth boundedness in the m-calculus was first proposed in [12] where it is proved
that depth-bounded systems are well-structured transition systems. In [24] it
is further proved that (forward) coverability is decidable even when the depth

5 To fully prove a bound on the mailbox capacity one may need to also ask another
coverability question for the case where the two messages bear the same data-value d.
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bound k is not known a priori. In [25] an approximate algorithm for computing
the cover set—an over-approximation of the set of reachable terms—of a system
of depth bounded by k is presented. All these analyses rely on the assumption
of depth boundedness and may even require a known bound on the depth to
terminate.

Several other interesting fragments of the m-calculus have been proposed in
the literature, such as name bounded [10], mixed bounded [15], and structurally
stationary [13]. Typically defined by a non-trivial condition on the set of reachable
terms — a semantic property, membership becomes undecidable. Links with Petri
nets via encodings of proper subsets of depth-bounded systems have been explored
in [15]. Our type system can prove depth boundedness for processes that are
breadth and name unbounded, and which cannot be simulated by Petri nets. In [2],
Amadio and Meyssonnier consider fragments of the asynchronous m-calculus and
show that coverability is decidable for the fragment with no mobility and bounded
number of active sequential processes, via an encoding to Petri nets. Typably
hierarchical systems can be seen as an extension of the result for a synchronous
m-calculus with unbounded sequential processes and a restricted form of mobility.

Recently Hiichting et al. [11] proved several relative classification results
between fragments of w-calculus. Using Karp-Miller trees, they presented an
algorithm to decide if an arbitrary m-term is bounded in depth by a given k. The
construction is based on an (accelerated) exploration of the state space of the
m-term, with non primitive recursive complexity, which makes it impractical. By
contrast, our type system uses a very different technique leading to a quicker
algorithm, at the expense of precision. Our forest-structured types can also act
as specifications, offering more intensional information to the user than just a
bound k.

Our types are based on Milner’s sorts for the m-calculus [17, 8], later refined
into I/O types [20] and their variants [21]. Based on these types is a system for
termination of m-terms [3] that uses a notion of levels, enabling the definition
of a lexicographical ordering. Our type system can also be used to determine
termination of 7w-terms in an approximate but conservative way, by using it in
conjuction with Theorem 1. Because the respective orderings between types of the
two approaches are different in conception, we expect the terminating fragments
isolated by the respective systems to be incomparable.

9 Future directions

The type system we presented in Section 4 is conservative: the use of simple types,
for example, renders the analysis context-insensitive. Although we have kept the
system simple so as to focus on the novel aspects, a number of improvements are
possible. First, the extension to the polyadic case is straightforward. Second, the
type system can be made more precise by using subtyping and polymorphism to
refine the analysis of control and data flow. Third, the typing rule for replication
introduces a very heavy approximation: when typing a subterm, we have no
information about which other parts of the term (crucially, which restrictions)
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may be replicated. By incorporating some information about which names can
be instantiated unboundedly in the types, the precision of the analysis can be
greatly improved. The formalisation and validation of these extensions is a topic
of ongoing research.

Another direction worth exploring is the application of this machinery to
heap manipulating programs and security protocols verification.
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Appendix

A Supplementary Material for Section 2

A.1 Definition and properties of nf

The function nf: P — Py, defined in Definition 11, extracts, from a term, a
normal form structurally equivalent to it.

Definition 11 (nf(P)). We define the function nf: P — P as follows:

nf(0) :=0 nf(7.P) := 7. nf(P) nf(vz.P) := va.nf(P)
nf(M + M') := nf (M) + nf(M") nf(!M) := !(nf(M))
nf(P) if nf(Q) =0 # nf(P)
(P || Q) = nf(Q) if nf(P)=0
" ) vXpXo.(Np || Ng) if nf(Q) = vXg.Ng,nf(P) =vXp.Np

and acty(Np) = acty(Ng) =0

Lemma 5. For each P € P, P = nf(P)
Proof. A straightforward induction on P.

Lemma 6. Let ¢ be a forest with labels in N WS. Then ¢ = forest(Q) with
Q = Q, where

Qo = VXy. Il a)er4
Xy ={ly,(n) e N |ne Ny}
I'={(n,A)|l,(n)=AcS}

provided

i) Yn € Ny, if £,(n) € S then n has no children in ¢, and
i) Vn,n’ € Ny, if by(n) =Ll,(n') € N thenn =n', and
i) Vn € Ny, if b,(n) = A € S then for each x € X, Nn(A) there exists n’ <, n
such that l,(n') = x.

Proof. We proceed by induction on the structure of . The base case is when
© = (0,0), for which we have Q, = 0 and ¢ = forest(0).

When ¢ = @ W1 we have that if conditions 8.i, 8.ii and 8.iii hold for ¢, they
must hold for ¢y and ¢, as well, hence we can apply the induction hypothesis to
them obtaining ; forest(Q;) with Q; = Q.,, (i € {0,1}). We have ¢ = forest(Qo ||
Q1) by definition of forest, and we want to prove that Qo || @1 = Q. By condition
8.ii on ¢, X, and X, must be disjoint; furthermore, by condition 8.iii on both
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¢o and o1 we can conclude that fn(Q,,) N Xy, , = 0. We can therefore apply
scope extrusion: Qo || Q1 = Qy, || Qp, = VX Xo, (P || Ppy) = Q-

The last case is when ¢ = {[p’]. Suppose conditions 8.1, 8.ii and 8.iii hold for ¢.
We distinguish two cases. If | = A € S, by 8.1 we have ¢’ = ((},0), ¢ = forest(A)
and A = Q. If | =z € N then we observe that conditions 8.i, 8.ii and 8.iii hold
for ¢’ under the assumption that they hold for ¢. Therefore ¢’ = forest(Q’) with
Q" = Q,, and, by definition of forest, ¢ = forest(vz.Q"). By condition 8.ii we
have € X, so v&.Q' = vz.Qy = V(X U{z}).Py = Q..

B Supplementary Material for Section 3

B.1 Proof of Theorem 3

First, it is immediate to see that every hierarchical term is depth-bounded. Any
T-compatible forest cannot repeat a type in a path, which means that the number
of base types in 7 bounds the height of 7-compatible forests. This automatically
gives a bound on the depth of any 7-compatible term.

We show the converse is not true by presenting a depth-bounded process
which is not hierarchical. Take P = (1A || IB || /(C1 + C3)) where

A=7.v(a:a)pla) C1 = p(x).q(y)-D) D =%(y)
B =7.v(b:b).q(b) Ca = q(2).!(p(y)-D)

then P is depth-bounded. However we can show there is no choice for consistent
annotations and 7 that can prove it hierarchical. Let h be the height of T.
From P we can reach, by reducing the 7 actions of A and B, any of the terms
Qij = P || (va.p{a))" || (vb.g(b))’ (omitting annotations) for i, j € N. The choice
for annotations can potentially assign a different type in 7 to each va and vb.
Let n,m € N be naturals strictly greater than 2h and consider the reachable
term Qp, nm; from this term we can reach a term

QY =P (Va.((vb.D[a/x, b/y))"™ || !(q(y).D[a/m])))n

by never selecting C as part of a redex. Each occurrence of a and b will have an
annotation: we assume type ti is assigned to each occurrence i < n of va in Qe
and a type t;” is assigned to each occurrence j of vb under v(a:t}) in Q. Each
occurrence of va in Q has in its scope more than h occurrences of vb. We cannot
extrude more than h occurrences of vb because we would necessarily violate
T-compatibility by obtaining a path of length greater than h in the forest of the
extruded term. Therefore, w.l.0.g., we can assume that the types t;}’l, e ,tZ’h'H
are all descendants of !, for each i < n. Pictorially, the parent relation in T
entails the relations in Fig. 7 where the edges represent <.

The type associations of the restrictions in Q% are already fixed in Qy, m.-
From @, nm we can however also reach any of the terms

@ = P11 (00267 (v Do/, b1 )" 1601 D10/)



On Hierarchical Communication Topologies in the m-calculus 31

ta ta ty
\ \
\
\
ti,l t;,? ti,z ti,h-;-l tz,l t:,Q t:,hﬂ

L0 L4l 42,1
ty t

Fig. 7. Structure of 7 in the counterexample.

for ¢ < m, by making Cs and v(b:té’l)@(b) react and then repeatedly making
lq(y).D react with each v(a:t}).p(a). Let us consider Q}. As before, we cannot
extrude more than h occurrences of a or we would break 7-compatibility. We
must however extrude (a:tl) to get T-compatibility since t! <r tiJ. From these
two facts we can infer that there must be a type associated to one of the a, let
it be 2, such that t. <+ t;’l <7 t2. We can apply the same argument to Q3
obtaining t} <72 <1 ti’l <7 t3. Since m > 2h we can repeat this h + 1 times
and get t} <7 t2 <7 ... <7 t'*! which contradicts the assumption that the
height of T is h.

The reason why the counterexample presented in the proof above fails to
be hierarchical is that (unboundedly many) names are used in fundamentally
different ways in different branches of the execution.

C Supplementary Material for Section 4

C.1 Proof of Lemma 2

We show that the claim holds in the case where A; is linked to A; in P. From this,
a simple induction over the length of linked-to steps required to prove i ~p j,
can prove the lemma.

Suppose i <»p j. Let Y = fn(A;) Nfn(A4;) N{z | (z:7) € X}, we have Y # 0.
Both A; and A; are in the scope of each of the restrictions bounding names
y € Y in any of the processes @ in the congruence class of P, hence, by definition
of forest, the nodes labelled with A; and A; generated by forest(Q) will have
nodes labelled with (y, base(X (y))) as common ancestors.

C.2 Some auxiliary lemmas

Lemma 7. If forest(P) is T-compatible then for any term Q which is an a-
renaming of P, forest(Q) is T-compatible.

Proof. Straightforward from the fact that 7T-compatibility depends only on the
type annotations.

Lemma 8. Let P = vX.[]|
J CI. Then P' =VvY.J]

serdi be a T-compatible normal form, Y C X and

jeJAj is T-compatible.



32 E. D’Osualdo and C.-H. L. Ong

Proof. Take a T-compatible forest ¢ € F[P]. By Lemma 7 we can assume without
loss of generality that ¢ = forest(Q)) where proving @ = P does not require
a-renaming. Clearly, removing the leaves that do not correspond to sequential
terms indexed by Y does not affect the 7-compatibility of . Similarly, if a
restriction (z:7) € X is not in Y, we can remove the node of ¢ labelled with
(x,base(T)) by making its parent the new parent of its children. This operation
is unambiguous under Name Uniqueness and does not affect 7-compatibility, by
transitivity of <. We then obtain a forest ¢’ which is 7-compatible and that, by
Lemma 6, is the forest of a term congruent to the desired normal form P’.

D Supplementary Material for Section 5

D.1 Some Elementary Properties of the Type System
Lemma 9. Let P € Pk and I', I"" be type environments.

a) if I' 5 P then fn(P) C dom(I");
b) if dom(I”) Nbn(P) =0 and m(P) C dom(I"),
then I' =7 P if and only if I'l" b7 P;
c) if P= P € Pk then, I' =7 P if and only if I -1 P'.

D.2 Proof of Lemma 4

Item a) is an easy induction on the cardinality of X.

Item b) requires more work. By item a) @(P) is T-compatible so @(P) € F[P]
proves that P is T-compatible.

To prove the <-direction we assume that P = vX.[],.;A; is T-compatible
and proceed by induction on the cardinality of X to show that $(P) € F[P]. The
base case is when X = (: &(P) = ([ [, Ai) = W;ep {Al]} = forest(J];c,4i) =
forest(P) € F[P]. For the induction step, we observe that X # () implies
ming(X) # 0 so, Z € X and for each (z:7) € miny(X), ¥, C X since
x ¢ Y,. This, together with Lemma 8, allows us to apply the induction hy-
potesis on the terms P, = VYI.HJEII A; and Pr = VZ.HTeRAT, obtaining that
there exist terms Q, = P, and Qr = Pg such that forest(Q,) = ®(P,) and
forest(Qr) = ®(Pgr) where all the forests forest(Q,) and forest(Qr) are T-com-
patible. Let @ = [[{v(z:7).Qs | (z:7) € miny(X)} || Qr, then forest(Q) =
@(P). To prove the claim we only need to show that @ = P. We have Q =
[T{v(@:7)vYe[ler, Aj | (z:7) € ming (X)} || Pr and we want to apply extru-
sion to get @ = VYmin'(Hz'eImmAi) || Pg for Iyin = W{l; | (z:7) € miny(X)},
Yiin = ming (X)Wl {Y; | (z:7) € ming(X)} which adds an obligation to prove
that

i) I, are all pairwise disjoint so that I, is well-defined,
ii) Y, are all pairwise disjoint and all disjoint from miny(X) so that Y, is
well-defined,
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iii) Y;Nfn(A;) = 0 for every j € I, with z # x so that we can apply the extrusion
rule.

To prove condition i), assume by contradiction that there exists an i € I
and names z,y € miny(X) with z # y, such that both z and y are tied to
A; in P. By transitivity of the tied-to relation, we have I, = I,,. By Lemma 2
all the A; with j € I, need to be in the same tree in any forest ¢ € F[P].
Since P is T-compatible there exist such a ¢ which is T-compatible and has
every Aj; as label of leaves of the same tree. This tree will include a node n,
labelled with (z,base(X(z))) and a node n, labelled with (y, base(X(y))). By
T-compatibility of ¢ and the existence of a path between n, and n, we infer
base(X (z)) < base(X(y)) or base(X(y)) < base(X(x)) which contradicts the
assumption that z,y € miny(X).

Condition ii) follows from condition i): suppose there exists a (z:7) € X N
Y, NY, for x # y, then we would have that z € fn(A4;) Nfn(A;) for some i € I,
and j € I, but then i ~p j, meaning that ¢ € I, and j € I, violating condition i).
The fact that Y, N miny(X) = @ follows from the definition of Y,. The same
reasoning proves condition iii).

Now we have Q = VYmin'(Hz‘eIm;nAi) | VZ.]],crAr and we want to apply
extrusion again to get Q@ = VYininZ.[ [ {4; | ¢ € (I;min W R)} which is sound under
the following conditions:

iV) YoinNZ = ma
V) Irnin n R - (Z),
vi) ZNin(A4;))=0foralli g R

of which the first two hold trivially by construction, while the last follows from
condition viii) below, as a name in the intersection of Z and a fn(A;) would need
to be in X but not in Y,,;,. To be able to conclude that () = P it remains to
prove that

vii) [ = Iin W R and

Vi) X = Yinin W Z

which are also trivially valid by inspection of their definitions. This concludes
the proof for item b).

Finally, for every Q@ € PT such that Q = P, ®(P) € F[Q] if and only if
@(P) € F[P] by definition of F[—]; since #(P) is T-compatible we can infer
that @Q is 7T-compatible if and only if #(P) € F[Q], which proves item c).

In light of Lemma 4, we can turn the computation of @7 (P) into an algorithm
to check T-compatibility of P: it is sufficient to compute @ (P) and check at each
step that the sets I, R form a partition of I and the sets Y., Z form a partition
of X. If the checks fail $7(P) ¢ F[P] and P is not T-compatible, otherwise the
obtained forest is a witness of 7-compatibility.

D.3 Further Properties of &+ (P)

Lemma 10. Let P = vX.[[,c;A:i € PI be a T-compatible normal form. Then
for every trace ((x1,t1) ... (zx,tx) A;) in the forest B(P), for everyi € {1,...,k},
we have z; <p j (i.e. x; is tied to Aj in P).
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Proof. Straightforward from the definition of I, in @: when a node labelled by
(z,t) is introduced, its subtree is extracted from a recursive call on a term that
contains all and only the sequential terms that are tied to x.

Remark 1. @(P) satisfies conditions 8.1, 8.ii and 8.iii of Lemma 6.

D.4 Proof of Lemma 3

We prove the lemma by induction on the structure of P. The base case is when
P = 0, where the claim trivially holds.

For the induction step, let P = vX.J[,.;A; with A; = Zje.lﬂ.’ij'Pij? for some
finite sets of indexes I and J. Since the presence of replication does not affect
the typing proof, we can safely ignore that case as it follows the same argument.
Let us assume I' b7 P and prove that I' -5 P[b/a].

Let I'" be ' UX. From I' F+ P we have

I X br A (1)
x<dpi = base(I'(fn(4;))) < base(ry) (2)

for each ¢ € I and z:7, € X. To extract from this assumptions a proof for
I' =7 P[b/a], we need to prove that (1) and (2) hold after the substitution.

Since the substitution does not apply to names in X and the tied to relation
is only concerned with names in X, the only relevant effect of the substitution is
modifying the set fn(A4;) to n(A;[b/a]) = fn(A4;) \ {a} U {b} when a € fn(A4;);
But since I'(a) = I'(b) by hypothesis, we have base(I'(fn(A4;[b/a]))) < base(r,,).

It remains to prove (1) holds after the substitution as well. This amounts to
prove for each j € J that I'" -7 7m;;.P;; = I b7 m;;.P;j[b/a]; we prove this
by cases.

Suppose m;; = a@(f) for two names « and S, then from I'" 7 7;;.P;; we know
the following

a:ty[rg) €1 B:tgeI” (3)

I b7 Py (4)

Condition (3) is preserved after the substitution because it involves only types so,

even if a or 8 are a, their types will be left untouched after they get substituted

with b from the hypothesis that I'(a) = I'(b). Condition (4) implies I Fr

P;;[b/a] by inductive hypothesis.

Suppose now that m;; = a(r) and P; = VY]], x A}, for some finite set of

indexes K; by hypothesis we have:

a:tylre] €T (5)
I' x:7 b7 Py (6)
base(7;) <to VVk € K. Mig,  p, (k) = base(I"(fn(4;) \ {a})) <ta (7)

Now x and Y are bound names so they are not altered by substitutions. The
substitution [b/a] can therefore only be affecting the truth of these conditions
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when o = a or when a € fn(A4},) \ (Y U {z}). Since we know a and b are assigned
the same type by I" and I" C I/, condition (5) still holds when substituting a for
b. Condition (6) holds by inductive hypotesis. The first disjunct of condition (7)
depends only on types, which are not changed by the substitution, so it holds
after applying it if and only if it holds before the application. To see that the
second disjunct also holds after the substitution we observe that the migratable
condition depends on x and fn(A}) NY which are preserved by the substitution;
moreover, if a € fn(A}) \ {a} then I'"(fn(A4)) \ {a}) = I'"(fn(A}[b/a]) \ {a}).

This shows that the premises needed to derive I,z : 7, 7 m;;.P;;[b/a] are
implied by our hypothesis, which completes the proof.

D.5 Proof of Theorem 5

We will only prove the result for the case when P — @ is caused by a synchronising
send and receive action since the 7 action case is similar and simpler. From
P — Q we know that P = vIV.(S || R || C) € P with S = (@(b).vY;.S")+ M, and
R = (a(z).VY,..R') + M, the synchronising sender and receiver respectively; Q =
VWY,Y,.(S" || R'[b/z] || C). In what follows, let W' = WY,Y,., C = [],cxCh,
S =[l;es5; and R' =[], ; R}, all normal forms.

For annotated terms, the type system is syntax directed: there can be only
one proof derivation for each typable term. By Lemma 9.c, from the hypothesis
I' b7 P we can deduce I' -7 VIV.(S || R || C). The proof derivation for this
typing judgment can only be of the following shape:

TWtrS IT'WhrR Yhe HITW - C, W
I'FrVvW.(S | R C)

(8)

where ¥ represents the rest of the conditions of the Par rule.® The fact that P
is typable implies that each of these premises must be provable. The derivation
proving I’ W F+ S must be of the form

a:tym] €W bimy € TW T'W b7 VY8
I'WkEr E<b>.\/Y;.Sl Q}ws
I' b7 a(b).vYs.S" + M;

where I''W k1 vY,.8’ is proved by an inference of the shape

Vie I.ITWYs 7S] Viel g
I'W b VY,.S'

(10)

Analogously, I'W F+ R must be proved by an inference with the following
shape
a:tyre] €TW TIT'W,z:7, b7 VY. R Wg

I'w b1 a(x).VY,.R' U, (11)
I'W t7 a(x).VY,..R' + M,

5 Note that ¥ is trivially true by P-safety of I".
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and to prove I'W,x:7, b+ VY,.R’

VjGJ.FVKm:Tx,YT}—TR;- VjEJ.WR;
I'W,z:7, F7+ VY,..R

(12)

We have to show that from this hypothesis we can infer that I" -+ @ or,
equivalently (by Lemma 9.c), that I" 7 Q' where Q' = VIWY,Y,..(S" || R'[b/z] ||
(). The derivation of this judgment can only end with an application of PAR:

Vie .IW' b7 S, VjeJITW k1 Ri[b/z] Yhe HIW bty C, W
I vW' (S| R[b/z] || C)

In what follows we show how we can infer these premises are provable as a
consequence of the provability of the premises of the proof of I' - VIV.(S || R ||
).

From Lemma 9.b and Name Uniqueness, I'WY; F7 S/ from (10) implies
I'W' b S; for each i € I.

Let I = I'W,z:7,. We observe that by (9) and (11), 7, = 7. From (11)
we know that I3.Y, = R’ which, by Lemma 3, implies I'.Y, -7 R}[b/x]. By
Lemma 9.b we can infer I.Y,Y; b7 R:[b/x] and by applying the same lemma
again using fn(R;[b/x]) C dom(I'WY,Y;) and Name Uniqueness we obtain
I'W' b7 Ri[b/z].

Again applying Lemma 9.b and Name Uniqueness, we have that I'WW k7 Cj,
implies I'W' b C}, for each h € H.

To complete the proof we only need to prove that for each A € {S] |
i€ IYU{R, |je JyU{Cy|he H}, W =Y(v:7,) € Wz tied to A in Q' =
base(I'(fn(A))) < base(r,) holds. This is trivially true by the hypothesis that I"
is P-safe.

D.6 Proof of Theorem 6

We will consider the input output synchronisation case as the 7 action one is
similar and simpler. We will further assume that the sending action @(b) is such
that v(a:7,) and v(b:7,) are both active restrictions of P, ie. (a:7,) € W,
(b:1p) € W with P =vW.(S || R || C). The case when any of these two names is
a free name of P can be easily handled with the aid of the assumption that I" is
P-safe.

As in the proof of Theorem 5, the derivation of I" 4 P must follow the shape
of (8).

From 7-shapedness of P we can conclude that both vY,.S’ and vY,..R' are
T-shaped. We note that substitutions do not affect 7-compatibility since they
do not alter the set of bound names and their type annotations. Therefore,
we can infer that vY;.R'[b/a] is T-shaped. By Lemma 4 we know that ¢ =
Sd(VW.(S || R || C)) € F[P], ¢r = ®(VY,.R'[b/a]) € F[VY,..R'[b/z]] and
s = P(VY,.5") € F[vY,.5']. Let ¢, = @mig W @-mig Where only ¢n,;; contains
a leaf labelled with a term with b as a free name. These leaves will correspond
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to the continuations R’ that migrate in a(x).vY;.R', after the application of the
substitution [b/x]. By assumption, inside P both S and R are in the scope of
the restriction bounding a and S must also be in the scope of the restriction
bounding b. Let ¢, = base(7,) and t, = base(7,), ¢ will contain two leaves ng and
ng labelled with S and R respectively, having a common ancestor n, labelled
with (a,t,); ng will have an ancestor n;, labelled with (b,t). Let p,, ps and
pr be the paths in ¢ leading from a root to n,, ng and ng respectively. By
T-compatibility of ¢, we are left with only two possible cases: either 1) t, < t;
or 2)ty < tg.

Let us consider case 1) first. The tree in ¢ to which the nodes ng and ng
belong, would have the following shape:

w
i k
-

Now, we want to transform ¢, by manipulating this tree, into a forest ¢’ that
is T-compatible by construction and such that there exists a term Q' = Q with
forest(Q') = ¢’, so that we can conclude @ is T-shaped.

To do so, we introduce the following function, taking a labelled forest ¢, a
path p in ¢ and a labelled forest p and returning a labelled forest:

il’lS(Q07p, p) = (Nw S Npa <p W <p W *insv&p W ep)
where n <ins 0 if n’ € min., (N,) and if £,(n’) = (y,t,) then

nemax{m €p|Lly(m) = (z,t;),ty <ty}
e

or if £,(n') = A then

n e HiiX{m eplly(m)=(z,t;),x € n(A)}.

Note that for each n’, since p is a path, there can be at most one n such that
N <ins 1.

To obtain the desired ¢’, we first need to remove the leaves ng and ng from
@, as they represent the sequential processes which reacted, obtaining a forest
pco. We argue that the ¢’ we need is indeed

/

@ = iHS(@laPSv Samig)
©p1 = iIlS((,OQ,pR7 Qpﬁmig)
Y2 = inS(SD07pS7 903)
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It is easy to see that, by definition of ins, ¢’ is T-compatible: pc, @5, @-mig and
©mig are T-compatible by hypothesis, ins adds parent-edges only when they do
not break 7-compatibility.

To prove the claim we need to show that ¢’ is the forest of a term congruent
to VWY, Y,..(S" [| R'[b/z] || C). Let R =][;c; R}, Jmig ={j € J | 2 vv,.r j},
Jomig = J\ Jmig and V! = {(z:7) € Y, | x € fn(R}), j € J-mig}. We know that
no R with j € J.nig can contain x as a free name so Rj[b/z] = R. Now
suppose we are able to prove that conditions 8.i, 8.ii and 8.iii of Lemma 6 hold
for oo, p1, w2 and ¢’. Then we could use Lemma 6 to prove

a) @c = forest(Qc), Qc = Que = VW.C,

b) 2 = forest(Q2), Q2 = Qp, = VWY,.(S" || O),
¢) 1 = forest(Q1), Q1 = Qu, = VWY Y.(S" | T ... 12 | O);
d) ¢ =forest(Q'), Q' = Qup = VWYY,.(S" || R'[b/z] || C)=Q

(it is straightforward to check that ¢, @2, 1 and ¢’ have the right sets of nodes
and labels to give rise to the right terms). We then proceed to check for each of
the forests above that they satisfy conditions 8.i, 8.ii and 8.iii, thus proving the
theorem.

Condition 8.1 requires that only leafs are labelled with sequential processes,
condition that is easily satisfied by all of the above forests since none of the
operations involved in their definition alters this property and the forests ¢, @,
and ¢, satisfy it by construction.

Similarly, since VIV.(S || R || C) is a normal form it satisfies Name Uniqueness,
8.ii is satisfied as we never use the same name more than once.

Condition 8.iii holds on ¢ and hence it holds on (¢ since the latter contains
all the nodes of ¢ labelled with names.

Now consider ;: in the proof of Theorem 5 we established that I' -7 P implies
that the premises ¥g, from (10) hold, that is base(I'W (fn(S}))) < base(;) holds
for all S] for i eI and all (z:7,) € Y; such that x <yy, s 7. Since tm(S)NW C
fn(S") we know that every name (w:7,) € W such that w € fn(S}) will appear
as a label (w,base(1,)) of a node n,, in pg. Therefore, by definition of ins, we
have that for each n € Ny, ny <y, n; in other words, in @9, every leaf in N,
labelled with S} is a descendent of a node labelled with (w, base(r,)) for each
(w:Ty) € W with w € fn(S}). This verifies condition 8.iii on ¢s.

Similarly, by (12) the following premise must hold: base(I'W (fu(R}))) <
base(r,) for all R; for j € J and all (y:7,) € Y, such that y <y, r j. We can
then apply the same argument we applied to 2 to show that condition 8.iii holds
on Y1q.

From (11) and the assumption t, < t5, we can conclude that the following
premise must hold: base(I'W (fn(R}) \ {a})) < t, for each j € J such that R’ is
migratable in a(z).vY,.R', i.e j € Jnis. From this we can conclude that for every
name (w:7,) € W such that w € fn(R}[b/z]) with j € Jmig there must be a
node in p, (and hence in pg) labelled with (w, base(7,)). Now, some of the leaves
in @mig will be labelled with terms having b as a free name; we show that in fact
every node in ¢, labelled with a (y,t,) is indeed such that ¢, < t;. From the




On Hierarchical Communication Topologies in the m-calculus 39

proof of Theorem 5 and Lemma 3 we know that from the hypothesis we can infer
that I'W F7 vY,..R'[b/x ] and hence that for each j € Jyig and each (y:7,) € Y,
if y is tied to R}[b/x] in VY. R'[b/z | then base(I'W (R}[b/x])) < base(r,). By
Lemma 10 we know that every root of ¢miz is labelled with a name (y,t,)
which is tied to each of the leaves in its tree. Therefore each such t, satisfies
base(I'W (R}[b/x])) < t,. By construction, there exists at least one j € Jiig
such that = € fn(R}) and consequently such that b € fn(R;[b/x]). From this
and b € W we can conclude ¢, < t, for ¢, labelling a root in ¢u;,. We can
then conclude that {n,} = max., {m € ps | £,(m) = (2,t,),t, < t,} for each
t, labelling a root of ¢, which means that each tree of ¢ is placed as a
subtree of n, in ¢’. This verifies condition 8.iii for ¢’ completing the proof.

Pictorially, the tree containing ng and ng in ¢ is now transformed in the
following tree in ¢':

A § A

’ A€oy
nb.ﬁ A € Pmig
6 x A € Y-mig

X X
Ps PR
Case 2) — where ¢, < t, — is simpler as the migrating continuations can be
treated just as the non-migrating ones.

D.7 Role of ¢mig, ¥-mig and ins

To illustrate the role of ¢mig, Y-mig and the ins operation in the above proof, we
show an example that would not be typable if we choose a simpler “migration”
transformation.

Consider the normal form P =vabec.(!A || a{c)) where A = a(x).vd.(a(d) ||
b(x)). To make types consistent we need annotations satisfying a:,[t], b:tp[t],
c:tand d:t. Any T satisfying the constraints ¢, < t, <t would allow us to prove
() =7 P; let then T be the forest with b <a <t witht, =a,t, =band ¢t = t.
Let P' =vabcd.('A || a(d) || b{c)) be the (only) successor of P. The following
picture shows ¢(P) in the middle, on the left a forest in F[P’] extracted by just
putting the continuation of A under the message, on the right the forest obtained
by using ins on the non-migrating continuations of A:

b b b
/a\ — /a\ — /a\/\
A ¢ 1A ‘C 1A ‘C c‘l

_—dw alc Bb(e) ald
o ) (©) ald)

Clearly, the tree on the left is not 7-compatible since ¢ and d have the same base
type t. Instead, the tree on the right can be obtained because ins inserts the
non-migrating continuation as close to the root as possible.
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E Supplementary Material for Section 6

E.1 A type inference example

Take the term !(T.VS c.P) of Example 2. We start by annotating each restriction
va with a fresh type variable v(a:t,). Then we perform a type derivation as in
Example 10, obtaining the following data-flow constraints:

ts = ts[t.] te = telts] ty = ty[t] t, =t =t = t,[td]
from which we learn that:

- t4 is unconstrained; we use the base type variable t; for base(t);
-4y =ty
-ty =t, and base(t;,) = t,.

We can therefore completely specify the types just by associating ¢, t., t; and t4
to nodes in a forest: all the types would be determined as a consequence of the
data-flow constraints, apart from t; to which we can safely assign the type ¢4.

During the type derivation we also collected the following base type con-
straints:

base(t,) < base(tq) base(t.) < base(ty,) base(t.) < base(t;)
base(t,) < base(t.) V base(t;) < base(t.)

These can be simplified and normalised using the equations on types seen above
obtaining the set

Cysep = {te <tcVits <te te <ty ty <tq}

Hence any choice of T D {t4,te, ts,ta} such that ts <7 t. <7 t, <7 tq would
make the typing succeed.

F Supplementary Material for Section 7

F.1 Encoding of Reset nets

A reset net N with n places is a finite set of transitions of the form (u, R) where
u € {—1,0,+1}" is the update vector and R C {1,...,n} is the reset set. A
marking m is a vector in N"; a transition (u, R) is said to be enabled at m
if m — w > 0. The semantics of a reset net N with initial marking my is the
transition system (N, [), mg) where m [) m’ if there exists a transition (u, R) in
N that is enabled in m and such that

7o ificR
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To simulate place i in a reset net we can construct a term that implements a
counter with increment and reset:

Ci = (pi(t)-(inc;.(T || pit)) + dec;.(t.pi(t)) + rst;.(VE;.pi(t7))))

Here, the number of processes ¢ in parallel with p;(t) represent the current
value of the marking in place i. A transition (u, R) is encoded as a process
Tur = !(valid.Du.Iu.ZR.valid) where D,, = decj, .- - .dec;, with {j1,...,jx} =
{7 | u; <0}, I, = inc;,. - .inc;, with {i1,...,4} = {i | u; >0}, and Zp =
TSty .-+ sty with R = {ry,...,m}.

A marking m is encoded by a process

Py m = valid || TT <;<,, (0i(t) 1| Ci |1 6™ | Tl w,pyen Tk

Actions on the name valid act as a global lock: a transition may need many steps
to complete, but by acquiring and releasing valid it can ensure no other transition
will fire in between. If a transition tries to decrement a counter below zero, the
counter would deadlock causing valid to be never released again. Therefore, the
encoding preserves coverability: m is coverable in N from my if and only if Py
is coverable from Py m,,. Reachability is not preserved because each reset would
generate some ‘garbage’ term VE.(¢ || ... || ) and thus, even when m is reachable,
Pn , might not be reachable alone, but only in parallel with some garbage.
The reader can verify that any encoding P can be typed under the hierarchy

valid < incy < decy < rsty <ty <p; < -+ <

incy, < decy, < sty <tp, <p, <tp <---<t

n

by annotating each restriction vt; as v(¢}:¢;) and using the P-safe environment
{(z:z) | x € Im(P)}.

F.2 A weak encoding of Minsky machines

A k-counters Minsky machine is a finite list of instructions I,..., I, each of
which can be either an increase or a decrease command. An increase command
inc ¢ j increases counter ¢ and jumps to instruction I;. A decrease command
dec 7 ji jo decreases counter ¢ jumping to instruction I;, if the counter is greater
than zero, or jumps to [;, otherwise. We implement a counter ¢ with the process
C; of Example 3. An increase I,,, = inc i j is encoded by !(ip,.inc;.i;). A decrease
I, = dec i ji jo is encoded by !(in,.(dec;.ij, + rst;.ij,)). A configuration of a
Minsky machine is the vector of values of its registers r1,...,r; and the current
instruction j; its encoding is the term

TTh<ciciVte-@i(ta) 1 87 15 | Thi<pen Pro

where P;_ is the encoding of the instruction I,,.
When a counter is zero, performing a decrease command on it in the encoding
presents a non-deterministic choice between sending a decrease or a reset signal
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to the counter. In the branch where the decrease signal is sent, the counter
process will deadlock, ending up in a term that is clearly not an encoding of a
configuration of the Minsky machine. If instead a reset signal is sent, the counter
will refresh the name ¢ with a new name, but the old one would be discarded as
there is no sequential term which knows it.

When a counter is not zero, the branch where the decrease signal is sent
will simply succeed, while the resetting one will generate some ‘garbage’ term
vt.(t ] ... || t) in parallel with the rest of the encoding of the Minsky machine’s
configuration.

A configuration of the machine is thus reachable if and only if its encoding
(without garbage) is reachable from the encoding of the machine. This proves
Theorem 8.
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