
On the Total Number of Bends for Planar Octilinear Drawings

Michael A. Bekos1, Michael Kaufmann1, and Robert Krug1

1Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Germany,
{bekos,mk,krug}@informatik.uni-tuebingen.de

Abstract

An octilinear drawing of a planar graph is one in which each edge is drawn as a sequence
of horizontal, vertical and diagonal at 45◦ line-segments. For such drawings to be readable,
special care is needed in order to keep the number of bends small. As the problem of finding
planar octilinear drawings of minimum number of bends is NP-hard [16], in this paper we focus
on upper and lower bounds. From a recent result of Keszegh et al. [14] on the slope number
of planar graphs, we can derive an upper bound of 4n − 10 bends for 8-planar graphs with
n vertices. We considerably improve this general bound and corresponding previous ones for
triconnected 4-, 5- and 6-planar graphs. We also derive non-trivial lower bounds for these three
classes of graphs by a technique inspired by the network flow formulation of Tamassia [19].

1 Motivation and Background

Octilinear drawings of graphs have a long history of research, which dates back to the early thir-
teenth century, when an English technical draftsman, Henry Charles Beck (also known as Harry
Beck), designed the first schematic map of London Underground. His map, the so-called Tube
map, looked more like an electrical circuit diagram (consisting of horizontal, vertical and diagonal
line segments) rather than a true map, as the underlying geographic accuracy was neglected. Lay-
ing out networks in such a way is called octilinear graph drawing and plays an important role in
map-schematization and the design of metro-maps. In particular, an octilinear drawing Γ(G) of a
graph G = (V,E) is one in which each vertex occupies a point on an integer grid and each edge is
drawn as a sequence of horizontal, vertical and diagonal at 45◦ line segments. When G is planar,
usually it is required Γ(G) to be planar as well.

In planar octilinear graph drawing, an important goal is to keep the number of bends small, so
that the produced drawings can be understood easily. However, the problem of determining whether
a given embedded planar graph of maximum degree eight admits a bend-less planar octilinear draw-
ing is NP-complete [16]. This motivated us to neglect optimality and study upper and lower bounds
on the total number of bends of such drawings. Surprisingly enough, very few results were known,
even if the octilinear model has been extensively studied in the areas of metro-map visualization
and map schematization.

One can derive the first (non-trivial) upper bound on the required number of bends from a result
on the planar slope number of graphs by Keszegh et al. [14], who proved that every k-planar graph
(that is, planar of maximum degree k) has a planar drawing with at most dk2e different slopes in
which each edge has at most two bends. For 3 ≤ k ≤ 8, the drawings are octilinear, which yields
an upper bound of 6n − 12, where n is the number of vertices of the graph. The bound can be
reduced to 4n− 10 with some effort; see our subsection on related work.

On the other hand, it is known that every 3-planar graph with five or more vertices admits a
planar octilinear drawing in which all edges are bend-less [13, 7]. Also, for 4 ≤ k ≤ 5, it was

1

ar
X

iv
:1

51
2.

04
86

6v
1

 [
cs

.C
G

]
 1

5
D

ec
 2

01
5

Table 1: A short summary of our results.

Upper bounds

Graph class Lower bound Ref. Previous Ref. New Ref.

3-con. 4-planar n/3− 1 Thm. 4 2n [2] n+ 5 Thm. 1
3-con. 5-planar 2n/3− 2 Thm. 4 5n/2 [2] 2n− 2 Thm. 2
3-con. 6-planar 4n/3− 6 Thm. 4 4n− 10 [14] 3n− 8 Thm. 3

recently proved that 4- and 5-planar graphs admit planar octilinear drawings with at most one bend
per edge [2], which implies that the total number of bends for 4- and 5-planar graphs can be upper
bounded by 2n and 5n/2, respectively.

The remainder of this paper is organized as follows. In Section 2, we considerably improve
all aforementioned bounds for the classes of triconnected 4-, 5- and 6-planar graphs. In Section 3,
we present corresponding lower bounds for these three classes of planar graphs. We conclude in
Section 4 with open problems and future work. For a summary of our results also refer to Table 1.

1.1 Related work.

As already stated, Keszegh et al. [14] have proved that every k-planar graph admits a planar drawing
with at most dk2e different slopes in which each edge has at most two bends. If one appropriately
adjusts the slopes of all edge segments incident to a vertex, then one can show that any k-planar
graph, with 3 ≤ k ≤ 8, admits a planar octilinear drawing in which each edge has at most two
bends. This implies that any k-planar graph on n vertices can have at most 6n − 12 bends, where
3 ≤ k ≤ 8. One can easily improve this bound to 4n − 10 as follows. The edge that “enters” a
vertex from its south port and the edge that “leaves” each vertex from its top port in the s-t ordering
of the algorithm of Keszegh et al. can both be drawn with only one bend each. Since each vertex is
incident to exactly two such edges (except for the first and last ones in the s-t ordering which are
only incident to one such edge each), it follows that 2n − 2 edges can be drawn with at most one
bend. Hence, the bound of 4n− 10 follows.

Octilinear drawings form a natural extension of the so-called orthogonal drawings, which allow
for horizontal and vertical edge segments only. For such drawings, the bend minimization problem
can be solved efficiently, assuming that the input is an embedded graph [19]. However, the cor-
responding minimization problem over all embeddings of the input graph is NP-hard [10]. Note
that in [19] the author describes how one can extend his approach, so to compute a bend-optimal
octilinear representation1 of any given embedded 8-planar graph. However, such a representation
may not be realizable by a corresponding planar octilinear drawing [5].

For orthogonal drawings, several bounds on the total number of bends are known. Biedl [3]
presents lower bounds for graphs of maximum degree 4 based on their connectivity (simply con-
nected, biconnected or triconnected), planarity (planar or not) and simplicity (simple or non-simple
with multiedges or selfloops). It is also known that any 4-planar graph (except for the octahedron
graph) admits a planar orthogonal drawing with at most two bends per edge [4, 15]. Trivially, this
yields an upper bound of 4n bends, which can be improved to 2n+ 2 [4]. Note that the best known
lower bound is due to Tamassia et al. [20], who presented 4-planar graphs requiring 2n− 2 bends.

Finally, in metro-map visualization many approaches have been proposed that result in octilin-
ear or nearly-octilinear drawings (see, e.g., [11, 16, 17, 18]). However, most of them are heuristics
and therefore do not focus on the bend-minimization problem explicitly.

1Recall that a representation of a graph describes the angles and the bends of a drawing, neglecting its exact geome-
try [19].

2

1.2 Preliminaries.

Central in our approach is the canonical order [6, 12] of triconnected planar graphs: LetG = (V,E)
be a triconnected planar graph and let Π = (P0, . . . , Pm) be a partition of V into paths, such that
P0 = {v1, v2}, Pm = {vn} and v2 → v1 → vn is a path on the outerface ofG. For k = 0, 1, . . . ,m,
let Gk be the subgraph induced by ∪ki=0Pi. Path Pk is called singleton if |Pk| = 1 and chain
otherwise; Partition Π is a canonical order [6, 12] of G if for each k = 1, . . . ,m− 1 the following
hold (see also Figure 1):

(i) Gk is biconnected,

(ii) all neighbors of Pk in Gk−1 are on the outer face of Gk−1 and

(iii) all vertices of Pk have at least one neighbor in Pj for some j > k.

To simplify the description of our algorithms, we direct and color the edges of G based on
partition Π (similar to Schnyder colorings [8]) as follows. The first partition P0 of Π defines exclu-
sively one edge (that is, edge (v1, v2)), which we color blue and direct towards vertex v1. For each
partition Pk = {vi, . . . , vi+j} ∈ Π later in the order, let v` and vr be the leftmost and rightmost
neighbors of Pk inGk−1, respectively. In the case where Pk is a chain (that is, j > 0), we color edge
(vi, v`) and all edges between vertices of Pk blue and direct them towards v`. The edge (vi+j , vr)
is colored green and is directed towards vr (see Figure 2a). In the case where Pk is a singleton (that
is, j = 0), we color the edges (vi, v`) and (vi, vr) blue and green, respectively and we direct them
towards v` and vr. We color the remaining edges incident to Pk towards Gk−1 (if any) red and we
direct them towards vi (see Figure 2e).

Given a vertex v ∈ V of G, we denote by indegx(v) (outdegx(v), respectively) the in-degree
(out-degree, respectively) of vertex v in color x ∈ {r, b, g}. Then, it is not difficult to see that for a
vertex v ∈ V \ {v1}, outdegb(v) = 1, which implies that the blue subgraph is a spanning tree of
G. Similarly, 0 ≤ outdegg(v), outdegr(v) ≤ 1. Hence, the green and the red subgraphs form two
forests of G. It also holds that 0 ≤ outdegr(v) ≤ 1 and 0 ≤ indegb(v), indegg(v), indegr(v) ≤
d(G)− 1, where d(G) is the degree of G. For an example refer to Figure 1a.

2 Upper Bounds

In this section, we present upper bounds on the total number of bends for the classes of triconnected
4-planar (Section 2.1), 5-planar (Section 2.2) and 6-planar (Section 2.3) graphs.

2.1 Triconnected 4-Planar Graphs.

Let G = (V,E) be a triconnected 4-planar graph. Before we proceed with the description of our
approach, we need to define two useful notions. First, a vertical cut is a y-monotone continuous
curve that crosses only horizontal segments and divides a drawing into a left and a right part; see
e.g. [9]. Such a cut makes a drawing horizontally stretchable in the following sense: One can shift
the right part of the drawing that is defined by the vertical cut further to the right while keeping
the left part of the drawing in place and the result is a valid octilinear drawing. Similarly, one can
define a horizontal cut.

Since G has at most 2n edges, by Euler’s formula, it follows that G has at most n + 2 faces.
In order to construct a drawing Γ(G) of G, which has roughly at most n + 2 bends, we also need
to associate to each face of G a so-called reference edge. This is done as follows. Let Π =
{P0, . . . , Pm} be a canonical order of G and assume that Γ(G) is constructed incrementally by
placing a new partition of Π each time, so that the boundary of the drawing constructed so far is a

3

v1 v3
v2

v6

v4 v5

(a)

v6

v1 v3
v2

v4 v5

(b)

v1 v3 v2

(c)

v1 v3 v2

v4

(d)

v1 v3 v2

v4

v5

(e)

v1 v3 v2

v4

v5

v6

(f)

v1 v3 v2

v4

v5

v6

(g)

v1 v3 v2

v4

v5

v6

(h)

Figure 1: An illustration of our algorithm for triconnected 4-planar graphs by an example: the octahedron
graph. The underlying canonical order consists of the following partitions: P0 = {v1, v2}, P1 = {v3}, P2 =
{v4}, P3 = {v5} and P4 = {v6}. (a) The direction and the coloring of the edges. (b) The corresponding
reference edges (bold drawn); the edge (v1, v2) of the first partition and the edge (v1, v6) incident to the
last (degree 4) partition are ignored. (c) The placement of the first two partitions. (d) The placement of a
singleton of degree 2 incident to reference edge (v4, v3) that is drawn bent. (e) The placement of a singleton
of degree 3 incident to reference edges (v5, v4) and (v5, v2) that are drawn bent. (f) The last singleton v6
is not incident to reference edges. So, (v6, v4), (v5, v6) and (v6, v2) must be drawn bend-less, which is not
possible. (g) Vertex v5 is translated upwards in the direction implied by the edge (v3, v5) until one of the
horizontal segments incident to v5 is eliminated, which makes the placement of v6 posible. (h) The final
layout containing (v2, v1) and (v6, v1); the dotted edge can be drawn with a single bend.

x-monotone path. When placing a new partition Pk ∈ Π, k = 1, . . . ,m − 1, one or two bounded
faces of G are formed (note that we treat the last partition Pm of Π separately). More precisely, if
Pk is a chain or a singleton of degree 3 in Gk, then only one bounded face is formed. Otherwise
(that is, Pk is a singleton of degree 4 inGk), two new bounded faces are formed. In both cases, each
newly-formed bounded face consists of at least two edges incident to vertices of Pk and at least one
edge of Gk−1. In the former case, the reference edge of the newly-formed bounded face, say f , is
defined as follows. If f contains at least one green edge that belongs to Gk−1, then the reference
edge of f is the leftmost such edge (see Figure 2a and 2c). Otherwise, the reference edge of f is
the leftmost blue edge of f that belongs to Gk−1 (see Figure 2b and 2d). In the case where Pk is
a singleton of degree 4 in Gk, the reference edge of each of the newly formed faces is the edge of
Gk−1 that is incident to the endpoint of the red edge involved. Observe that by definition a red edge
cannot be a reference edge. For an example see Figure 1b.

As already stated, we will construct Γ(G) in an incremental manner by placing one partition of
Π at a time. For the base, we momentarily neglect the edge (v1, v2) of the first partition P0 of Π and
we start by placing the second partition, say a chain P1 = {v3, . . . , v|P1|+2}, on a horizontal line
from left to right. Since by definition of Π, v3 and v|P1|+2 are adjacent to the two vertices, v1 and
v2, of the first partition P0, we place v1 to the left of v3 and v2 to the right of v|P1|+2. So, they form
a single chain where all edges are drawn using horizontal line-segments that are attached to the east
and west port at their endpoints. The case where P1 is a singleton is analogous (assuming that P1

is a chain of unit length). Assume now that we have already constructed a drawing for Gk−1 which
has the following invariant properties:

4

Gk−1

f

v` vr

(a)

Gk−1

f

v`

vr

(b)

Gk−1

f

v` vr

(c)

Gk−1

f

v`

vr

(d)

Gk−1

f1 f2

v`

vr

(e)

Figure 2: Illustration of the reference edge (bold drawn) in the case of: (a-b) a chain, (c-d) a singleton of
degree 2 in Gk and (e) a singleton of degree 3 in Gk.

IP-1: The number of edges of Gk−1 with a bend is at most equal to the number of reference edges
in Gk−1.

IP-2: The north-west, north and north-east (south-west, south and south-east) ports of each vertex
are occupied by incoming (outgoing) blue and green edges and by outgoing (incoming) red
edges2.

IP-3: If a horizontal port of a vertex is occupied, then it is occupied either by an edge with a bend
(to support vertical cuts) or by an edge of a chain.

IP-4: A red edge is not on the outerface of Gk−1.

IP-5: A blue (green, respectively) edge of Gk−1 is never incident to the north-west (north-east,
respectively) port of a vertex of Gk−1.

IP-6: From each reference edge on the outerface of Gk−1 one can devise a vertical cut through the
drawing of Gk−1.

The base of our algorithm conforms with the aforementioned invariant properties. In the following,
we will show how to add the next partition Pk with k < m, so that all invariant properties are
fulfilled. In our description, we will mainly describe the port assignment at each vertex that will
always conform to IP-2–5, which fully specifies how each edge must be drawn (in other words, we
describe the relative coordinates of the vertices). The exact coordinates can then be computed by
adopting an approach similar to the one of Bekos et al. [2], since the base of each newly formed
face is horizontally stretchable (follows from IP-6). Next, we consider the three main cases; see
also Figure 1 for an example.

C.1: Pk = {vi} is a singleton of degree 2 in Gk; see Figure 3a, 3b. Let v` and vr be the leftmost
and rightmost neighbors of vi in Gk−1 (note that v` and vr are not necessarily neighboring).
We claim that the north-east port of v` and the north-west port of vr cannot be simultaneously
occupied. For a proof by contradiction, assume that the claim does not hold. Denote by
v` vr the path from v` to vr at the outerface of Gk−1 (neglecting the direction of the
edges). By IP-5, v` vr starts as blue from the north-east port of v` and ends as green at the
north-west port of vr. So, inbetween there is a vertex of the path v` vr which has a neighbor
in Pj for some j ≥ k; a contradiction to the degree of vi. Without loss of generality assume
that the north-east port of v` is unoccupied. To draw the edge (vi, v`), we distinguish two
cases. If (vi, v`) is the reference edge of a face, then we draw (vi, v`) as a horizontal-diagonal
combination from the west port of vi towards the north-east port of v`. Otherwise, (vi, v`) is
drawn bend-less from the south-west port of vi towards the north-east port of v`. To draw the
edge (vi, vr), again we distinguish two cases. If the north-west port at vr is unoccupied, then
(vi, vr) will use this port at vr. Otherwise, (vi, vr) will use the north port at vr. In addition,

2Note, however, that not all of them can be simultaneously be occupied due to the degree restriction.

5

Gk−1

vi

v`

vr

(a)

vi

Gk−1

v`

vr

(b)

Gk−1

vi

v`

vr

vi+j

(c)

Gk−1

vi

v` vr

vm

(d)

Gk−1

vi

v` vr

vm

(e)

Gk−1

vi

v` vr

vm

(f)

Gk−1v` vr

vm

vi

(g)

Gk−1

vi

v` vr

vm

(h)

Gk−1v`

vr
vm

vi

(i)

Gk−1

vi

v`

vr
vm

(j)

Figure 3: Illustration of: (a-b) the case of a degree-2 singleton in Gk, (c) the case of a chain, (d-j) the case of
a singleton of degree 3 in Gk (dotted segments can have zero length).

if (vi, vr) is the reference edge of a face, then (vi, vr) will use the east port at vi. Otherwise,
the south-east port at vi. The port assignment described above conforms to IP-2–5. Clearly,
IP-1 also holds. IP-6 holds because the newly introduced edges that are reference edges have
a horizontal segment, which inductively implies that vertical cuts through them are possible.

C.2: Pk = {vi, . . . vi+j} with j ≥ 1 is a chain. This case is similar to case C.1, as Pk has also
exactly two neighbors in Gk−1 (which we again denote by v` and vr). The edges between
vi, . . . , vi+j will be drawn as horizontal segments connecting the west and east ports of the
respective vertices; see Figure 3c. The edges (vi, v`) and (vi+j , vr) are drawn based on the
rules of the case C.1 (e.g., in Figure 3c edge (vi, v`) is a reference edge, while the edge
(vi+j , vr) is not). Hence, the port assignment still conforms to IP-2–IP-5. In addition, IP-1
and IP-6 hold, since all edges of the chain are horizontal.

C.3: Pk = {vi} is a singleton of degree 3 inGk. This is the most involved case. Let v` and vr be the
leftmost and rightmost neighbors of vi inGk−1 and let vm be the third neighbor of vi inGk−1.
By IP-2 and the degree restriction, the north port of vm is unoccupied. If the north-east port
of v` and the north-west port of vr are simultaneously unoccupied, we proceed analogously to
case C.1; see Figure 3d. Clearly, IP-1 and IP-6 hold. Consider now the more involved case,
where the north-east port of v` is occupied and simultaneously (vi, v`) is not a reference edge.
Hence, by IP-6 (vi, v`) must be drawn bend-less. Since the north-east port at v` is occupied,
by IP-4 it follows that the edge at the north-east port of v` is not red. Therefore, by IP-2 and
IP-5, the edge at the north-east port of v` is blue. This implies that the path v` vm at the
outerface of Gk−1 consists of exclusively blue edges pointing towards v`. Hence, by IP-5 the
north-east port at vm is unoccupied. Edge (vi, v`) can be drawn bend-less if the edge (vi, vr)
is a reference edge (that is, by IP-6 (vi, vr) has a bend); see Figure 3e. In the case where the
edge (vi, vr) is not a reference edge (that is, none of (vi, v`) and (vi, vr) is a reference edge),
we need a different argument. We further distinguish two sub-cases.

C.3.1: The edge incident to vm on the path vm vr on the outerface of Gk−1 is green (we
cope with the case where this edge is blue later). By definition, the blue (green) edge of
v` vm (vm vr) incident to vm is a reference edge and by IP-6 has a bend. Our aim is to
“eliminate” one of these bends and draw one of the edges (vi, v`) or (vi, vr) with a bend and
the other one bend-less. So, IP-1 still holds. In this case, vm may or may not be incident to
another red edge in Gk−1 (equivalently, vm is either of degree 4 or 3, respectively). Without

6

loss of generality we assume that vm is incident to another red edge, say (vm, v
′
m), in Gk−1,

that is, vm is of degree 4. In this case, we translate vm upwards in the direction implied by
the slope of the edge (vm, v

′
m), until one of the horizontal segments of the edges incident to

vm on the outerface of Gk−1 is completely eliminated; see Figure 3f. The only case, where
the aforementioned segment elimination is not possible, is when (vm, v

′
m) is vertical and the

edges incident to vm at the outerface of Gk−1 are both horizontal-vertical combinations; see
Figure 3g. In this particular case, however, by IP-2 it follows that either the north-west or
the north-east port at v′m is free. Since both edges incident to vm at the outerface of Gk−1
are bent, by IP-3 we can redraw (v′m, vm) so to be diagonal and then we proceed similarly
to the previous case; see Figure 3h. Also, observe that the port assignment still conforms to
IP-2–IP-5.

C.3.2: The edge incident to vm on the path vm vr on the outerface of Gk−1 is blue. In
this case, vm cannot be incident to another red edge. In the case where vm is of degree 3, we
proceed similar to the case C.3.1, where vm was of degree 3. So, we now focus on the case
where vm is of degree 4. In this case, the fourth edge attached to vm can be either (outgoing)
green or (incoming) blue. In the former case, this edge is a reference edge. In the latter case,
it is part of a chain. In both cases, however, this edge has a horizontal segment; see Figure 3i.
Hence, we can translate vm horizontally to the left so to eliminate the bend of the edge incident
to vm on the path v` vm; see Figure 3j. Note that all invariant properties are fulfilled once
vi is drawn.

Note that the coordinates of the newly introduced vertices are determined by the shape of the
edges connecting them to Gk−1. If there is not enough space between v` and vr to accommodate
the new vertices, IP-6 allows us to stretch the drawing horizontally using the reference edge of the
newly formed face.

To complete the description of our algorithm, it remains to cope with the last partition Pm =
{vn} and describe how to draw the edge (v1, v2) of the first partition P0 of Π. If vn is of degree 3, we
cope with Pm as being an ordinary singleton. However, if vn is of degree 4, then we momentarily
ignore the edge (vn, v1) of Pm and proceed to draw the remaining edges incident to vn, assuming
that Pm is again an ordinary singleton. The edge (vn, v1) can be drawn afterwards using two bends
in total. Finally, since by construction v1 and v2 are horizontally aligned, we can draw the edge
(v1, v2) with a single bend, emanating from the south-east port of v1 towards the south-west port of
v2.

Theorem 1. Let G be a triconnected 4-planar graph with n vertices. A planar octilinear drawing
Γ(G) of G with at most n+ 5 bends can be computed in O(n) time.

Proof. By IP-1, all bends of Γ(G) are in correspondence with the reference edges of G, except for
the bends of the edges (v1, v2) and (vn, v1). Since the number of reference edges is at most n + 2
and the edges (v1, v2) and (vn, v1) require 3 additional bends, the total number of bends of Γ(G)
does not exceed n + 5. The linear running time follows from the observation that we can use the
shifting method of Kant [13] to compute the actual coordinates of the vertices of G, since in the
canonical order the y-coordinates of the vertices that have been placed at some particular step do
not change in subsequent steps (following a similar approach as in [2]).

2.2 Triconnected 5-Planar Graphs.

Our algorithm for triconnected 5-planar graphs is an extension of the corresponding algorithm of
Bekos et al. [2], which computes for a given triconnected 5-planar graph G on n vertices a planar
octilinear drawing Γ(G) of G with at most one bend per edge. Since G cannot have more than

7

Gk−1

vj′

vi

(a)

vi

Gk−1

vj′

(b)

Figure 4: (a) e′ = (vj′ , vi) cannot be drawn bend-less. (b) Shifting vj′ up resolves the problem.

5n/2 edges, it follows that the total number of bends of Γ(G) is at most 5n/2. However, before we
proceed with the description of our extension, we first provide some insights into this algorithm,
which is based on a canonical order Π of G. Central are IP-2 and IP-4 of the previous section and
the so-called stretchability invariant, according to which all edges on the outerface of the draw-
ing constructed at some step of the canonical order have a horizontal segment and therefore one
can devise corresponding vertical cuts to horizontally stretch the drawing. We claim that we can
appropriately modify this algorithm, so that all red edges of Π are bend-less.

Since we seek to draw all red edges of Π bend-less, our modification is limited to singletons. So,
let Pk = {vi} be a singleton of Π. The degree restriction implies that vi has at most two incoming
red edges (we also assume that Pk is not the last partition of Π, that is k 6= m). We first consider
the case where vi has exactly one incoming red edge, say e = (vj , vi), with j < i. By construction,
e must be attached to one of the northern ports of vj (that is, north-west, north or north-east). On
the other hand, e can be attached to any of the southern ports of vi, as e is its only incoming red
edge. This guarantees that e can be drawn bend-less.

Consider now the more involved case, where vi has exactly two incoming red edges, say e =
(vj , vi) and e′ = (vj′ , vi) and assume without loss of generality that vj is to the left of vj′ in the
drawing of Gk−1. We distinguish three cases based on the available ports of vj :

C.1: The north-east port of vj is unoccupied: In this case, e emanates from the north-east port
of vj and leads to the south-west port of vi (recall that all southern ports of singleton vi are
dedicated for incoming red edges; in this case e and e′). If the north-west or the north port of
vj′ is unoccupied, then e′ can be easily drawn bend-less. In the former case, e′ emanates from
the north-west port of vj′ and leads to the south-east port of vi. In the latter case, e′ emanates
from the north port of vj′ and leads to the south port of vi. Hence, the aforementioned port
assignment fully specifies the position of vi. It remains to consider the case, where neither
the north-west nor the north port of vj′ is unoccupied, that is, the north-east port of vj′ is
unoccupied. By our coloring scheme and IP-2, vj′ has already two incoming green edges, say
eg and e′g, and e′ is the last edge to be attached at vj′ ; see Figure 4a. Therefore, there is no
other (bend-less) red edge involved. We proceed by shifting vj′ up in a way that makes all
northern ports of vj′ unoccupied; see Figure 4b. Note that we may have to use a second bend
on the outgoing blue edge of vj′ (in order to maintain the stretchability invariant), but on the
other hand we can eliminate one bend from the second green edge e′g; see Figure 4b. So, the
total number of bends remains unchanged. In addition, the endpoints of both eg and e′g that
are opposite to vj′ may have to be moved horizontally to allow eg and e′g to be drawn planar,
but by the stretchability invariant we are guaranteed that this is always possible. Finally,
the stretchability invariant is maintained, since each edge besides the red ones contains a
horizontal segment.

C.2: The north-east port of vj is occupied, while its north port is unoccupied: In this case, e
emanates from the north port of vj and leads to the south port of vi (that is, vi and vj are
vertically aligned). We now claim that the north-west port of vj′ is unoccupied. For the sake

8

of contradiction, assume that the claim is not true. By our coloring scheme, the edge attached
at the north-west port of vj′ is green, which implies that there must exist a path vj vj′ at
the outerface face of Gk−1 whose first edge is blue at the north-east port of vj and its last edge
is green at the north-west port of vj′ . So, path vj vj′ has a vertex which has a neighbor in
Pκ for some κ ≥ k. Since vi is the only such candidate, the contradiction follows from the
degree of vi. Hence, the north-west port of vj′ is unoccupied and therefore we can draw e′

without bends by using the south-east port of vi and the north-west port of vj′ , as desired.

C.3: Only the north-west port of vj is unoccupied: We can reduce this case to case C.1 by applying
an operation symmetric to the one of Figure 4a on vertex vj . This will result in a configuration
where all northern ports of vj (including the north-east) are unoccupied.

Theorem 2. Let G be a triconnected 5-planar graph with n vertices. A planar octilinear drawing
Γ(G) of G with at most 2n− 2 bends can be computed in O(n) time.

Proof. From our extension, it follows that the only edges of Γ(G) that have a bend are the blue
and the green ones and possibly the third incoming red edge of vertex vn of the last partition Pm
of Π. Now, recall that the blue subgraph is a spanning tree of G, while the green one is a forest
on the vertices of G. So, in the worst case the green subgraph is a tree on n − 1 vertices of G (by
construction the green subgraph cannot be incident to the first vertex v1 of Π). Therefore, at most
2n − 2 edges of Γ(G) have a bend. In addition, the running time remains linear since the shifting
technique can still be applied. This is because once a vertex has been placed its y-coordinate does
not change anymore, except for the special case of two red edges (cases C.1 and C.3), which does
not influence the overall running time, since it can occur at most once per vertex.

2.3 Triconnected 6-Planar Graphs.

In this section, we present an algorithm that based on a canonical order Π = {P0, P1, . . . , Pm} of
a given triconnected 6-planar graph G = (V,E) results in a drawing Γ(G) of G, in which each
edge has at most two bends. Hence, in total Γ(G) has 6n− 12 bends. Then, we show how one can
appropriately adjust the produced drawing to reduce the total number of bends.

Algorithm 1 describes rules R1 - R6 to assign the edges to the ports of the corresponding
vertices. It is not difficult to see that all port combinations implied by these rules can be realized
with at most two bends, so that all edges have a horizontal segment (which makes the drawing
horizontally stretchable): (i) a blue edge emanates from the west or south-west port of a vertex (by
rule R4) and leads to one of the south-east, east, north-east, north or north-west ports of its other
endvertex (by rule R1); see Figure 5g and 5h, (ii) a green edge emanates from the east or south-east

(a) (b)

7

(c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 5: (a)-(f) Illustration of the port assignment computed by Algorithm 1. (g)-(k) Different segment
combinations with at most two bends (horizontal segments are drawn dotted)

9

Algorithm 1: PortAssignment(v)
input : A vertex v of a triconnected 6-planar graph.
output: The port assignment of the edges around v, according to the following rules.

R1: The incoming blue edges of v occupy consecutive ports in counterclockwise order
around v starting from:

a. the south-east port of v, if indegb(v) + outdegr(v) = 5; see Figure 5a.

b. the east port of v, if indegb(v) + outdegr(v) = 4; see Figure 5b.

c. the east port of v, if outdegg(v) = 0 and (a),(b) do not hold; see Figure 5c.

d. the north-east port of v, otherwise; see Figure 5d.

R2: The outgoing red edge occupies the counterclockwise next unoccupied port, if v has
at least one incoming blue edge. Otherwise, the north-east port of v.

R3: The incoming green edges of v occupy consecutive ports in clockwise order around v
starting from:

a. the west port of v, if indegg(v) + outdegr(v) + indegb(v) ≥ 4; see Figure 5e.

b. the north-west port of v, otherwise; see Figure 5f.

R4: The outgoing blue edge of v occupies the west port of v, if it is unoccupied;
otherwise, the south-west port of v.

R5: The outgoing green edge of v occupies the east port of v, if it is unoccupied;
otherwise, the south-east port of v.

R6: The incoming red edges of v occupy consecutively in counterclockwise direction the
south-west, south and south-east ports of v starting from the first available.

port of a vertex (by rule R5) and leads to one of the west, north-west, north or north-east ports
of its other endvertex (by rule R3); see Figure 5i and 5j, (iii) a red edge emanates from one of the
north-west, north, north-east ports of a vertex (by rule R2) and leads to one of the south-west, south,
south-east ports of its other endvertex (by rule R6); see Figure 5k.

Hence, the shape of each edge is completely determined. To compute the actual drawing Γ(G)
of G, we follow an incremental approach according to which one partition (that is, a singleton or a
chain) of Π is placed at a time, similar to Kant’s approach [12] and the 4- or 5-planar case. Each
edge is drawn based on its shape, while the horizontal stretchability ensures that potential crossings
can always be eliminated. Note additionally that we adopt the leftist canonical order [1], according
to which the leftmost partition is chosen to be placed, when there exist two or more candidates.
Since each edge has at most two bends, Γ(G) has at most 6n− 12 bends in total.

In the following, we reduce the total number of bends. This is done in two steps. In the first
step, we show that all red edges can be drawn with at most one bend each. Recall that a red
edge emanates from one of the north-west, north, north-east ports of a vertex and leads to one of
the south-west, south, south-east ports of its other-endvertex. So, in order to prove that all red

10

north

source

target

west

north

north
east

south west south south east

Figure 6: Red edges can be redrawn with one bend (in gray boxes we show their initial 2-bends shapes)

edges can be drawn with at most one bend each, we have to consider in total nine cases, which
are illustrated in Figure 6. It is not difficult to see that in each of these cases, the red edge can be
drawn with at most one bend. Note that the absence of horizontal segments at the red edges does
not affect the stretchability of Γ(G), since each face of Γ(G) has at most two such edges (which
both “point upward” at a common vertex). Since a red edge cannot be incident to the outerface of
any intermediate drawing constructed during the incremental construction of Γ(G), it follows that
it is always possible to use only horizontal segments (of blue and green edges) to define vertical
cuts, thus, avoiding all red edges.

The second step of our bend reduction is more involved. Our claim is that we can “save” two
bends per vertex3, which yields a reduction by roughly 2n bends in total. To prove the claim,
consider an arbitrary vertex u ∈ V of G. Our goal is to prove that there always exist two edges
incident to u, which can be drawn with only one bend each. By rules R3 and R4, it follows that
the west port of vertex u is always occupied, either by an incoming green edge (by rule R3) or by
a blue outgoing edge (by rule R4; u 6= v1 ∈ P0). Analogously, the east port of vertex u is always
occupied, either by a blue incoming edge (by rules R1 and R2) or by an outgoing green edge (by
rule R5). Let (u, v) ∈ E be the edge attached at the west port of u (symmetrically we cope with
the edge that is attached at the east port of u). If edge (u, v) is attached to a non-horizontal port at
v, then (u, v) is by construction drawn with one bend (regardless of its color; see Figure 5g and 5i)
and our claim follows.

It remains to consider the case where edge (u, v) is attached to a horizontal port at v. Assume
first that edge (u, v) is blue (we will discuss the case where edge (u, v) is green later). By Algo-
rithm 1, it follows that edge (u, v) is either the first blue incoming edge attached at v (by rules R1b
and R1c) or the second one (by rule R1a). We consider each of these cases separately. In rule R1c,
observe that edge (u, v) is part of a chain (because outdegg(u) = 0). Hence, when placing this
chain in the canonical order, we will place u directly to the right of v. This implies that (u, v) will
be drawn as a horizontal line segment (that is, bend-less). Similarly, we cope with rule R1b, when
additionally outdegg(u) = 0. So, there are still two cases to consider: rule R1a and rule R1b, when
additionally outdegg(u) = 1; see the left part of Figure 7. In both cases, the current degree of
vertex u is 3 and vertex v (and other vertices that are potentially horizontally-aligned with v) must
be shifted diagonally up, when u is placed based on the canonical order, such that (u, v) is drawn
as a horizontal line segment (that is, bend-less; see the right part of Figure 7). Note that when v
is shifted up, vertex v and all vertices that are potentially horizontally-aligned with v are also of
degree 3, since otherwise one of these vertices would not have a neighbor in some later partition of
Π, which contradicts the definition of Π.

We complete our case analysis with the case where edge (u, v) is green. By rule R3a, it follows
that (u, v) is the first green incoming edge attached at u. In addition, when (u, v) is placed based
on the canonical order, there is no red outgoing edge attached at u (otherwise u would not be at the

3Except for vertex v1 of the first partition P0 of Π, which has no outgoing blue edge.

11

u

v

uv

Figure 7: Aligning vertices u and v.

outerface of the drawing constructed so far). The leftist canonical order also ensures that there is no
blue incoming edge at u drawn before (u, v). Hence, vertex u is of degree two, when edge (u, v)
is placed. Hence, it can be shifted up (potentially with other vertices that are horizontally-aligned
with u), such that (u, v) is drawn as a horizontal line segment (that is, bend-less). We summarize
our approach in the following theorem.

Theorem 3. Let G be a triconnected 6-planar graph with n vertices. A planar octilinear drawing
Γ(G) of G with at most 3n− 8 bends can be computed in O(n2) time.

Proof. Before the two bend-reduction steps, Γ(G) contains at most 6n − 12 bends. In the first
reduction step, all red edges are drawn with one bend. Hence, Γ(G) contains at most 5n− 9 bends.
In the second reduction step, we “save” two bends per vertex (except for v1 ∈ P0, which has no
outgoing blue edge), which yields a reduction by 2n − 1 bends. Therefore, Γ(G) contains at most
3n−8 bends in total. On the negative side, we cannot keep the running time of our algorithm linear.
The reason is the second reduction step, which yields changes in the y-coordinates of the vertices.
In the worst case, however, quadratic time suffices.

Note that there exist 6-planar graphs that do not admit planar octilinear drawings with at most
one bend per edge [2]. Theorem 3 implies that on average one bend per edge suffices.

3 Lower Bounds

In this section, we present lower bounds on the total number of bends for the classes of triconected
4-, 5- and 6-planar graphs.

3.1 4-Planar Graphs.

We start our study with the case of 4-planar graphs. Our main observation is that if a 3-cycle C3 of
a graph has at least two vertices, with at least one neighbor in the interior of C3 each, then at least
one edge of C3 must contain a bend, since the sum of the interior angles at the corners of C3 exceeds
180◦. In fact, elementary geometry implies that a k-cycle, say Ck with k ≥ 3, whose vertices
have σ ≥ 0 neighbors in the interior of Ck requires (at least) max{0, d(σ − 3k + 8)/3e} bends.
Therefore, a bend is necessary. Now, refer to the 4-planar graph of Figure 8a, which contains n/3
nested triangles, where n is the number of its vertices. It follows that this particular graph requires
at least n/3− 1 bends in total.

3.2 5- and 6-Planar Graphs.

For 5- and 6-planar graphs, our proof becomes more complex. For these classes of graphs, we
follow an approach inspired by Tamassia’s min-cost flow formulation [19] for computing bend-
minimum representations of embedded planar graphs of bounded degree. Since it is rather difficult
to implement this algorithm in the case where the underlying drawing model is not the orthogonal
model, we developed an ILP instead. Recall that a representation describes the “shape” of a drawing
without specifying its exact geometry. This is enough to determine a lower bound on the number

12

(a) A 4-planar graph (b) A 5-planar graph (c) A 6-planar graph

Figure 8: Planar graphs of different degrees that require (a) n/3− 1, (b) 2n/3− 2 and (c) 4n/3− 6 bends.

of bends, even if a bend-optimal octilinear representation may not be realizable by a corresponding
(planar) octilinear drawing.

In our formulation, variable α(u, v) · 45◦ corresponds to the angle formed at vertex u by edge
(u, v) and its cyclic predecessor around vertex u. Hence, 1 ≤ α(u, v) ≤ 8. Since the sum of the
angles around a vertex is 360◦, it follows that

∑
v∈N(u) a(u, v) = 8. Given an edge e = (u, v),

variables `45(u, v), `90(u, v) and `135(u, v) correspond to the number of left turns at 45◦, 90◦ and
135◦ when moving along (u, v) from vertex u towards vertex v. Similarly, variables r45(u, v),
r90(u, v) and r135(u, v) are defined for right turns. All aforementioned variables are integer lower-
bounded by zero. For a face f , we assume that its edges are directed according to the clockwise
traversal of f . This implies that each (undirected) edge of the graph appears twice in our for-
mulation. For reasons of symmetry, we require `45(u, v) = r45(v, u), `90(u, v) = r90(v, u) and
`135(u, v) = r135(v, u). Since the sum of the angles formed at the vertices and at the bends of a
bounded face f equals to 180◦ · (p(f)− 2), where p(f) denotes the total number of such angles, it
follows that

∑
(u,v)∈E(f) α(u, v) + (`45(u, v) + `90(u, v) + `135(u, v))− (r45(u, v) + r90(u, v) +

r135(u, v)) = 4a(f)− 8, where a(f) denotes the total number of vertex angles in f , and, E(f) the
directed arcs of f in its clockwise traversal. If f is unbounded, the respective sum is increased by
16. Of course, the objective is to minimize the total number of bends over all edges, or, equivalently
min

∑
(u,v)∈E `45(u, v) + `90(u, v) + `135(u, v) + r45(u, v) + r90(u, v) + r135(u, v).

Now, consider the 5-planar graph of Figure 8b and observe that each “layer” of this graph
consist of six vertices that form an octahedron (solid-drawn), while octahedrons of consecutive
layers are connected with three edges (dotted-drawn). Using our ILP formulation, we prove that
each octahedron subgraph requires at least 4 bends, when drawn in the octilinear model (except
for the innermost one for which we can guarantee only two bends). This implies that 2n/3 − 2
bends are required in total to draw the graph of Figure 8b. For the 6-planar case, we apply our ILP
approach to a similar graph consisting of nested octahedrons that are connected by six edges each;
see Figure 8c. This leads to a better lower bound of 4n/3− 6 bends, as each octahedron except for
the innermost one requires 8 bends. Summarizing we have:

Theorem 4. There exists a class Gn,k of triconnected embedded k-planar graphs, with 4 ≤ k ≤ 6,
whose octilinear drawings require at least: (i) n/3−1 bends, if k = 4, (ii) 2n/3−2 bends, if k = 5
and (iii) 4n/3− 6 bends, if k = 6.

4 Conclusions

In this paper, we studied bounds on the total number of bends of octilinear drawings of triconnected
planar graphs. We showed how one can adjust an algorithm of Keszegh et al. [14] to derive an upper
bound of 4n − 10 bends for general 8-planar graphs. Then, we improved this general bound and

13

previously-known ones for the classes of triconnected 4-, 5- and 6-planar graphs. For these classes
of graphs, we also presented corresponding lower bounds.
We mention two major open problems in this context. The first one is to extend our results to
biconnected and simply connected graphs and to further tighten the bounds. Since our drawing
algorithms might require super-polynomial area (cf. arguments from [2]), the second problem is to
study trade-offs between the total number of bends and the required area.

References

[1] M. Badent, U. Brandes, and S. Cornelsen. More canonical ordering. Journal of Graph Algo-
rithms and Applications, 15(1):97–126, 2011.

[2] M. A. Bekos, M. Gronemann, M. Kaufmann, and R. Krug. Planar octilinear drawings with
one bend per edge. Journal of Graph Algorithms and Applications, 19(2):657–680, 2015.

[3] T. C. Biedl. New lower bounds for orthogonal graph drawings. In F. J. Brandenburg, editor,
Graph Drawing, volume 1027 of LNCS, pages 28–39. Springer, 1996.

[4] T. C. Biedl and G. Kant. A better heuristic for orthogonal graph drawings. Computational
Geometry, 9(3):159–180, 1998.

[5] H. L. Bodlaender and G. Tel. A note on rectilinearity and angular resolution. Journal of Graph
Algorithms and Applications, 8(1):89–94, 2004.

[6] H. De Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinator-
ica, 10(1):41–51, 1990.

[7] E. Di Giacomo, G. Liotta, and F. Montecchiani. The planar slope number of subcubic graphs.
In A. Pardo and A. Viola, editors, LATIN, volume 8392 of LNCS, pages 132–143. Springer,
2014.

[8] S. Felsner. Schnyder woods or how to draw a planar graph? In Geometric Graphs and Ar-
rangements, Advanced Lectures in Mathematics, pages 17–42. Vieweg/Teubner Verlag, 2004.

[9] U. Fössmeier, C. Hess, and M. Kaufmann. On improving orthogonal drawings: The 4M-
algorithm. In S. Whitesides, editor, Graph Drawing, volume 1547 of LNCS, pages 125–137.
Springer, 1998.

[10] A. Garg and R. Tamassia. On the computational complexity of upward and rectilinear planarity
testing. SIAM Journal on Computing, 31(2):601–625, 2001.

[11] S.-H. Hong, D. Merrick, and H. A. D. do Nascimento. Automatic visualisation of metro maps.
Journal of Visual Languages and Computing, 17(3):203–224, 2006.

[12] G. Kant. Drawing planar graphs using the lmc-ordering. In FOCS, pages 101–110. IEEE,
1992.

[13] G. Kant. Hexagonal grid drawings. In E. W. Mayr, editor, WG, volume 657 of LNCS, pages
263–276. Springer, 1992.

[14] B. Keszegh, J. Pach, and D. Pálvölgyi. Drawing planar graphs of bounded degree with few
slopes. SIAM Journal of Discrete Mathematics, 27(2):1171–1183, 2013.

[15] Y. Liu, A. Morgana, and B. Simeone. A linear algorithm for 2-bend embeddings of planar
graphs in the two-dimensional grid. Discrete Applied Mathematics, 81(1-3):69–91, 1998.

14

[16] M. Nöllenburg. Automated drawings of metro maps. Technical Report 2005-25, Fakultät für
Informatik, Universität Karlsruhe, 2005.

[17] M. Nöllenburg and A. Wolff. Drawing and labeling high-quality metro maps by mixed-integer
programming. IEEE Transactions on Visualization and Computer Graphics, 17(5):626–641,
2011.

[18] J. M. Stott, P. Rodgers, J. C. Martinez-Ovando, and S. G. Walker. Automatic metro map layout
using multicriteria optimization. IEEE Transactions on Visualization and Computer Graphics,
17(1):101–114, 2011.

[19] R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM
Journal of Computing, 16(3):421–444, 1987.

[20] R. Tamassia, I. G. Tollis, and J. S. Vitter. Lower bounds for planar orthogonal drawings of
graphs. Information Processing Letters, 39(1):35–40, 1991.

15

	1 Motivation and Background
	1.1 Related work.
	1.2 Preliminaries.

	2 Upper Bounds
	2.1 Triconnected 4-Planar Graphs.
	2.2 Triconnected 5-Planar Graphs.
	2.3 Triconnected 6-Planar Graphs.

	3 Lower Bounds
	3.1 4-Planar Graphs.
	3.2 5- and 6-Planar Graphs.

	4 Conclusions

