
ar
X

iv
:1

51
0.

08
15

4v
1

 [
cs

.D
S]

 2
8

O
ct

 2
01

5

A faster FPT Algorithm and a smaller Kernel

for Block Graph Vertex Deletion

Akanksha Agrawal1, Sudeshna Kolay2, Daniel Lokshtanov1, and Saket
Saurabh1,2

1 University of Bergen, Norway
{akanksha.agrawal|daniello}l@uib.no

2 Institute of Mathematical Sciences, Chennai, India
{skolay|saket}@imsc.res.in

Abstract. A graphG is called a block graph if each maximal 2-connected
component of G is a clique. In this paper we study the Block Graph
Vertex Deletion from the perspective of fixed parameter tractable
(FPT) and kernelization algorithm. In particular, an input to Block
Graph Vertex Deletion consists of a graph G and a positive integer
k and the objective to check whether there exists a subset S ⊆ V (G) of
size at most k such that the graph induced on V (G)\S is a block graph.
In this paper we give an FPT algorithm with running time 4knO(1) and a
polynomial kernel of size O(k4) for Block Graph Vertex Deletion.
The running time of our FPT algorithm improves over the previous best
algorithm for the problem that ran in time 10knO(1) and the size of our
kernel reduces over the previously known kernel of size O(k9). Our re-
sults are based on a novel connection between Block Graph Vertex
Deletion and the classical Feedback Vertex Set problem in graphs
without induced C4 and K4 − e. To achieve our results we also obtain
an algorithm for Weighted Feedback Vertex Set running in time
3.618knO(1) and improving over the running time of previously known
algorithm with running time 5knO(1).

1 Introduction

Deleting minimum number of vertices from a graph such that the resulting graph
belongs to a family F of graphs, is a measure on how close the graph is to the
graphs in the family F . In the problem of vertex deletion, we ask whether we
can delete at most k vertices from the input graph G such that the resulting
graph belongs to the family F . Lewis and Yannakakis [14] showed that for any
non-trivial and hereditary graph property Π on induced subgraphs, the ver-
tex deletion problem is NP-complete. Thus these problems have been subjected
to intensive study in algorithmic paradigms that are meant for coping with
NP-completeness [7,8,15,16]. These paradigms among others include applying
restrictions on inputs, approximation algorithms and parameterized complexity.
The focus of this paper is to study one such problem from the view point of
parameterized algorithms.

http://arxiv.org/abs/1510.08154v1

Given a family F , a typical parameterized vertex deletion problem gets as
an input an undirected graph G and a positive integer k and the goal is to
test whether there exists a vertex subset S ⊆ V (G) of size at most k such that
G \ S ∈ F . In the parameterized complexity paradigm the main objective is to
design an algorithm for the vertex deletion problem that runs in time f(k)·nO(1),
where n = |V (G)| and f is an arbitrary computable function depending only on
the parameter k. Such an algorithm is called an FPT algorithm and such a
running time is called FPT running time. We also desire to design a polynomial
time preprocessing algorithm that reduces the given instance to an equivalent
one with size as small as possible. This is mathematically modelled by the notion
of kernelization. A parameterized problem is said to admit a h(k)-kernel if there
is a polynomial time algorithm (the degree of the polynomial is independent
of k), called a kernelization algorithm, that reduces the input instance to an
equivalent instance with size upper bounded by h(k). If the function h(k) is
polynomial in k, then we say that the problem admits a polynomial kernel. The
formal definitions are in Section 2. For more background, the reader may refer
to the following monograph [6].

A large part of research in paramaterized vertex deletion problems has cen-
tred around F , that can be defined by finite excluded minor characterization
and in particular when F has a planar graph [7,12]. These include problem of
deleting k vertices to get a graph of treewidth t [7,12]. One of the main reason
to study these problems is that several NP-hard problems become polynomial
time solvable on graphs of bounded treewidth. However, there are several other
notions similar to treewidth where several NP-hard problems become polyno-
mial time solvable; these include cliquewidth, rankwidth and linear rankwidth.
Recently, Kanté et al. [10] studied the problem of deleting k vertices to get a
graph of linear rankwidth one and in an other study Kim and Kwon [11] studied
deleting k vertices to get a block graph.

A graphG is known as a block graph if every maximal 2-connected component
in G is a clique. Equivalently, we can see a block graph as a graph obtained by
replacing each edge in a forest by a clique. A chordal graph is a graph which
has no induced cycles of length at least four. An equivalent characterisation of a
block graph is a chordal graph with no induced K4 − e [2,9]. The class of block
graphs is the intersection of the chordal and distance-hereditary graphs [9].

In this paper, we consider the problem which we call Block Graph Vertex
Deletion (BGVD). Here, as an input we are given a graph G and an integer
k, and the question is whether we can find a subset S ⊆ V (G) of size at most
k such that G \ S is a block graph. The NP-hardness of the BGVD problem
follows from [14].

Block Graph Vertex Deletion (BGVD) Parameter: k
Input: An undirected graph G = (V,E), and a positive integer k
Question: Is there a set S ⊆ V , of size at most k, such that G\S is a block
graph?

2

Kim and Kwon [11] gave an FPT algorithm with running time O⋆(10k) and
a kernel of size O(k9) for the BGVD problem. In this paper we improve both
these results via a novel connection to Feedback Vertex Set problem.

Our Results and Methods. We start by giving the results we obtain in this
article and then we explain how we obtain these results. Our two main results
are:

Theorem 1. BGVD has an FPT algorithm running in time O⋆(4k).

Theorem 2. BGVD has a kernel of size O(k4).

Our two theorems improve both the results in [11]. That is, the running time of
our FPT algorithm improves over the previous best algorithm for the problem
that ran in time 10knO(1) and the size of our kernel reduces over the previously
known kernel of size O(k9).

Our results are based on a connection between the Weighted-FVS and
BGVD problems. In particular we show that if a given input graph does not
have induced four cycles or diamonds (K4−e) then we can construct an auxiliary
bipartite graph and solve Weighted-FVS on it. This results in a faster FPT
algorithm for BGVD. In the algorithm that we give for the BGVD problem,
as a sub-routine we use the algorithm for the Weighted-FVS problem. For
obtaining a better polynomial kernel for BGVD, most of our Reduction Rules
are same as those used in [11]. On the way to our result we also design a factor
four approximation algorithm for BGVD.

Finally, we talk about Weighted-FVS. For which, we also design a faster
algorithm than known in the literature. The Feedback Vertex Set problem
is one of the most well studied problems. Given an undirected graph G = (V,E)
and a positive integer k, the problem is to decide whether there is a set S ⊆ V
such that G \ S is a forest. Thus, S is a vertex subset that intersects with every
cycle of G. In the parameterized complexity setting, Feedback Vertex Set
parameterized by k, has an FPT algorithm. The best known FPT algorithm
runs in time O⋆(3.618k) [4,13]. The problem also admits a kernel on O(k2)
vertices [17]. Another variant of Feedback Vertex Set that has been studied
in parameterized complexity isWeighted Feedback Vertex Set, where each
vertex in the graph has some rational number as its weight.

Weighted-FVS Parameter: k
Input: An undirected graph G = (V,E), a weight function w : V → Q, and
a positive integer k
Output: The minimum weighted set S ⊆ V of size at most k, such that G\S
is a forest.

Weighted-FVS is known to be in FPT with an algorithm of running time
5knO(1) [3]. We obtain a faster FPT algorithm for Weighted-FVS. This al-
gorithm uses, as a subroutine, the algorithm for solving Weighted-Matroid
Parity [18]. In fact, this algorithm is very similar to the algorithm for Feed-
back Vertex Set given in [4]. Thus, our final new result is the following
theorem.

3

Theorem 3. Weighted-FVS has an FPT algorithm running in time
O⋆(3.618k).

2 Preliminaries

We start with some basic definitions and terminology from graph theory and
algorithms. We also establish some of the notation that will be used in this
paper.

We will use the O⋆ notation to describe the running time of our algorithms.
Given f : N → N, we define O⋆(f(n)) to be O(f(n) · p(n)), where p(·) is some
polynomial function. That is, the O⋆ notation suppresses polynomial factors in
the running-time expression.

Graphs. A graph is denoted by G = (V,E), where V and E are the vertex
and edge sets, respectively. We also denote the vertex set and edge set of G by
V (G) and E(G), respectively. All the graphs that we consider are finite graphs,
possibly having loops and multi-edges. For any non-empty subset W ⊆ V (G),
the subgraph of G induced by W is denoted by G[W]; its vertex set is W and
its edge set consists of all those edges of E(G) with both endpoints in W . For
W ⊆ V (G), by G \W we denote the graph obtained by deleting the vertices in
W and all edges which are incident to at least one vertex in W .

For a graph G, we denote the degree of vertex v in G by dG(v). A vertex
v ∈ V (G) is called as a cut vertex if the number of connected components in
G \ {v} is more than the number of connected components in G. For a vertex
v ∈ V (G), the neighborhood of v in G is the set NG(v) = {u|(v, u) ∈ E(G)}. We
drop the subscript G from NG(v), whenever the context is clear. Two vertices
u, v ∈ V (G) are called true-twins in G if N(u)\{v} = N(v)\{u}. For A ⊂ V (G),
an A-path in G is a path with at least one edge, whose end vertices are in A and
all the internal vertices are from V (G) \A.

Suppose that u, v ∈ V (G), such that u 6= v and neither u nor v has a self
loop. By contracting an edge (u, v) ∈ E(G) we mean the following operation.
We create a new graph G′, where V (G′) = (V (G) \ {u, v})∪{uv∗} and E(G′) =
E(G[V (G) \ {u, v}])∪ {(uv∗, w)|w ∈ (N(u) ∪N(v)) \ {u, v}}. Note that there is
bijection f between E(G)\ {(u, v)} and E(G′). The bijection f is as follows. For
(x, y) ∈ E(G) f((x, y)) = (x, y) if both x, y are not one of {u, v}. Otherwise, one
of x, y is same as u, v. Note that the edge (x, y) is not same as the edge (u, v),
also since u 6= v implies x 6= y. The only case left is when exactly one of x or y
is same as one of u, v say, x = u then, f((x, y)) = (uv∗, y). Analogously, we can
find f((x, y)) for the remaining cases. Slightly abusing the notation, for an edge
e ∈ E(G) \ {(u, v)} we will refer to f(e) ∈ E(G′) by e.

A weighted undirected graph is a graph G = (V,E), with a weight function
w : V (G) → Q. For a subset X ⊆ V (G), w(X) =

∑

v∈X w(v).
A feedback vertex set is a subset S ⊆ V (G) such that G \ S is a forest. A

minimum weight feedback vertex set of a weighted graph G is a subset X ⊆
V (G), such that G \ X is a forest and w(X) is minimum among all possible
weighted-fvs in G. In a graph with vertex weights, an FVS is called a weighted

4

feedback vertex set (weighted-fvs). Similarly, for a given positive integer k, a
minimum weighted-fvs of size k is a subset X ⊆ V (G) such that |X | ≤ k, G \X
is a forest and w(X) is minimum among all possible weighted-fvs in G that are
of size at most k. Given a graph G and a vertex subset S ⊆ V (G), we say that
S is a block vertex deletion set if G− S is a block graph.

A family F of sets over a finite universe U is called a matroid if it satisfies
the following properties.

– ∅ ∈ F ,

– if A ∈ F and B ⊆ A then, B ∈ F ,

– if A,B ∈ F and |A| < |B| then, there exists b ∈ B \A such that A∪{b} ∈ F .

For a matroid (U,F), the elements of U are called the edges of the matroid and
the sets S ∈ F are called as the independent sets. For an undirected graph G,
a graphic matroid MG is a matroid with U = E(G) and a set S ⊆ E(G) is an
independent set in the matroid MG if the graph G′ = (V (G), S) is acyclic. Note
that MG satisfies all the properties required for it to be a matroid.

A graph G is called a block graph if every maximal 2-connected component
of G is a clique. A maximal 2-connected subgraph in G is called a block. Another
characterization of block graph is a graph which has no induced cycles of length
more than 4 and no induced K4 − e [2]. Here K4 − e is a complete graph on 4
vertices with one of the edges removed. For a graph G, let Vc denote the set of
cut vertices of G, and B the set of its blocks. We then have a natural bipartite
graph F on Vc∪B formed by the edges (v,B) if and only if v ∈ V (B). Note that
for a block graph G, F is a forest [5]. The bipartite graph F is called as block
forest of H . We will arbitrarily root F at some vertex B ∈ V (F).

A leaf block of a block graph G is a maximal 2-connected component with
at most one cut vertex. For a maximal 2-connected component C in G a vertex
v ∈ V (C) is called as an internal vertex if v is not a cut vertex in G.

We refer the reader to [5] for details on standard graph theoretic notation
and terminology we use in the paper.

Parameterized Complexity.A parameterized problemΠ is a subset of Γ ∗×N,
where Γ is a finite alphabet. An instance of a parameterized problem is a tuple
(x, k), where x is a classical problem instance, and k is called the parameter. A
central notion in parameterized complexity is fixed-parameter tractability (FPT)
which means, for a given instance (x, k), decidability in time f(k) · p(|x|), where
f is an arbitrary function of k and p is a polynomial in the input size.

Kernelization. A kernelization algorithm for a parameterized problem Π ⊆
Γ ∗ ×N is an algorithm that, given (x, k) ∈ Γ ∗ ×N, outputs, in time polynomial
in |x| + k, a pair (x′, k′) ∈ Γ ∗ × N such that (a) (x, k) ∈ Π if and only if
(x′, k′) ∈ Π and (b) |x′|, k′ ≤ g(k), where g is some computable function. The
output instance x′ is called the kernel, and the function g is referred to as the
size of the kernel. If g(k) = kO(1) (resp. g(k) = O(k)) then we say that Π admits
a polynomial (resp. linear) kernel.

5

3 Improved Algorithm for Weighted Feedback Vertex Set

In this section we give an improved algorithm for the Weighted-FVS. We
use the method of iterative compression together with branching and reduce
Weighted-FVS to the problem of Weighted-Matroid Parity, which can
be solved in polynomial time. The algorithm we give is similar to the algorithm
for Feedback Vertex Set described in [4,13]. We give an algorithm only for
the disjoint variant of the problem.

Observation 1 ([4]) The existence of an algorithm for the disjoint variant of
Weighted-FVS with running time ck · nO(1), for a constant c, implies that
Weighted-FVS can be solved in time ck+1 · nO(1).

In the Disjoint Weighted-FVS, we are given an undirected graphG = (V,E),
a weight function w : V (G) → N, an integer k and a feedback vertex set R ⊆
V (G) of size k + 1. The objective is to find a set X ⊆ V (G) \R, such that X is
a minimum weight feedback vertex set of size at most k in G.

3.1 Reduction Rules for Disjoint Weighted-FVS

Let (G = (V,E), w,R, k) be an instance of Disjoint Weighted-FVS and let
F = G \ R. We call a vertex v ∈ V (F) a nice vertex if dG(v) = 2 and both its
neighbors are in R. A vertex v ∈ V (F) is called tent if dG(v) = 3 and all its
neighbors are in R. We start with some simple reduction rules that preprocesses
the graph. The Reduction Rules are applied in the order that they are described.

Reduction Rule 1 Delete all vertices of degree at most one as they do not
participate in any cycle.

Reduction Rule 2 If there is a vertex v ∈ V (F), such that G[R ∪ {v}] has a
cycle, then include v to the solution X, delete v from G and decrease k by 1.

Reduction Rule 3 If there is an edge of multiplicity larger than 2 in E(G),
then reduce its multiplicity to 2.

The correctness of the above Reduction Rules do not depend on the weights and
thus it is similar to the one for undirected version of Weighted-FVS and can
be found in [4].

Reduction Rule 4 Let x ∈ V (F) be a leaf with the only neighbor as y in F .
Also, x has at most 2 neighbors in R. Subdivide the edge (x, y) add the newly
created vertex x∗ to R. We define the new weight function w∗ : V (G) ∪ {x∗} →
Q, as follows: w∗(x∗) = 1 and w∗(v) = w(v), for v ∈ V (G). Let G∗ be the
newly created graph after subdivision of the edge (x, y). Our reduced instance for
Disjoint Weighted-FVS is (G∗, w∗, R ∪ {x∗}, k).

Lemma 1. Reduction Rule 4 is safe.

6

Proof. Towards the proof we show that G has a weighted-fvs of size at most k
and weight at most W if and only if G∗ has a weighted-fvs of size at most k and
weight at most W .

In the forward direction, let S ⊆ V (G) \ R be a weighted-fvs of G of size at
most k such that w(S) ≤ W . We will show that indeed S is a weighted-fvs in
G∗ of size at most k and w∗(S) ≤ W . We first bound the weight of S in G∗.
Note that w∗(v) = w(v), for v ∈ V (G). Therefore w∗(S) = w(S) ≤ W . We
now show that S is a feedback vertex set in G∗. Suppose not, then there is
a cycle C in G∗ \ S. If C does not contain x∗. Then it also does not contain
the edges {(x, x∗), (x∗, y)}. By definition, C is also a cycle of G \ S, which is a
contradiction. On the other hand, let C contain the vertex x∗. By construction,
C must also contain the edges {(x, x∗), (x∗, y)}. However, this means that the
cycle C′ = (C \ {(x, x∗), (x∗, y)}) ∪ {(x, y)}) is a cycle in G \ S, which is a
contradiction. Therefore, S ⊆ V (G) \R is also a weighted-fvs in G∗.

In the reverse direction, consider a weighted-fvs S ⊆ V (G∗) \ (R ∪ {x∗}) of
size at most k and w∗(S) ≤ W . As S is a weighted-fvs disjoint from R ∪ {x∗},
x∗ /∈ S. Thus, w(S) = w∗(S), . We now show that S is a feedback vertex set in
G. Suppose not, then there is a cycle C in G \S. If C does not contain the edge
(x, y), then by construction, C is also a cycle of G∗ \S. This is a contradiction to
the fact that S was a weighted-fvs of G∗. Otherwise, C contains the edge (x, y).
But then, the cycle C′ = (C \ {(x, y)}) ∪ {(x, x∗), (x∗, y)} belongs to G∗ \ S,
which is a contradiction. Hence, S must also be a weighted-fvs for G. ⊓⊔

Now, we are ready to describe the main algorithm. To measure the running
time of our algorithm for an instance I = (G,w,R, k), we define the following
measure.

µ(I) = k + ρ(R)− (η + τ)

Here, ρ(R) is the number of connected components in G[R] and η, τ are the
number of nice vertices and tents in F , respectively.

Let I = (G,w,R, k) be an instance where none of the Reduction Rules 1, 2,
3 and 4 apply. It is clear that Reduction Rules 1, 2 and 3 do not increase the
measure. We only need to worry about Reduction Rule 4 which increases the
number of vertices in R. The number of vertices in the resulting R increases and
thus the number of connected component in G∗[R] increases by one. However,
we create either a nice vertex or a tent in G∗, therefore one of η or τ increases
by 1. Hence, µ(I∗) = k + (ρ(R) + 1) − (η + τ + 1) ≤ µ(I). Note that we do
not increase the number of vertices in F , therefore we can apply the Reduction
Rule 4 at most |V (F)| times.

In Lemma 2, we show that if µ < 0, then (G,w,R, k) is a No instance. This
will form a base case of our branching algorithm.

Lemma 2. For an instance I = (G,w,R, k) of Disjoint Weighted-FVS, if
µ < 0, then I is a No instance.

Proof. Let us assume for contradiction that I is a Yes instance and µ < 0. Let
S be a weighted-fvs in G of size at most k. Therefore, F ′ = G \S is a forest. Let

7

N ⊆ V (G) \R, T ⊆ V (G) \R be the set of nice vertices and tents in V (G) \R,
respectively. Since F ′ is a forest we have that G′ = G[(R∪N ∪T)\S] is a forest.
In G′, we contract each of the connected components in R to a single vertex to
obtain a forest F̃ . Observe that F̃ has at most |V (F̃)| ≤ ρ(R)+ |N \S|+ |T \S|
vertices and thus can have at most ρ(R)+ |N \S|+ |T \S| − 1 many edges. The
vertices in (N ∪ T) \ S ⊆ V (G) \ R forms an independent set in F̃ , since they
are nice vertices or tents. The vertices in N \ S and T \ S have degree 2 and
degree 3 in F̃ , respectively, since their degree cannot drop while contracting the
components of G[R]. This implies that,

2|N \ S|+ 3|T \ S| ≤ |E(F̃)| ≤ ρ(R) + |N \ S|+ |T \ S| − 1.

Therefore, |N \ S|+ |T \ S| < ρ(R). But N ∩ T = ∅ and thus

|N |+ |T | < ρ(R) + |S| ≤ ρ(R) + k. (1)

However, by our assumption, µ(I) = ρ(R) + k − (|N | + |T |) < 0 and thus
|N | + |T | > ρ(R) + k. This, contradicts the inequality given in Equation 1
contradicting our assumption that I is a Yes instance. This completes the proof.

⊓⊔

3.2 Algorithm for Disjoint Weighted-FVS

In this section we conjure all that we have developed and give the description of
the algorithm for Disjoint Weighted-FVS, prove its correctness and analyze
its running time assuming a polynomial time procedure that we explain in the
next subsection.

Description of the Algorithm. Let I = (G,w,R, k) be an instance of Dis-
joint Weighted-FVS. If G[R] is not a forest, then return that (G,w,R, k) is a
No instance. Hereafter, we will assume that G[R] is a forest. First, the algorithm
exhaustively applies the Reduction Rules 1 to 4. If at any point µ(I) < 0, then
we return that (G,w,R, k) is a No instance. For sake of clarity, we will denote
the reduced instance by (G,w,R, k). If all the vertices v ∈ V (G \ R) are either
nice vertices or tents then we solve the problem in polynomial time by using
Theorem 4. We defer the proof of Theorem 4 to the following subsection, where
we solve the instance using Weighted Matroid Parity. Otherwise, we apply
the following single Branching rule.

Branching Rule 1 If there is a leaf vertex v ∈ V (G) \ R, which is neither a
nice vertex nor a tent then, we branch as the following:

(i) v belongs to the solution. In this branch we delete v from G and decrease k
by 1. The resulting instance is (G\ {v}, w′, R, k− 1). Here, w′ is restriction
of w to V (G) \ {v}.
The measure µ decreases by at least 1

8

(ii) v does not belong to the solution. Note that v is neither a nice vertex nor
a tent and none of the Reduction rule applies. Therefore, v has at least
3 neighbors in R. We add the vertex v to R. As a result, the number
of components in G[R] decreases by at least 2. The resulting instance is
(G,w,R ∪ {v}, k).
The measure µ decreases by at least 2.

The worst case branching vector corresponding to the above branching rule
is (1, 2).

Lemma 3. The algorithm presented is correct.

Proof. Let I = (G,w,R, k) be an input to the Disjoint Weighted-FVS. We
prove the correctness of the algorithm by induction on the measure µ = µ(I).
By Lemma 2 when µ < 0, then we correctly conclude that I is a No instance.

For induction hypothesis, let us assume that the algorithm correctly decides
whether the input is a Yes/No instance for µ = t. We will prove it for µ = t+1.
If any of the Reduction Rules apply then we create an equivalent instance by the
safeness of the Reduction rules. We either get an instance I ′, where µ(I ′) < µ(I)
(the case when Reduction Rule 2 is applied) and then by induction hypothesis
the algorithm correctly decides for the measure µ = t. Otherwise, we have an
instance with the same measure. If none of the reduction rules are applicable,
then we have the following cases:

– Each v ∈ V (G) \R is either a nice vertex or a tent. In this case we solve the
problem in polynomial time, and the correctness follows from the correctness
of Theorem 4.

– There is a leaf v ∈ V (G)\R, such that v is neither a nice vertex nor a tent. In
this case we apply the Branching Rule 1. The Branching Rule is exhaustive.
Moreover, at each branch the measure decreases at least by one. Hence, by
induction hypothesis it follows that the algorithm correctly decides whether
I is a Yes instance or not.

This completes the proof of correctness. ⊓⊔

Thus, we have an FPT algorithm for Disjoint Weighted-FVS.

Lemma 4. Disjoint Weighted-FVS can be solved in time O⋆(2.618k).

Proof. The correctness of the algorithm follows from Lemma 3. All of the Re-
duction rules 1 to 4 can be applied in polynomial time. Also, at each branch we
spend a polynomial amount of time. For each of the recursive calls at a branch,
the measure µ decreases at least by 1. When µ < 0, then we are able to correctly
conclude that the given input is a no instance by Lemma 2. The number of leaves
and thus the size of the branching tree is upper bounded by the solution to the
following recurrence,

T (µ) ≤ T (µ− 1) + T (µ− 2).

The above recurrence solves to 1.618µ. Since at the start of the algorithm µ ≤ 2k,
we have that the number of leaves is upper bounded by O(1.6182k). Therefore,
Disjoint Weighted-FVS can be solved in time O⋆(2.618k). ⊓⊔

9

Using Lemma 4 and Observation 1, we prove Theorem 3.

3.3 Algorithm for sub-cubic Disjoint Weighted-FVS

Let (G,w,R, k) be an instance of Disjoint Weighted-FVS where each vertex
in V (G) \ R is either a nice vertex or a tent. An instance of the Matroid
Parity problem we create is same as that in [13]. In fact, what we will use is
the Weighted Matroid Parity problem.

The Weighted Matroid Parity problem for the graphic matroid MH of
a graph H is defined as follows. Let H be a graph with even number of edges,
i.e. |E(H)| = 2m and we have a partition of E(H) into pairs, say E(H) =
{e11, e

1
2} ∪ {e21, e

2
2} ∪ · · · ∪ {em1 , em2 }. Furthermore, for each pair {ei1, e

i
2}, for i ∈

{1, 2, . . . ,m} there is a positive weight wM({ei1, e
i
2}). That is, wM is a weight

function on pairs. We want to find a set I ⊆ {1, 2, . . . ,m} of maximum weight
such that ∪i∈I{ei1, e

i
2} is an independent set of MH . Equivalently, ∪i∈I{ei1, e

i
2}

is acyclic in H . The Weighted Matroid Parity problem is polynomial time
solvable on graphical matroids (gammoids) [18].

For each vertex v ∈ V (G) \ R, we arbitrarily label the edges incident to
v. If v is a nice vertex then we label it as {ev1, e

v
2}; otherwise if v is a tent

vertex then we label it as {ev0, e
v
1, e

v
2}. We let wM({ev1, e

v
2}) = w(v). Note that,

F = E(G[R]) ∪ {ev0 : v ∈ V (G) \ R} is a forest. We contract all the edges in G
which are in F to get a new graph H . In the process of contraction, we have not
contracted any multiple edge or self loops. Also,

E(H) =
⋃

v∈V (G)\R

{ev1, e
v
2}.

The input to the Weighted Matroid Parity algorithm for graphical matroid
is the graph H , the set of pairs {ev1, e

v
2} with weight wM({ev1, e

v
2}), for v ∈

V (G) \R. In Lemma 5 we prove that finding a minimum weight feedback vertex
set X ⊆ V (G) \R in (G,w,R, k) is equivalent to computing a maximum weight
subset I ⊆ {{ev1, e

v
2}|v ∈ V (G) \ R}, such that ∪v∈I{ev1, e

v
2} is an independent

set in MH .

Lemma 5. For a subset I ⊆ V (G) \ R, ∪i∈I{ei1, e
i
2} is an independent set in

MH of maximum weight if and only if (V (G) \R) \ I is a feedback vertex set in
G of minimum weight.

Proof. Note that by the definition of H , ∪i∈I{ei1, e
i
2} is an independent set in

MH if and only if F ∪ (∪i∈I{ei1, e
i
2}) is acyclic in G. As mentioned earlier,

F = E(G[R]) ∪ {ev0 : v ∈ V (G) \ R} is a forest. Therefore, if ∪i∈I{ei1, e
i
2} is an

independent set in MH , then G′ = G \ ((V (G) \ R) \ I) is a forest. In other
words, (V (G) \R) \ I is a feedback vertex set in G.

In the reverse direction, consider I ⊆ V (G) \ R such that (V (G) \ R) \ I
is a feedback vertex set in G. This implies that G[I ∪ R] is a forest. Define
F ′ =

⋃

i∈I{e
i
1, e

i
2}. Clearly, F

′ ⊆ E(G[I ∪ R]). Suppose, F ′ contains a cycle
in H . This means that, upon uncontracting the edges of F , there is a cycle

10

contained in G[I ∪ R], which is a contradiction. Therefore, ∪i∈I{e
i
1, e

i
2} is an

independent set in MH .
Note that by definition of wM, wM(I) = w(I). Therefore, w((V (G)\R)\I) =

w(V (G))−w(R)−w(I) = w(V (G))−w(R)−wM(I). This implies that whenever
wM(I) is maximized then w((V (G) \ R) \ I) is minimized and vice-versa. This
completes the proof. ⊓⊔

Lemma 5 immediately implies the following theorem.

Theorem 4. Let (G,w,R, k) be an instance of Disjoint Weighted-FVS. If
every vertex v ∈ V (G) \ R is either a nice vertex or a tent then, Disjoint
Weighted-FVS in (G,w,R, k) can be solved in polynomial time.

4 FPT algorithm for Block Graph Vertex Deletion

In this section, we present an FPT algorithm for the BGVD problem. First,
we look at the special case, when the input graph does not have any small
obstructions in the form of D4’s and C4’s. Here, D4 = K4 − e. We show that,
in this case, BGVD reduces to Weighted-FVS. Later, we solve the general
problem, using the algorithm of the special case.

4.1 Restricted BGVD

In this part, we solve the following special case of BGVD in FPT time.

Restricted BGVD Parameter: k
Input: A connected undirected graph G, which is {D4, C4}-free, and a pos-
itive integer k.
Question: Does there exist a set S such that G \ S is a block graph?

Let G be the input graph. Let C be the set of maximal cliques in G. We start
with the following simple observation about graphs without C4 and D4.

Lemma 6. Let G be a graph that does not contain C4 and D4 as an induced
subgraph then (a) any two maximal cliques intersect on at most one vertex and
(b) the number of maximal cliques in G is at most n2.

Proof. Let C1 and C2 be two distinct maximal cliques in C. Since G is D4-free,
V (C1) ∩ V (C2) can have at most one vertex. Thus, each edge of G belongs to
exactly one maximal clique. This gives a bound of n2 on the number of maximal
cliques. ⊓⊔

We construct an auxiliary weighted bipartite graph Ĝ in the following way:
Ĝ is a bipartite graph with vertex set bipartition V (G) ∪ VC , where VC is the
set where we add a vertex vC corresponding to each maximal clique C ∈ C.
Note that there is a bijective correspondence between the vertices of VC and the
maximal cliques in C. A vertex v of a clique C is called external if it is part of

11

at least two maximal cliques in C. We add an edge between a vertex v ∈ V (G)
and a vertex vC ∈ VC in E(Ĝ) if and only if v is an external vertex of the clique
C ∈ C.

Lemma 7. Let G be a graph without induced C4 and D4 and S ⊆ V (G). Then
S is block vertex deletion set of G if and only if Ĝ \ S is acyclic.

Proof. First, let S be a block vertex deletion set solution for G. Suppose that
Ĝ \ S has a cycle C. Notice that C cannot be a C4, as this corresponds to two
maximal cliques that share 2 vertices. Thus, C is an even cycle of length at least
6. Suppose C has length 6. This corresponds to maximal cliques C1, C2, C3 such
that u = C1 ∩ C2, v = C2 ∩ C3 and w = C1 ∩ C3. Since C1, C2, C3 are distinct
maximal cliques, at least one of them must have a vertex other than u, v or w.
Without loss of generality, let C1 have a vertex x /∈ {u, v, w}. Then, the set
{x, u, v, w} forms a D4 in G. However, this is not possible, as G did not have a
D4 to start with. Hence, C must be an even cycle of length at least 8. However,
this corresponds to a set of maximal cliques and external vertices, such that the
external vertices form an induced cycle of length at least four. This contradicts
that S was a block vertex deletion set for G. Thus, Ĝ \ S must be acyclic.

On the other hand, let Ĝ \ S be acyclic. Suppose G \ S has an induced cycle
C, of length at least four. As C is an induced cycle of length at least four, no two
edges of C can belong to the same maximal clique. For an edge (u, v) of C, let
C(u,v) be the maximal clique containing it. Also, let c(u,v) be the corresponding

vertex in Ĝ. We replace the edge (u, v) in C by two edges (u, c(u,v)) and (v, c(u,v)).

In this way, We obtain a cycle C′ of Ĝ \ S, which is a contradiction. Thus, S
must be a block vertex deletion set for G. ⊓⊔

If the input graph G is without induced C4 and D4 then Lemma 7 tells
us that to find block vertex deletion set of G of size at most k one can check
whether there is a feedback vertex set of size at most k for Ĝ contained in V (G).
To enforce that we find feedback vertex set for Ĝ completely contained in V (G)
we solve an appropriate instance of Weighted-FVS. In particular we give the
weight function w : V (Ĝ) → Q as follows. For v ∈ V (G), w(v) = 1 and for
vC ∈ VC , w(vC) = n4. Clearly, V (G) is a feedback vertex set of Ĝ and thus the
weight of a minimum sized feedback vertex set of Ĝ is at most n. This implies
that running an algorithm for Weighted-FVS on an instance (Ĝ, w, k) either
returns a feedback vertex set contained inside V (G) or returns that the given
instance is a No instance.

Theorem 5. Restricted BGVD can be solved in O⋆(3.618k).

Proof. We applyWeighted-FVS on an instance (Ĝ, w, k). Let S be the weighted-
fvs of size at most k in Ĝ returned by Weighted-FVS (of course if there exists
one). By the discussion above we know that if Weighted-FVS does not return
that the given instance is a No instance then S ⊆ V (G). If it returns that the
given instance is a No instance then we return the same. Else, assume that S is
non-empty. Now we check whether w(S) is at most k or not. Since every vertex

12

in V (G) has been assigned weight one we have that w(S) = |S| and thus if
w(S) ≤ k then we return S as block vertex deletion set of G. In the case when
w(S) > k we return that the given instance is a No instance for Restricted
BGVD. Correctness of these steps are guaranteed by Lemma 7. The running
time of the algorithm is dominated by the running time of Weighted-FVS and
thus it is O⋆(3.618k). This completes the proof. ⊓⊔

4.2 Block Graph Vertex Deletion

We are now ready to describe an FPT algorithm for BGVD, and hence prove
Theorem 1. We design the algorithm for the general case with the help of the
algorithm for Restricted BGVD.

Proof (of Theorem 1). Let O be a D4 or C4 present in the input graph G. For
any potential solution S, at least one of the vertices of O must belong to S.
Therefore, we branch on the choice of these vertices, and for every vertex v ∈ O,
we recursively apply the algorithm to solve BGVD instance (G−\{v}, k− 1). If
one of these branches returns a solution X , then clearly X∪{v} is a block vertex
deletion set of size at most k for G. Else, we return that the given instance is a
No instance. On the other hand, if G is {D4, C4}-free, then we do not make any
further recursive calls. Instead, we run the algorithm for Restricted BGVD
on G and return the output of the algorithm. Thus, the running time of the
algorithm is upper bounded by the following recurrence.

T (n, k) =

1 if k = 0 or n = 0
3.168k if there is no D4, C4

4T (n− 1, k − 1) + nO(1) otherwise

Thus, the running time of this algorithm is upper bounded by O∗(4k). ⊓⊔

5 An Approximation Algorithm for BGVD

In this section, we present a simple approximation algorithm A1 for BGVD.
Given a graph G, we give a block vertex deletion set S of size at most 4 · OPT,
where OPT is the size of a minimum sized block vertex deletion set for G.

Theorem 6. BGVD admits a factor four approximation algorithm.

Proof. Let G be the given instance of BGVD and OPT be the size of a minimum
sized block vertex deletion set for G and SOPT be a minimum sized block vertex
deletion set for G.

Let S be a maximal family of D4 and C4 such that any two members of
S are pairwise disjoint. One can easily construct such a family S greedily in
polynomial time. Let S1 be the set of vertices contained in any obstruction in S.
That is, S1 =

⋃

O∈S O. Since any block vertex deletion set must contain a vertex
from each obstruction in S and any two members of S are pairwise disjoint, we
have that |SOPT ∩ S1| ≥ |S|.

13

Let G′ = G − S1. Observe that G′ does not contain either D4 or C4 as an
induced subgraph. Now we construct Ĝ′, as described in Section 4.1. We apply
the factor two approximation algorithm A given in [1] on the instance (Ĝ′, w).
This returns an fvs S2 of Ĝ′ such that w(S2) is at most twice the weight of a
minimum weight feedback vertex set. By our construction S2 ⊆ V (G′). Lemma 7
implies that S2 is a factor two approximation for BGVD on G′. We return the
set S = S1 ∪S2 as our solution. Since SOPT −S1 is also an optimum solution for
G′ we have that |S2| ≤ 2|SOPT − S1|.

It is evident that S is block vertex deletion set of G. To conclude the proof
of the theorem we will show that |S| ≤ 4OPT. Towards this observe that

|S| = |S1|+ |S2| ≤ 4|S|+ 2|SOPT − S1|

≤ 4|SOPT ∩ S1|+ 2|SOPT − S1|

≤ 4|SOPT| = 4OPT.

This completes the proof. ⊓⊔

6 Improved Kernel for Block Graph Vertex Deletion

In this section, we give a kernel of O(k4) vertices for BGVD. Let (G, k) be an
instance of the BGVD problem. We start with some of the known reduction
rules from [11].

Reduction Rule BGVD. 1 If G has a component H, where H is a block
graph, then remove H from G.

Reduction Rule BGVD. 2 If there is a vertex v ∈ V (G), such that G \ {v}
has a component H, where G[{v}∪V (H)] is a connected block graph then, remove
H from G.

Reduction Rule BGVD. 3 Let S ⊆ V (G), where each u, v ∈ S are true-twins
in G. If |S| > k + 1, then remove all the vertices from S except k + 1 vertices.

Reduction Rule BGVD. 4 Let t1, t2, t3, t4 be an induced path in G. For i ∈
{1, 2, 3}, let Si ⊆ V (G) \ {t1, t2, t3, t4} be a clique in G such that the following
holds.

– For i ∈ {1, 2, 3}, v ∈ Si, NG(v) \ Si = {ti, ti+1}, and
– For i ∈ {2, 3}, NG(ti) = {ti−1, ti+1} ∪ Si−1 ∪ Si.

Remove S2 from G and contract the edge (t2, t3).

Proposition 1 (Proposition 3.1 [11]). Let G be a graph and k be a positive
integer. For a vertex v ∈ V (G), in O(kn3) time, we can find one of the following.

i. k + 1 pairwise vertex disjoint obstructions,

14

ii. k + 1 obstructions whose pairwise intersection is exactly v,
iii. S′

v ⊆ V (G), such that |S′
v| ≤ 7k and G \ S′

v has no block graph obstruction
containing v.

Reduction Rule BGVD. 5 Let v ∈ V (G) and G′ = G \ {v}. We remove the
edges between NG(v) from G′, i.e. E(G′) = E(G′) \ {(u,w)|u,w ∈ NG(v)}. In
G′ if there are at least 2k + 1 vertex-disjoint NG(v)-paths in G′ then we do one
of the following.

– If G contains k + 1 vertex disjoint obstructions, then return that the graph
is a no-instance.

– Otherwise, delete v from G and decrease k by 1.

The Reduction rules BGVD.1 to BGVD.5 are safe and can be applied in
polynomial time [11]. For sake of clarity we denote the reduced instance at each
step by (G, k). We always apply the lowest numbered Reduction Rule, in the
order that they have been stated, that is applicable at any point of time. For the
rest of the discussion, we assume that Reduction rules BGVD.1 to BGVD.5 are
not applicable.

For a vertex v ∈ V (G), by Proposition 1, we may find k+ 1 pairwise vertex-
disjoint obstructions, and we can safely conclude that the graph is aNo instance.
Secondly, if we find k + 1 obstructions whose pairwise intersection is exactly v
then the Reduction rule BGVD.5 will be applicable. Thus, we assume that
for each vertex v ∈ V (G), the third condition of Proposition 1 holds. In other
words, we have a set S′

v of size at most 7k, such that G\S′
v does not contain any

obstruction passing through v. In fact, for each v ∈ V (G), we can find a block
vertex deletion set Sv ⊆ V (G) \ {v} of bounded size.

Observation 2 For every vertex v ∈ V (G), we can find in nO(1) time, a set
Sv ⊆ V (G) \ {v} such that |Sv| ≤ 11k and G \ Sv is a block graph.

Proof. Using the approximation algorithm for BGVD we compute an approx-
imate solution A of size at most 4k. If v /∈ A, then Sv = A. Otherwise,
Sv = (A \ {v}) ∪ S′

v. Note that for each v ∈ V (G), |Sv| ≤ 11k and G \ Sv

is a block graph. ⊓⊔

For a vertex v ∈ V (G), component degree of v is the number of connected
components in C, where C is the set of connected components in G \ (Sv ∪ {v})
that have a vertex adjacent to v. We give a reduction rule that bounds the
component degree of a vertex v ∈ V (G), using Expansion Lemma [4].

A q-star, q ≥ 1, is a graph with q+ 1 vertices, one vertex of degree q and all
other vertices of degree 1. Let B be a bipartite graph with the vertex bipartition
as (X,Y). A set of edges M ⊆ E(B) is called a q-expansion of X into Y if (i)
every vertex of X is incident with exactly q edges of M and (ii) M saturates
exactly q|X | vertices in Y , i.e. edges in M are adjacent to exactly q|X | vertices
in Y .

15

Lemma 8 (Expansion Lemma [4]). Let q be a positive integer and B be a
bipartite graph with vertex bipartition (X,Y) such that |Y | ≥ q|X | and there are
no isolated vertices in Y . Then, there exist nonempty vertex sets X ′ ⊆ X and
Y ′ ⊆ Y such that:

1. X ′ has a q-expansion into Y ′ and
2. no vertex in Y ′ has a neighbour outside X ′, i.e. N(Y ′) ⊆ X ′.

Furthermore, the sets X ′ and Y ′ can be found in polynomial time.

For a vertex v ∈ V (G), let Cv be the set of connected components in G\(Sv∪
{v}) that have a vertex adjacent to v. Consider a connected component C ∈ Cv,
such that no vertex u ∈ V (C) is adjacent to any vertex in Sv. But then, G \ {v}
has a component which is a block graph (namely, the connected component C)
therefore, Reduction rule BGVD.2 is applicable, a contradiction to the assump-
tion that none of the previous Reduction rules are applicable. Therefore, for each
C ∈ C there is a vertex u ∈ V (C) and s ∈ Sv, such that (u, s) ∈ E(G). Let D be
a vertex set, with a vertex d corresponding to each component D ∈ C. Consider
the bipartite graph Bv with the vertex set bipartitioned as (D, Sv). There is an
edge between d ∈ D and s ∈ Sv if and only if the component D corresponding
to which the vertex d was added to D has a vertex ud such that (ud, s) ∈ E(G).

Reduction Rule BGVD. 6 For a vertex v ∈ V (G) if |Cv| > 33k, then we do
the following.

– Let D′ ⊆ D and S ⊆ Sv be the sets obtained after applying Lemma 8 with
q = 3, X = Sv and Y = D;

– For each d ∈ D′, let the component corresponding to d be D ∈ Cv. Delete all
the edges between (u, v), where u ∈ V (D);

– For each s ∈ S, add two vertex disjoint paths between v and s.

Safeness of the Reduction rule BGVD.6 follows from the safeness of Reduc-
tion rule 6 in [11].

6.1 Bounding the number of blocks in G \ A

Using the approximation algorithm for BGVD we compute an approximate
solution A of size at most 4k. Of course if |A| > 4k then we can immediately
return that G is a No instance. First, we bound the number of leaf blocks in
G\A, when none of the Reduction rules apply. Note that G\A is a block graph,
since A is an approximate solution to BGVD. For v ∈ A, let S′

v be the set
obtained from Proposition 1 and Sv be the set obtained from Observation 2. Let
Cv be the set of connected components in G \ (Sv ∪ {v}) which have a vertex
adjacent to v. All the connected components in G\A, which do not have a vertex
that is adjacent to v, must be adjacent to some v′ ∈ A. Otherwise, Reduction
rule BGVD.1 will be applicable. Also, all the leaf blocks in G \A must have an
internal vertex that is adjacent to some vertex in A, since the Reduction rules

16

BGVD.1 and BGVD.2 are not applicable. The number of leaf blocks, in G \A,
whose set of internal vertices have a non-empty intersection with S′

v, is at most
7k. Therefore, it is enough to count, for each v ∈ A, the number of leaf blocks in
Cv. In the Observation 3, we give a bound on the number of leaf blocks in G\A,
not containing any vertex from S′

v.

Observation 3 For v ∈ A, the number of leaf blocks in G \ A not containing
any vertex from S′

v is at most the number of leaf blocks in G \ (Sv ∪ {v}).

Proof. Note that for v ∈ A, Sv = (A \ {v}) ∪ S′
v. By deleting a vertex u ∈ S′

v

from G \A one of the following can happen. If u was a cut vertex in G \A, then
we increase the number of components after deleting u from G\A. By increasing
the number of components, the number of leaves cannot decrease. If u was not
a cut vertex in G \ A then by deleting u the number of cut vertices can only
increase. Therefore, the number of leaf blocks after deletion of u from G \A can
only increase. Hence, the claim follows. ⊓⊔

Therefore, for each v ∈ A we count those leaf blocks in Cv which do not
contain any vertex from S′

v.

Lemma 9. Consider a vertex v ∈ V (G) and its corresponding set Sv. Let C be
the set of connected components in G \ (Sv ∪ {v}). For each C ∈ C, there is a
block B̃ in C, such that NC(v) ⊆ V (B̃).

Proof. Let C be the set of connected components of G \ (Sv ∪ {v}), v ∈ V (G).
By definition of Sv, for each C ∈ C, C ∪ {v} is a block graph.

If for some C ∈ C, NC(v) = ∅, then the condition is trivially satisfied for
that connected component C. Let C ∈ C be a connected component such that
NC(v) 6= ∅. Let t be a vertex in NB(v), where B is a block in C. Let B′ be a
block in C, where B′ 6= B and B′ has a vertex t′ ∈ V (B′)\V (B) that is adjacent
to v. Note that B,B′ are in the same connected component C. Let P be the
shortest path from t to t′.

We first argue for the case when (t, t′) /∈ E(G). Therefore, the path P has
at least 2 edges. We prove that we can find an obstruction, by induction on the
length of the path (number of edges). If length of path P is 2, say P = t, u, t′.
If (u, v) ∈ E(G), then {t, t′, u, v} forms an induced D4, otherwise they form an
induced C4, contradicting that C ∪ {v} is a block graph.

Let us assume that we can find an obstruction if the path length is l. We
now prove it for paths of length l+1. Let P = t, x1, x2, . . . , xl−1, t

′ and y be the
first vertex other than t in P such that (y, v) ∈ E(G). If y = t′, then P along
with v forms an induced cycle of length at least 5, contradicting that C ∪ {v}
is a block graph. If y = x1, then {t, x1, x2, v} either forms a D4, the case when
(x2, v) ∈ E(G), or P̂ = x1, x2, . . . , t

′ is a path of shorter length with at least 2
edges and by induction hypothesis has an obstruction along with v. Otherwise,
P ′ = t, x1, . . . , y is a path of length less than l, with at least 2 edges, such that
(y, t) ∈ E(G). Therefore, by induction hypothesis there is an obstruction along
with the vertex v, contradicting that C ∪ {v} is a block graph.

17

From the above arguments it follows that if v has a neighbour t in block B in
C, then v cannot have a neighbour t′ in block B′, if the shortest path between
t, t′ has at least 2 edges.

If (t, t′) ∈ E(G), then t, t′ are contained in some block B̂. If v is adjacent to
any other vertex u not in V (B̂) then at most one of (t, u) or (t′, u) can be an
edge in G, since t, t′ and u are in different blocks. If there is an edge, say (t, u),
then t, t′, u, v forms an induced D4, contradicting that C ∪ {v} is a block graph.
Otherwise, there is a path with at least two edges between u and t. Therefore,
by the previous arguments we can find an obstruction along with the vertex v.
Therefore, NC(v) ⊆ V (B̂) when (t, t′) ∈ E(G).

Hence, it follows that there is a block B̃ in C such that NC(v) ⊆ V (B̃). ⊓⊔

Lemma 10. For every v ∈ A , the number of leaf blocks in Cv is O(k).

Proof. Note that every leaf block must have at least one internal vertex. By
Lemma 9 we know that neighbours of v are contained in a block of C, where
C ∈ Cv. Therefore, v cannot be adjacent to internal vertices of two leaf blocks
in C ∈ Cv. In other words, v can be adjacent to vertices in at most one leaf
block from C ∈ Cv. But |Cv| ≤ 33k, since the Reduction rule BGVD.6 is not
applicable. Therefore, the number of leaf blocks in G \ (Sv ∪{v}) in which v can
have a neighbour is at most O(k). ⊓⊔

Observe that in G \ A, a vertex v ∈ A can be adjacent to at most O(k) leaf
blocks by Observation 3 and Lemma 10. Also, for a leaf block B in G \A, there
must be an internal vertex b ∈ V (B), such that b is adjacent to some vertex in
Sv, since the Reduction rule BGVD.2 is not applicable. Therefore, the number
of leaf blocks in G \A is O(k2).

Lemma 11. The number of blocks B in G \ A such that the vertex set of B
intersects with the vertex set of at least three other block in G \A is O(k2).

Proof. Consider the block forest FA for the block graph G \ A. The number of
blocks in G \A is at most the number of vertices in FA. Note that the leaves in
FA correspond to the blocks in G \A with at most one cut vertex. The number
of leaf blocks is G′ is bounded by O(k2) and therefore the number of leaves in
FA is O(k2). For a forest the number of vertices of degree at least 3 is bounded
by the number of leaves. Therefore, the number of degree three vertices in FA is
bounded by O(k2). For a block B in G \A which has at least 3 cut vertices, the
vertex b corresponding to block B in FA will be of degree at least 3. Therefore,
the number of blocks in G \ A with at least three cut vertices is bounded by
O(k2).

Consider a block B in G\A, such that B has exactly 2 cut vertex, but V (B)
intersects with at least three blocks in G \A. Let b be the vertex corresponding
to B in FA and vB, uB the cut-vertices in B. At least one of vB, uB is a cut-
vertex in at least two blocks other than B, say vB is such a cut vertex. If we
contract the edge (b, vB) in FA to obtain F ′

A, then number of leaves and degree
3 vertices in F ′

A remains the same which is bounded by O(k2). Furthermore, the

18

contracted vertex b∗ is of degree at least 3. There is a bijection f between the
vertices corresponding to blocks in FA and F ′

A, where f(b) = b∗ and f(b′) = b′,
for all b′ ∈ VB(FA) \ {b}, where VB(FA) is the set of vertices corresponding to
blocks in G \ A. Hence follow that the number of blocks B with exactly 2 cut
vertices, but V (B) intersects with at least three blocks in G \ A is bounded by
O(k2). ⊓⊔

Let L be the set of leaf blocks in G \ A and T be the set of blocks in G \ A
such that each block in T intersects with at least three other blocks in G \ A.
By Lemmas 10 and 11, we have that |L| = O(k2) and |T | = O(k2).

Let B be a block in G∗ = G \ (Sv ∪ {v}) such that the vertex set of B has
exactly two cut vertices, and intersects with exactly two blocks of G∗. Further-
more, the vertex set of B has an empty intersection with leaf blocks of G∗ and
those blocks in G∗ which vertex set intersects with at least three other blocks
of G∗. Also, B has a vertex that is a neighbor of v. Such blocks are called nice
degree two blocks of v. If a block satisfies the above conditions for some vertex
w ∈ A, the block is called a nice degree two block. We denote the set of nice
degree two blocks by T1.

Lemma 12. Let G∗ = G \ (Sv ∪ {v}). Then G∗ has at most O(k) nice degree
two blocks of v.

Proof. Recall that Cv is the set of connected components in G \ (Sv ∪ {v})
which have a vertex adjacent to v. From Lemma 9, for each of the connected
component C ∈ Cv, there is a block B̃ in C such that, NC(v) ⊆ V (B̃). Consider
two nice degree two blocks B and B′ in C such that both of them have at
least one neighbor of v. Let b ∈ V (B) and b′ ∈ V (B′) be the vertices such that
(v, b), (v, b′) ∈ E(G). Consider the following cases.

– b 6= b′. In this case, b, b′ ∈ V (B̃), where NC(v) ⊆ V (B̃) and B̃ is a block with
exactly 2 cut vertices. But then, for all blocks B̂ in C, V (B̂) ∩ V (B̃) = ∅.
Therefore, v cannot be adjacent to any vertex in B̂. Hence it follows that
the number of blocks with a vertex having neighbour in v is O(1).

– If b = b′, then b is a cut vertex in B,B′. Therefore, one of B,B′ is same as
B̃, say B = B̃. But B shares cut vertices with exactly two blocks. Therefore,
v can have neighbous in at most O(1) blocks in C.

But note that |Cv| = O(k). Hence, the claim follows. ⊓⊔

What remains is to bound the number of blocks which have exactly two cut
vertices and are not nice degree two blocks.

Lemma 13. The number of blocks in G \ A with exactly two cut vertices is
O(k2).

Proof. From Lemma 10 the number of leaf blocks in G \A is O(k2). Let FA be
the block forest for the block graph G \ A. From Lemmas 10 and 11, we know
that |L ∪ T | = O(k2). Also, the number of blocks in T1 is bounded by O(k2) by
Lemma 12.

19

Let P be the set of paths in FA such that the endpoints are vertices corre-
sponding to blocks in L∪T ∪T1 and all internal block vertices do not correspond
to blocks in L∪T ∪T1. Note that, all internal vertices of such paths have degree
exactly two in FA. Since FA is a tree, the number of paths in P is at most O(k2).

Denote the remaining blocks with exactly two cut vertices by T2. By definition
of FA and P , the vertex corresponding to a block B ∈ T2 must be an internal
vertex in some path of P . Let PA be a path in P , Note that FA is a bipartite graph
with the vertex bipartitions as (B, VC), where B is the set of blocks in G′ and
VC is the set of cut vertices in G′. Therefore, in P no two cut vertices in V (G′)
can be adjacent to each other. Similarly for b, b′ ∈ B, (b, b′) /∈ E(P). Therefore,
the b ∈ V (P) such that b ∈ B corresponds to block B in G′ with exactly two cut
vertices. Let S be the sequence of blocks in the order they appear in path PA. In
S each two adjacent blocks in the sequence share a cut vertex. We remove the
starting block and the end block from S. We do this because these blocks in the
subsequence either belong to L ∪ T ∪ T1. If S has more than two blocks then,
Reduction rule BGVD.4 would be applicable. Therefore, the number of blocks
in P can be at most O(1).

The set of blocks in G \ A with exactly two cut vertices is contained in
T ∪ T1 ∪ T2. Hence, it follows that the number of blocks with exactly 2 cut
vertices in G \A is bounded by O(k2). ⊓⊔

Now, we have a bound on the total number of blocks in G \A.

Lemma 14. Consider a graph G, a positive integer k and an approximate block
vertex deletion set set A of size O(k). If none of the Reduction rules BGVD.1 to
BGVD.6 is applicable then the number of blocks in G \A is bounded by O(k2).

Proof. Follows from Lemmas 10, 11 and 13. ⊓⊔

6.2 Bounding the number of internal vertices in a maximal clique
of the block graph

We start by bounding the number of internal vertices in a maximal 2-connected
component ofG\A. Consider a block B inG\A. We partition the internal vertices
VI(B) of block B into three sets B,R and I depending on the neighborhood of
A in block B. We also partition the vertices in A depending on the number of
vertices they are adjacent to in B. In Lemma 15 we show that the number of
internal vertices in a block B of G \ A is upper bounded by O(k2). We do so
by partitioning the vertices into different sets and bounding each of these sets
separately.

Lemma 15. Let (G, k) be an instance to BGVD and let A be an approxi-
mate block vertex deletion set of G of size O(k). If none of the Reduction rules
BGVD.1 to BGVD.6 is applicable then the number of internal vertices in a
block B of G \A is bounded by O(k2).

20

Proof. Let A≤2k = {v ∈ A||NB(v)| ≤ 2k + 1} and A>2k+1 = A \ A≤2k+1. For
a vertex u ∈ VI(B), if u is adjacent to at least one of the vertices in A≤2k+1

then, we add u to the set B. Note that the number of vertices in B is bounded
by O(k2), since each v ∈ A≤2k+1 is adjacent to at most 2k+1 vertices in VI(B).
Also, for a vertex u ∈ VI(B) \ B, N(u) ∩ A≤2k = ∅.

For each vertex u ∈ VI(B) \ B, if u is not adjacent to at least one vertex in
A>2k+1 then, we add u to the set R. Let Qv be those vertices in VI(B)\B which
are not adjacent to a vertex v ∈ A>2k+1. Note that |Qv| ≤ k otherwise, for each
pair of vertices t1, t2 ∈ NB(v) along with one vertex in Qv we get k + 1 vertex
disjoint obstruction, namely D4, intersecting only at v. Therefore, the number
of vertices in R is bounded by O(k2).

Let I = VI(B) \ (B ∪ R). Note that the vertices in I induce a clique. Fur-
thermore, for each w ∈ I, N(w) ∩ A≤2k+1 = ∅ and N(w) ∩ A>2k+1 = A>2k+1.
Therefore, each w,w′ ∈ I are twins. In fact, I is a set of twins. If |I| > k + 1
then Reduction rule BGVD.3 would be applicable. Therefore, |I| ≤ k+ 1. But,
|VI(B)| = |B|+|R|+|I| = O(k2)+O(k2)+O(k), which is bounded by O(k2). ⊓⊔

We wrap up our arguments to show a O(k4) sized vertex kernel for BGVD,
and hence prove Theorem 2.

Proof (of Theorem 2). Let (G, k) be an instance to BGVD and let A be an
approximate block vertex deletion set of G of size O(k). Also, assume that none
of the Reduction rules BGVD.1 to BGVD.6 are applicable. By Theorem 14,
the number of blocks in G \A is bounded by O(k2). By Lemma 15 the number
of internal vertices in a block of G \A is bounded by O(k2). Also note that the
number of cut-vertices in G\A is bounded by the number of blocks in G\A, i.e.
O(k2). The number of vertices in G \ A is sum of the internal vertices in G \ A
and the number of cut vertices in G \A. Therefore, |V (G)| = |V (G \A)|+ |A| =
(O(k2) · O(k2) +O(k2)) +O(k) = O(k4). ⊓⊔

References

1. V. Bafna, P. Berman, and T. Fujito. A 2-approximation algorithm for the undi-
rected feedback vertex set problem. SIAM J. Discret. Math., 12(3):289–297, Sept.
1999.

2. A. Brandstädt, V. B. Le, and J. P. Spinrad. Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

3. J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved algorithms for feed-
back vertex set problems. Journal of Computer and System Sciences, 74(7):1188
– 1198, 2008.

4. M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, 2015.

5. R. Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathemat-
ics. Springer, 2012.

6. J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical
Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

21

7. F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F-deletion: Ap-
proximation, kernelization and optimal FPT algorithms. In FOCS, 2012.

8. T. Fujito. A unified approximation algorithm for node-deletion problems. Discrete
Appl. Math., 86:213–231, September 1998.

9. E. Howorka. A characterization of ptolemaic graphs. Journal of Graph Theory,
5(3):323–331, 1981.

10. M. M. Kanté, E. J. Kim, O. Kwon, and C. Paul. FPT algorithm and polynomial
kernel for linear rank-width one vertex deletion. CoRR, abs/1504.05905, 2015.

11. E. J. Kim and O. Kwon. A polynomial kernel for block graph vertex deletion.
CoRR, abs/1506.08477, 2015.

12. E. J. Kim, A. Langer, C. Paul, F. Reidl, P. Rossmanith, I. Sau, and S. Sikdar.
Linear kernels and single-exponential algorithms via protrusion decompositions. In
Automata, Languages, and Programming - 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 613–624, 2013.

13. T. Kociumaka and M. Pilipczuk. Faster deterministic feedback vertex set. Inf.
Process. Lett., 114(10):556–560, 2014.

14. J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary prop-
erties is np-complete. Journal of Computer and System Sciences, 20(2):219 – 230,
1980.

15. C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41:960–981, September 1994.

16. D. Marx, B. O’Sullivan, and I. Razgon. Finding small separators in linear time via
treewidth reduction. ACM Transactions on Algorithms, 9(4):30, 2013.

17. S. Thomassé. A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms,
6(2):32:1–32:8, Apr. 2010.

18. P. Tong, E. L. Lawler, and V. V. Vazirani. Solving the weighted parity problem for
gammoids by reduction to graphic matching. Technical Report UCB/CSD-82-103,
EECS Department, University of California, Berkeley, Apr 1982.

22

	A faster FPT Algorithm and a smaller Kernel for Block Graph Vertex Deletion
	1 Introduction
	2 Preliminaries
	3 Improved Algorithm for Weighted Feedback Vertex Set
	3.1 Reduction Rules for Disjoint Weighted-FVS
	3.2 Algorithm for Disjoint Weighted-FVS
	3.3 Algorithm for sub-cubic Disjoint Weighted-FVS

	4 FPT algorithm for Block Graph Vertex Deletion
	4.1 Restricted BGVD
	4.2 Block Graph Vertex Deletion

	5 An Approximation Algorithm for BGVD
	6 Improved Kernel for Block Graph Vertex Deletion
	6.1 Bounding the number of blocks in GA
	6.2 Bounding the number of internal vertices in a maximal clique of the block graph

