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Abstract. In the bin covering problem, the goal is to fill as many bins as possible up to a
certain minimal level with a given set of items of different sizes. Online variants, in which the
items arrive one after another and have to be packed immediately on their arrival without
knowledge about the future items, have been studied extensively in the literature. We study
the simplest possible online algorithm Dual Next-Fit, which packs all arriving items into
the same bin until it is filled and then proceeds with the next bin in the same manner. The
competitive ratio of this and any other reasonable online algorithm is 1/2.
We study Dual Next-Fit in a probabilistic setting where the item sizes are chosen i.i.d.
according to a discrete distribution and we prove that, for every distribution, its expected
competitive ratio is at least 1/2 + ǫ for a constant ǫ > 0 independent of the distribution.
We also prove an upper bound of 2/3 and better lower bounds for certain restricted classes
of distributions. Finally, we prove that the expected competitive ratio equals, for a large
class of distributions, the random-order ratio, which is the expected competitive ratio when
adversarially chosen items arrive in uniformly random order.

1 Introduction

In the bin covering problem one is given a set of items with sizes s1, . . . , sn ∈ [0, 1] and the goal is
to fill as many bins as possible with these items, where a bin is counted as filled if it contains items
with a total size of at least 1. More precisely, we are interested in finding the maximal number ℓ
of pairwise disjoint sets X1, . . . , Xℓ ⊆ {1, . . . , n} such that

∑

i∈Xj
si ≥ 1 for every j. We call the

sets Xj bins and we say that a bin is filled or covered if the total size of the items it contains is at
least 1. Variants of the bin covering problem occur frequently in industrial applications, e.g., when
packing food items with different weights into boxes that each need to have at least the advertised
weight.

Bin covering is a well-studied NP-hard optimization problem. A straightforward reduction from
the partition problem shows that it cannot be approximated within a factor of 1/2+ǫ for any ǫ > 0.
On the positive side, Jansen and Solis-Oba [9] presented an asymptotic fully polynomial-time
approximation scheme. In many applications, it is natural to study online variants, in which items
arrive one after another and have to be packed directly into one of the bins without knowing the
future items. It is also often natural to restrict the number of open bins, i.e., bins that contain at
least one item but are not yet covered, that an online algorithm may use.

We study the simple online algorithm Dual Next-Fit (DNF) that packs all arriving items
into the same bin until it is filled. Then the next items are packed into a new bin until it is filled, and
so on. The (asymptotic) competitive ratio of DNF is 1/2 [2], which is best possible for deterministic
online algorithms [7]. In fact, all deterministic online algorithms that do not add items to a bin
that is already covered and have at most a constant number of open bins at any point in time have
a competitive ratio of exactly 1/2 [3]. Since competitive analysis does not yield much insight for
bin covering, alternative measures have been suggested. Most notably are probabilistic models in
which the item sizes are drawn at random from a fixed distribution [5] or in which the item sizes
are adversarial but the items arrive in random order [3].

In this article, we study the asymptotic average performance ratio and the asymptotic random-
order ratio of DNF. We give now an intuitive explanation of these measures (formal definitions are
given in Section 1.1). In order to define the former, we allow an adversary to choose an arbitrary dis-
tribution F on [0, 1] with finite support. The asymptotic average performance ratio AAPR(DNF, F )

⋆ This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

http://arxiv.org/abs/1512.04719v1


2 Carsten Fischer and Heiko Röglin

of DNF with respect to the distribution F is then defined as the expected competitive ratio of DNF
on instances with n → ∞ items whose sizes are independently drawn according to F . Furthermore,
let AAPR(DNF) = infF AAPR(DNF, F ). In order to define the latter, we allow an adversary to
choose n → ∞ item sizes s1, . . . , sn ∈ [0, 1]. The asymptotic random-order ratio RR(DNF) is
then defined as the expected competitive ratio of DNF on instances in which these items arrive in
uniformly random order. It is assumed that the adversary chooses item sizes that minimize this
expected value.

We prove several new results on the asymptotic average performance ratio and the asymptotic
random-order ratio of DNF and the relation between these two measures. First of all, observe that
both RR(DNF) and AAPR(DNF) lie between 1/2 and 1 because even in the worst case DNF has
a competitive ratio of 1/2. Using ideas of Kenyon [11], it follows that AAPR(DNF) ≥ RR(DNF).
We show that RR(DNF) ≤ AAPR(DNF) ≤ 2/3, which improves a result by Christ et al. [3] who
proved that RR(DNF) ≤ 4/5. To the best of our knowledge the bound by Christ et al. is the only
non-trivial result about the random-order ratio of DNF in the literature.

Csirik et al. [5] have proved that AAPR(DNF, F ) = 2/e if F is the uniform distribution on [0, 1].
We are not aware, however, of any lower bound for AAPR(DNF, F ) that holds for any discrete
distribution F , except for the trivial bound of 1/2. We obtain the first such bound and prove
that AAPR(DNF) ≥ 1/2+ ǫ for a small but constant ǫ > 0. We prove even better lower bounds for
certain classes of distributions that we will describe in detail in Section 1.4. Finally we study the
connection between the performance measures and prove that AAPR(DNF) = RR(DNF) if the
adversary in the random-order model is restricted to inputs s1, . . . , sn with

∑

i si = ω(n2/3).

1.1 Performance Measures

Before we discuss our results in more detail and mention further related work, let us formally
introduce the performance measures that we employ.

Definition 1. A discrete distribution F is defined by a vector s = (s1, . . . , sm) of non-negative
rational item sizes and an associated vector p = (p1, . . . , pm) of positive rational probabilities such
that

∑m
i=1 pi = 1.

We denote by In(F ) = (X1, . . . , Xn) a list of n items, where the Xi are drawn i.i.d. according
to F . For an algorithm A and a list of item sizes L we denote by A(L) the number of bins that A
fills on input L.

Definition 2. Let A be an algorithm for the bin covering problem, and let F be a discrete distri-
bution. We define the asymptotic average performance ratio as

AAPR(A,F ) = lim inf
n→∞

E

[

A(In(F ))

OPT(In(F ))

]

and the asymptotic expected competitive ratio as

AECR(A,F ) = lim inf
n→∞

E [A(In(F ))]

E [OPT(In(F ))]
.

For a set F of discrete distributions, we define

AAPR(A,F) = inf
F∈F

AAPR(A,F ) and AECR(A,F) = inf
F∈F

AECR(A,F ).

We denote by D the set of all discrete distributions and we define

AAPR(A) = AAPR(A,D) and AECR(A) = AECR(A,D).

Both the asymptotic average performance ratio and the asymptotic expected competitive ratio
have been studied in the literature (sometimes under different names). We will see later that for
our purposes there is no need to distinguish between them because they coincide for DNF.

Let L = (a1, . . . , aN ) be a list of length N , and let σ ∈ SN be a permutation of N elements
(SN denotes the symmetric group of order N). Then σ(L) denotes a permutation of L.
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Definition 3. In bin covering, the asymptotic random-order ratio for an algorithm A is defined
as

RR(A) = lim inf
OPT(L)→∞

Eσ[A(σ(L))]

OPT(L)
,

where σ is drawn uniformly from S|L|.

The asymptotic random-order ratio for bin covering and bin packing has been introduced in [3]
and [11], respectively. All definitions above can also be adapted to the bin packing problem; we
only have to replace inf and lim inf by sup and lim sup, respectively.

1.2 Related Work

Csirik et al. [6] presented an algorithm (which requires an unlimited number of open bins) whose
asymptotic average performance ratio is 1 for all discrete distributions. Csirik et al. [5] have proved
that the asymptotic expected competitive ratio of DNF is 2/e if F is the uniform distribution
on [0, 1]. Kenyon [11] introduced the notion of asymptotic random-order ratio for bin packing and
proved that the asymptotic random-order ratio of the best-fit algorithm lies between 1.08 and 1.5.
Coffman et al. [10] showed that the random-order ratio of the next-fit algorithm is 2. Christ et
al. [3] adapted the asymptotic random-oder ratio to bin covering and proved that RR(DNF) ≤ 4/5.
The article of Kenyon [11] contains in Section 3 an argument for AECR(DNF) ≥ RR(DNF) (even
though this is not stated explicitly). Asgeirsson and Stein [1] developed a heuristic for online bin
covering based on Markov chains and demonstrated its good performance in experiments.

1.3 Definitions and Notation

Let L = (a1, . . . , aN ) ∈ [0, 1]N be a list of items. We denote by s(L) :=
∑N

i=1 ai the total size of the
items in L and by N(L) := N the length of L. For an algorithm A, we define WA(L) := s(L)−A(L)
as the waste of algorithm A on list L. We denote by OPT an optimal offline algorithm. Of particular
interest are distributions that an optimal offline algorithm can pack with sublinear waste.

Definition 4. We say that a discrete distribution F is a perfect-packing distribution, if it satisfies
the perfect-packing property, i.e.,

E
[

WOPT(In(F ))
]

= o(n).

We denote the set of all perfect-packing distributions by P.

Let F be a discrete distribution with associated item sizes s = (s1, . . . , sm) and probabilities p =
(p1, . . . , pm). We say that b = (b1, . . . , bm) ∈ N

m
0 is a perfect-packing configuration, if

∑m
i=1 bisi = 1.

Let ΛF denote the closure under convex combinations and positive scalar multiplication of the set of
perfect-packing configurations. Courcoubetis and Weber [4] found out, that F is a perfect-packing
distribution if and only if p ∈ ΛF .

Let L = (a1, . . . , aN ) be a list. We say that a discrete distribution F is induced by L, if the
vector of item sizes (s1, . . . , sm) contains exactly all the item sizes arising in L, and the vector of
probabilities p is given by pi := p(si) = |{1 ≤ j ≤ N : aj = si}|/N . Vice versa we can find for
every discrete distribution F a list L, such that F is induced by L.

1.4 Outline and Our Results

In Section 2 we discuss how DNF can be interpreted as a Markov chain and we prove some properties
using this interpretation. We investigate how the different performance measures are related and
we point out that AECR(DNF, F ) = AAPR(DNF, F ) for any discrete distribution F . Since the
asymptotic expected competitive ratio and the asymptotic average performance ratio coincide for
all discrete distributions, we will only consider the former in the following even though all mentioned
results are also true for the latter. The main result of Section 3 is a proof that AECR(DNF) =
RR(DNF) if the adversary in the random-order model is restricted to inputs s1, . . . , sn with

∑

i si =
ω(n2/3).
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We start Section 4 by showing that perfect-packing distributions are the worst distributions for
the considered measures, i.e., AECR(DNF,P) = AECR(DNF). Similarly we show that for proving
a lower bound on the random order ratio of DNF it suffices to consider sequences of items that can
be packed with waste zero. Then we show that AECR(DNF) ≤ 2/3, which implies RR(DNF) ≤ 2/3.
The main contribution of Section 4 are various new lower bounds on the asymptotic expected
competitive ratio of DNF. We first prove that AECR(DNF) ≥ 1/2+ǫ for a small but constant ǫ > 0.
Then we consider the following special cases for which we show better lower bounds.

– Let Px be the set of all perfect packing distributions, where the maximum item size is bounded
from above by x. For x ∈ [1/2, 1], we prove by an application of Lorden’s inequality for the
overshoot of a stopped sum of random variables that AECR(DNF,Px) ≥

1
1+x2+(1−x)2 .

– Let F be a discrete perfect-packing distribution with associated item sizes s = (s1, . . . , sm) and
probabilities p = (p1, . . . , pm). According to our discussion after Definition 4, the vector p lies
in ΛF . Hence, there exist perfect-packing configurations b

1, . . . , bN and coefficients α1, . . . , αN ≥
0 with p = α1b

1 + . . . + αNbN . We denote the smallest N for which such bi and αi exist the
degree of p. Let P(N) denote all discrete perfect-packing distributions with degree N . We prove
that

2

3
≤ AECR(DNF,P(1)) ≤

(

∞
∑

i=1

(i− 1)!

ii

)−1

≈ 0.736.

If the maximum item size is greater than or equal to 1
2 the lower bound can be improved to

(

1 +
∑∞

i=2
1
i2 ·
(

1− 1
i

)i−2
)−1

≈ 0.686.

– Let F be a discrete perfect-packing distribution with items s = (s1, . . . , sm) and probabilities
p = (p1, . . . , pm) and let p = α1b

1+. . .+αNbN for perfect-packing configurations b1, . . . , bN and
coefficients α1, . . . , αN ≥ 0. Let Ptwo denote all discrete perfect-packing distributions for which
there exists such a representation in which every perfect-packing configuration bi contains at
most two non-zero entries. We show that AECR(DNF,Ptwo) = 2/3.

In Section 5 we give some conclusions and present open problems. Appendix A contains some
basics about Markov chains, and Appendix B the proofs of two statements that we skipped in the
main part.

2 Basic Statements

Let L1 and L2 be two lists and let L1L2 denote the concatenation of them. At first, we want to point
out that OPT as well as DNF are superadditive, i.e., it holds OPT(L1) +OPT(L2) ≤ OPT(L1L2)
and DNF(L1) + DNF(L2) ≤ DNF(L1L2). Now let F be a fixed discrete distribution. The limits
γ(F ) := limn→∞ E [OPT(In(F ))] /n and limn→∞ E [DNF(In(F ))] /n exist due to Fekete’s lemma.
This guarantees that the lim inf in the definition of AECR(DNF, F ) is in fact a limit.

Furthermore, the performance measures mentioned in Definition 2 coincide in our case:

Lemma 5. Let F be a discrete distribution. It holds

AAPR(DNF, F ) = AECR(DNF, F ).

A proof of a similar statement can be found in the extended version of [16]. For our purposes it is
easier to deal with AECR(DNF, F ), so we will only mention this measure in the following.

In order to study E [DNF(In(F ))], it will be useful to think of DNF(In(F )) as a Markov chain.
We will give a brief introduction to Markov chains in Section A in the appendix. A comprehensive
overview can be found in [13]. The state space is given by the possible arising bin levels, where we
subsume all bin levels greater than or equal to 1 and the bin level 0 to a special state, which we
call the closed state. This Markov chain is irreducible.

Sometimes it will be necessary that the Markov chain does not start in the closed state, but
with bin level ℓ. DNF(ℓ, L) denotes the number of bins that DNF closes on input L, starting with
bin level ℓ. We set DNF(L) := DNF(c, L), where c denotes the closed state.

A first important observation is that we can restrict ourselves to discrete distributions F , such
that the Markov chain induced by F and DNF is aperiodic.
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Lemma 6. Let F be a discrete distribution and d ∈ N≥2. If the Markov chain induced by F and
DNF is d-periodic then AECR(DNF, F ) = 1.

Proof. We show that if the Markov chain, induced by F and DNF is d-periodic with d ≥ 2, then
all item sizes lie in the interval [d−1, (d−1)−1). In this case we cannot perform better than putting
d arbitrary items in a bin.

Let (s1, . . . , sm) be the vector of item sizes corresponding to F . We assume that s1 is the largest
item size, and sm the smallest. W.l.o.g. we can assume that sm > 0. Since the Markov chain is
d-periodic, it is clear that (d− 1) · s1 < 1, but d · s1 ≥ 1. Therefore s1 ∈ [d−1, (d− 1)−1). Let b ∈ N,
such that (b−1) ·sm < 1 and b ·sm ≥ 1. It follows from the d-periodicity that b = kd, where k ∈ N.
Then sm ∈ [b−1, (b − 1)−1) = [(kd)−1, (kd− 1)−1). Now look at the sequence consisting of kd − 2
times item sm and finally one time item s1. Then

(kd− 2) ·
1

kd
+

1

d
≥ 1,

if and only if k ≥ 2. That means, if k ≥ 2, there exists a sequence of items, which closes a bin using
(kd−1) items, which is a contradiction to d-periodicity. Hence, k = 1 and sm ∈ [d−1, (d−1)−1). ⊓⊔

Therefore, we will assume in the following that the Markov chain induced by a discrete distri-
bution F and DNF is aperiodic, and so it converges to a unique stationary distribution πF . It holds

πF (c) = E
[

TF
DNF

]−1
, where TF

DNF denotes the number of items we need to close a bin, starting
with bin level zero.

Lemma 7. Let F be a perfect-packing distribution and X be distributed according to F . Then

lim
n→∞

E [OPT(In(F ))]

n
= E [X ] .

For every discrete distribution F , it holds

lim
n→∞

E [DNF(In(F ))]

n
=

1

E
[

TF
DNF

] .

Proof. We start proving the first equation. It holds

n · E [X ] = E [s(In(F ))] = E [OPT(In(F ))] + E
[

WOPT(In(F ))
]

.

Since F is a perfect-packing distribution, it follows that

|n · E [X ]− E [OPT(In(F ))]| = o(n).

Hence,

lim
n→∞

E [OPT(In(F ))]

n
= E [X ] .

To prove the second equation we distinguish two cases. At first we assume that the Markov chain
induced by DNF and F is d-periodic, where d ≥ 2. We know from the proof of Lemma 6, that in
this case TF

DNF = d. Therefore E [DNF(In(F ))] =
⌊

n
d

⌋

. Hence

lim
n→∞

E [DNF(In(F ))]

n
=

1

d
=

1

E
[

TF
DNF

] .

If the induced Markov chain is aperiodic, then

|E [DNF(0, In(F ))]− Es∼πF
[DNF(s, In(F ))]| ≤ 1.

It holds Es∼πF
[DNF(s, In(F ))] = n · πF (c) and πF (c) = E

[

TF
DNF

]−1
, so

lim
n→∞

E [DNF(In(F ))]

n
= lim

n→∞

n · πF (c)

n
=

1

E
[

TF
DNF

] .

⊓⊔

So, if F is a perfect-packing distribution, it holds

AECR(DNF, F ) =
1

E [X ] · E
[

TF
DNF

] . (1)
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3 Connection between Asymptotic Expected Competitive Ratio and

Random-order Ratio

In this section we want to examine the connection between the asymptotic expected competitive
ratio and the random-order ratio. At first we want to mention a result, which follows from [11].

Lemma 8. It holds

RR(DNF) ≤ AECR(DNF).

Proof. Let Ln = {L = (a1, . . . , an) : P [In(F ) = L] > 0}. Then there exists a set of lists Ln,

such that Ln = ˙⋃
H∈Ln

{L : ∃σ ∈ Sn s.t. L = σ(H)}. Using the inequality (
∑n

i=1 bi)/(
∑n

i=1 ci) ≥
min1≤i≤n bi/ci, it follows

E [DNF(In(F ))]

E [OPT(In(F ))]
≥ min

H∈Ln

Eσ [DNF(σ(H))]

Eσ [OPT(σ(H))]
= min

H∈Ln

Eσ [DNF(σ(H))]

OPT(H)
.

⊓⊔

We will show that the performance measures coincide if the sum of the items increases fast
enough in terms of the number of items. A side product of the results of this section is the
following: In [8] the authors noted that in bin packing for the algorithm Next-fit and a certain list
L, the following relationship holds:

lim
j→∞

Eσ

[

NF(σ(Lj))
]

OPT(Lj)
= AECR(NF, F ), (2)

where Lj denotes the concatenation of j copies of L and F is the discrete distribution induced by
L. They asked if this result holds for arbitrary lists L. We can show that the answer is true in the
context of DNF.

In the following let K denote a universal constant, which does not depend on the considered
list L. We establish the following two bounds:

Theorem 9. Let L be an arbitrary instance and let F be the induced discrete distribution. Then
it holds

|OPT(L)−N(L) · γ(F )| ≤ K ·N(L)2/3.

Theorem 10. Let L be an arbitrary instance and let F be the induced discrete distribution. We
assume that the Markov chain induced by DNF and F possesses a unique stationary measure πF .
Then it holds

|Eσ [DNF(σ(L))]−N(L) · πF (c)| ≤ K ·N(L)2/3.

The first step of the proofs is to split up IN(L)(F ) or σ(L) into smaller sublists, an idea which
was brought up in [8]. The following lemma shows that the difference between sampling with and
without replacement can be controlled if the length of the sublists is sufficiently small compared
to N(L).

Lemma 11. Let L = (a1, . . . , aN), F be the corresponding induced discrete distribution, and b ∈ N.
We set σ(L)[1:b] = (aσ(1), . . . , aσ(b)), where σ is an arbitrary permutation of L. Then for A ∈
{DNF,OPT} it holds

∣

∣E
[

A(σ(L)[1:b])
]

− E [A(Ib(F ))]
∣

∣ ≤
b3

N
.

The proof of the lemma is based on estimates of the total variation distance. For the sake of
readability, we skip here the proof and refer to the appendix. The proofs of Theorem 9 and 10 are
somehow similar. Since the proof of the second is more compact, we present here only this one and
defer the first one also to the appendix.
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Proof (Theorem 10). Let L = (a1, . . . , aN ). For sake of readability we write N instead of N(L),
and set Lσ := σ(L). We divide Lσ into

⌈

N
b

⌉

sublists Lσ
1 , . . . , L

σ

⌈N
b ⌉

. Here, for 1 ≤ i ≤
⌈

N
b

⌉

− 1, it

is Lσ
i = (aσ(i−1)b+1, . . . , a

σ
ib), and Lσ

⌈N
b ⌉

= (aσ
(⌈N

b ⌉−1)b+1
, . . . , aσN ). By µi we denote the distribution

of the bin level of DNF after inserting the first (i− 1)b items from a random permutation of L.
Then it holds

Eσ [DNF(σ(L))] =

⌈N
b ⌉
∑

i=1

Eℓ∼µi
[DNF(ℓ, Lσ

i )]

=

(⌈

N

b

⌉

− 1

)

Eℓ∼πF
[DNF(ℓ, Ib(F ))]

+

⌈N
b ⌉−1
∑

i=1

(Eℓ∼µi
[DNF(ℓ, Lσ

i )]− Eℓ∼µi
[DNF(ℓ, Ib(F ))])

+

⌈N
b ⌉−1
∑

i=1

(Eℓ∼µi
[DNF(ℓ, Ib(F ))]− Eℓ∼πF

[DNF(ℓ, Ib(F ))])

+ Eℓ∼µ
⌈N

b ⌉
[DNF(ℓ, Lσ

i )] .

We now have to bound the differences, which stem from different underlying probability measures
and different starting points. According to Lemma 11 it is

|Eℓ∼µi
[DNF(ℓ, Lσ

i ))]− Eℓ∼µi
[DNF(ℓ, Ib(F ))]| ≤

b3

N
. (3)

Furthermore, it is easy to show, that for DNF

|Eℓ∼µi
[DNF(ℓ, Ib(F ))] − Eℓ∼πF

[DNF(ℓ, Ib(F ))]| ≤ 1. (4)

Using (3) and (4) we achieve the upper bound

Eσ [DNF(σ(L))] ≤
N

b
· Eℓ∼πF

[DNF(ℓ, Ib(F ))] +
N

b
·
b3

N
+

N

b
· 1 + b

=
N

b
· b · πF (c) + b2 +

N

b
+ b

≤ N · πF (c) +K ·N2/3.

In the same way, we could derive the lower bound. ⊓⊔

As a consequence of both bounds, we can give a non-trivial condition, which guarantees that
the random-order ratio and the asymptotic expected competitive ratio coincide.

Theorem 12. If there exists a sequence of lists L(i) such that

lim
i→∞

Eσ

[

DNF(σ(L(i)))
]

OPT(L(i))
= RR(DNF),

and s(L(i)) ∈ ω(N(L(i))2/3), then RR(DNF) = AECR(DNF).

Proof. Let ǫ > 0 be arbitrary. Since s(L(i)) ≥ OPT(L(i)) ≥ DNF(L(i)) ≥ s(L(i))/2, it also holds
OPT(L(i)) ∈ ω(N(L(i))2/3). Let F i denote the discrete distribution induced by L(i). Using that
AECR(DNF, F i) = πF i(c)/γ(F i) and the basic inequality |a/b−a′/b′| ≤ |(a−a′)/b|+ |a′/b′| · |(b−
b′)/b|, we obtain

∣

∣

∣

∣

∣

Eσ

[

DNF(L(i))
]

OPT(L(i))
−AECR(DNF, F i)

∣

∣

∣

∣

∣

≤ K ·
N(L(i))2/3

OPT(L(i))
.
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Hence, if we choose i large enough, we can find a distribution F i, such that AECR(DNF, F i) ≤
RR(DNF) + ǫ. Then

RR(DNF) + ǫ ≥ AECR(DNF, F i) ≥ AECR(DNF) ≥ RR(DNF),

i.e., both performance measures would coincide. ⊓⊔

The following corollary follows from the proof of Theorem 12.

Corollary 13. Let RR′(DNF) denote the random-order ratio of DNF restricted to instances L
with s(L) ∈ ω(N(L)2/3). It holds RR′(DNF) = AECR(DNF).

Using the same method as in the proof we can also show that (2) holds true for the dual next-fit
algorithm.

4 Upper and Lower Bounds for Dual Next-Fit on Perfect-packing

Distributions

At first we show that we can restrict ourselves to studying perfect-packing distributions. They
represent the worst-case with respect to the investigated performance measures.

Lemma 14. Let L = (a1, . . . , aN ) be a list for bin covering. Then there exists a list H that can be
packed perfectly, i.e., WOPT(H) = 0, such that

Eσ [DNF(σ(L))]

OPT(L)
≥

Eσ [DNF(σ(H))]

OPT(H)
.

Furthermore, for each distribution F there exists a perfect-packing distribution G such that

lim
n→∞

E [DNF(In(F ))]

E [OPT(In(F ))]
≥ lim

n→∞

E [DNF(In(G))]

E [OPT(In(G))]
.

Proof. Let L = (a1, . . . , aN ) be a list. Then we can modify the items in such a way that we obtain
a new list H = (ã1, . . . , ãN), such that ai ≥ ãi for all i ∈ [N ], WOPT(H) = 0, and OPT(L) =
OPT(H). Due to the monotonicity properties of DNF, it holds DNF(σ(L)) ≥ DNF(σ(H)) for an
arbitrary permutation σ. Hence,

Eσ [DNF(σ(L))]

OPT(L)
≥

Eσ [DNF(σ(H))]

OPT(H)
.

Now let F be a discrete distribution and L = (a1, . . . , aN ) be a list, which induces F and
minimizes WOPT(L)/N(L). We modify L in the same way as in the previous case, and let H denote
the modified list. We denote by Lj (orHj) the concatenation of j copies of L (orH), and G denotes
the perfect-packing distribution induced by H . For each j ∈ N it holds OPT(Lj) = OPT(Hj),
otherwise there is a contradiction to the choice of L.

Furthermore, each Lj induces F , and each Hj induces G. Therefore, we know from Lemma 30
and 31, that

|E [OPT(IjN (F ))]− E [OPT(IjN (G))]| ≤ K ·N2/3 · j2/3.

E [OPT(IjN (F ))] grows linearly in j, and DNF(IjN (F )) ≥ DNF(IjN (G)). Hence,

lim
n→∞

E [DNF(In(F ))]

E [OPT(In(F ))]
≥ lim

j→∞

E [DNF(IjN (G))]

E [OPT(IjN (G))]
= lim

n→∞

E [DNF(In(G))]

E [OPT(In(G))]
.

⊓⊔
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4.1 Upper and Lower Bounds for Arbitrary Perfect-packing Distributions

We begin presenting an upper bound for the considered performance measures, which improves a
result in [3].

Theorem 15. It holds

RR(DNF) ≤ AECR(DNF) ≤
2

3
.

Proof. Let F (m, k) be the uniform distribution on the item sizes

(

1

k
, 1−

1

k
,

(

1

k

)2

, 1−

(

1

k

)2

, . . . ,

(

1

k

)m

, 1−

(

1

k

)m
)

.

It is clear, that F (m, k) is a perfect-packing distribution. We show that for every ǫ > 0 there are

parameters m and k, such that E
[

T
F (m,k)
DNF

]

≥ 3− ǫ.

It holds

E

[

T
F (m,k)
DNF

]

=
∞
∑

i=0

P

[

T
F (m,k)
DNF > i

]

≥ 2 +
k−1
∑

i=2

P

[

T
F (m,k)
DNF > i

]

.

Simple counting yields for i ≥ 2

P

[

T
F (m,k)
DNF > i

]

=
mi

(2m)i
+

1

(2m)i

m
∑

j=2

i · (j − 1)i−1 =
1

2i
+

i

2imi

m−1
∑

j=1

ji−1

≥
1

2i
+

i

2imi
·

∫ m−1

0

xi−1 dx =
1

2i
·

[

1 +

(

1−
1

m

)i
]

.

Therefore, if we choose at first k, and then m large enough

E

[

T
F (m,k)
DNF

]

≥ 2 +

k−1
∑

i=2

1

2i
·

[

1 +

(

1−
1

m

)i
]

≥ 3− ǫ.

Using Lemma 7 the statement follows. ⊓⊔

Now we show, that in a probabilistic setting, we behave better than in the worst-case.

Theorem 16. There exists an ǫ > 0 such that

AECR(DNF) ≥
1

2
+ ǫ.

Proof. LetX1, X2, . . . denote i.i.d. random variables distributed according to F , and Sn =
∑n

i=1 Xi.
The waste, which occurs closing the bin, is given by R = STF

DNF

− 1. We will denote R also as

overshoot. Due to Wald’s equation it holds that 1+E [R] = E

[

STF
DNF

]

= E
[

TF
DNF

]

·E [X ]. From (1)

it follows that AECR(DNF, F ) = (1 + E [R])−1. We show that there exists an ǫ > 0, independent
of the perfect-packing distribution F , such that E [R] ≤ 1− ǫ.

We assume that F is induced by ℓ⋆ perfectly packed bins and a uniform distribution on the
items. Otherwise we could copy bins to achieve such a setting. We call an item large if it is strictly
larger than 1/2. Otherwise we call the item small. Our goal is to show that we will close a bin with
a small item with a constant probability, independent of F .

We denote by ℓ ≤ ℓ⋆ the number of large items and by n the number of small items. We assume
that n ≥ ℓ and that n is a multiple of ℓ. If this is not the case, we add an appropriate number of
items of size 0. This will not change the probability of closing a bin with a small item.

Let b1, . . . , bℓ denote the large items and assume that b1 ≥ b2 ≥ . . . ≥ bℓ > 1/2. Let b⋆ := b⌈ℓ/2⌉
and s⋆ = 1− b⋆.
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Let T denote the time step at which we draw for the first time a large item, and let EF denote

the event {T ≥ 15n/ℓ + 1} ∩ {
∑15n/ℓ

i=1 Xi ≥ s⋆}. We will show after finishing this proof that for

an arbitrary discrete distribution, it is P [EF ] ≥ 1.1 · 10−12. Let A := {
∑T−1

i=1 Xi < 1/2}. We set
q := P [Ec

F ], p1 := P [EF ∩ A], and p2 := P [EF ∩ Ac]. Then, the following inequalities hold:

E [R] ≤ (1/2) · p22 + 1 · (1 − p22) = 1− p22/2

E [R] ≤ (1/2) · p1/2 + 1 · (p1/2 + p2 + q) = 1− p1/4.

The first inequality follows from the observation that P [Ac]
2
≥ p22 is a lower bound on the proba-

bility that the bin gets filled with only small items, in which case the waste is at most 1/2. The
second inequality follows because if the event EF ∩A occurs then the small items that arrive before
the first large item have a total size of at least s⋆ and at most 1/2. If the first large item has size at
least b⋆, which happens with probability at least 1/2, then it closes the bin with waste at most 1/2.
Since p1 + p2 ≥ 1.1 · 10−12, it follows that E [R] < 1. ⊓⊔

In the proof we have used a lower bound for the probability of P [EF ]:

Lemma 17. For every discrete distribution F it is

P [EF ] ≥ 1.1 · 10−12.

The interesting part in the proof of the lemma is to show that the sum of the small items
exceeds the barrier s⋆ with positive probability. In order to prove this we reduce the summation
to a kind of coupon-collectors problem. We assume that the coupons have numbers from 1 to n,
and we can use for an coupon with number i, also a coupon with a higher number.

Let m ≥ n and v ∈ {1, . . . , n}m. We denote by v⋆ the vector with the same entries as v except
that the entries are ordered in non-increasing order. We say that v covers the vector (n, . . . , 1)
if v⋆i ≥ n− i+ 1 for all i ∈ [n].

Lemma 18. Let a ∈ {5, 6, 7, . . .} and let n ∈ N be arbitrary. Let v be chosen uniformly at random
from {1, . . . , n}an. Then the probability that v does not cover the vector (n, . . . , 1) is bounded from
above by

1

ea − 1
+

1

ea

(

1

ea−2/(2a)− 1
−

2a

ea−2

)

.

Proof. For i ∈ [n], let Ui denote the event that v⋆i < n− i + 1. The event Ui occurs if and only if
the number of entries from {n− i+ 1, . . . , n} in v is at most i− 1. Hence,

P [U1] = P [∀i ∈ [n] : vi < n] =

(

1−
1

n

)an

≤ e−a.

For i ∈ {2, . . . , n},

P [Ui] = P [at most i− 1 entries of v from {n− i+ 1, . . . , n}]

=
i−1
∑

j=0

(

an

j

)

·

(

1−
i

n

)an−j

·

(

i

n

)j

=

(

1−
i

n

)an

+

i−1
∑

j=1

(

an

j

)

·

(

1−
i

n

)an−j

·

(

i

n

)j

≤ e−ia +

i−1
∑

j=1

(

ean

j

)j

·

(

1−
i

n

)(a−1)n

·

(

i

n

)j

= e−ia +

(

1−
i

n

)(a−1)n

·
i−1
∑

j=1

(

eai

j

)j

≤ e−ia + e−i(a−1) · (ea)i−1 ·

i−1
∑

j=1

(

i

j

)j
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≤ e−ia + e−i(a−1) · (ea)i−1 ·

i−1
∑

j=1

(

i

j

)

≤ e−ia + e−i(a−1) · (ea)i−1 · 2i.

The probability that v does not cover the vector (n, . . . , 1) can be bounded from above as
follows:

P [U1 ∪ . . . ∪ Un] ≤

n
∑

i=1

P [Ui]

≤ e−a +
n
∑

i=2

(

e−ia + e−i(a−1) · (ea)i−1 · 2i
)

=

n
∑

i=1

e−ia +
1

ea

n
∑

i=2

(

e−i(a−2) · (2a)i
)

≤

(

1

1− e−a
− 1

)

+
1

ea

n
∑

i=2

(

2a

ea−2

)i

≤
e−a

1− e−a
+

1

ea

(

1

1− 2a/ea−2
−

2a

ea−2
− 1

)

=
1

ea − 1
+

1

ea

(

1

ea−2/(2a)− 1
−

2a

ea−2

)

.

In the calculation we used that 2a
ea−2 < 1 for a ≥ 5. ⊓⊔

Corollary 19. The probability that a uniform random vector from {1, . . . , n}5n does not cover the
vector (n, . . . , 1) is bounded from above by 0.044.

Proof (Lemma 17). Using that n ≥ ℓ, and so ℓ/(n+ ℓ) ≤ 1/2, we obtain

P

[

T ≥
15n

ℓ
+ 1

]

=

(

1−
ℓ

n+ ℓ

)15n/ℓ

≥

(

1−
ℓ

n+ ℓ

)15(n+ℓ)/ℓ

≥
1

415
.

Let us condition in the following on the event that T ≥ 15n
ℓ + 1. We now want to show, that the

event, that the sum of the first 15n/ℓ small items is at least s⋆, occurs with positive probability
independent of F . Thereto we partition the small items according to their size into n/ℓ groups
with ℓ items each. The ℓ smallest items are in the first group and so on. We denote by h the total
size of items in the last group and Z the total size of all small items. Let v = (m1, . . . ,m15n/ℓ),
where mi denotes the number of the group the i-th drawn item belongs to. We say that v covers all
groups three times, if there exists a permutation vσ of v s.t. (vσ1 , . . . , v

σ
5n/ℓ), (v

σ
5n/ℓ+1, . . . , v

σ
10n/ℓ)

and (vσ10n/ℓ+1, . . . , v
σ
15n/ℓ) cover (n, . . . , 1) respectively. Under the condition that T ≥ 15n/ℓ+ 1, v

covers all groups three times with probability at least 0.9563 ≥ 0.873 according to Corollary 19.
For i ∈ [n/ℓ] let gi denote the largest item in group i. If all groups are covered three times, the
sum of the small items drawn is at least

3

n/ℓ−1
∑

i=1

gi ≥
3(Z − h)

ℓ
.

Furthermore, the total weight of all small items is at least

Z ≥ (ℓ− [ℓ/2] + 1)s⋆ ≥ ℓs⋆/2.

For the following argument we can assume w.l.o.g. that there is no small item with size larger than
s⋆ because we are only interested in the probability that the small items drawn add up to at least
s⋆. If all groups are covered three times, the sum of the small items is at least

3

n/ℓ−1
∑

i=1

gi ≥
3(Z − h)

ℓ
≥

3(ℓs⋆/2− h)

ℓ
= 3s⋆/2− 3h/ℓ.
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If h ≤ ℓs⋆/6, then the sum of the small items drawn is at least s⋆. Hence, in this case

P [E ] ≥ 0.873 ·
1

415
≥ 8 · 10−10.

If h > ℓs⋆/6 then at least ℓ/11 small items have size at least s⋆/12. We can see this as follows: Let
x denote the number of items in group 1, which have size at least s⋆/12. Then h is bounded from
above by xs⋆ + (ℓ − x)s⋆/12. Since h > ℓs∗/6, it follows

(ℓs⋆)/6 < h ≤ xs⋆ + (ℓ − x)s⋆/12.

A simple computation then yields x > ℓ/11. The probability that exactly 12 of these items are
drawn under the condition T ≥ 15n/ℓ+ 1 is at least

(

15n/ℓ

12

)

·

(

1−
ℓ/11

n

)15n/ℓ−12

·

(

ℓ/11

n

)12

≥

(

15n

12ℓ

)12

·

(

1−
ℓ

11n

)15n/ℓ

·

(

ℓ

11n

)12

≥

(

15

11 · 12

)12

· 0.239 ≥ 1.1 · 10−12.

⊓⊔

4.2 Improved Lower Bounds for Certain Classes of Perfect-packing Distributions

At first we look at the case that the maximum item size in the perfect-packing distribution is
bounded from above by x. Let Px denote the set of all such distributions.

Theorem 20. If x ≥ 1
2 , then

AECR(DNF,Px) ≥
1

1 + x2 + (1− x)2
.

The given lower bound slightly improves the worst-case bound (1 + x)−1 in the case that the
maximum item size is greater than 1

2 . Csirik et al. pointed out in [5] that in the case of DNF there
is a connection between the bin covering problem and renewal theory, and so it is obvious to use
tools from this field. The proof is based on an estimate of the overshoot, given by Lorden:

Lemma 21 (Lorden’s inequality, [15]). Suppose X1, X2, . . . are non-negative i.i.d. random
variables with E [X1] > 0 and E

[

X2
1

]

< ∞. Let Sn = X1 + . . . +Xn, T = inf{n ∈ N : Sn ≥ 1},
and R = ST − 1. Then

E [R] ≤ E
[

X2
1

]

/E [X1] .

Proof (Theorem 20). Let F ∈ Px. We have already shown in the proof of Theorem 16 that
AECR(DNF, F ) = (1 + E [R])−1. Plugging in the estimate from Lorden’s inequality yields

AECR(DNF, F ) ≥

(

1 +
E
[

X2
]

E [X ]

)−1

. (5)

Let C(F ) denote all perfect-packing configurations of F . Since F is a perfect-packing distribution,
we could write pF as

∑

b∈C(F ) λb · c. Therefore,

E
[

X2
]

E [X ]
=

∑

b∈C(F ) λb

∑m
i=1 s

2
i bi

∑

b∈C(F ) λb

∑m
i=1 sibi

≤ max
b∈C(F )

∑m
i=1 s

2
i bi

∑m
i=1 sibi

.

Since c are perfect-packing configurations, the denominator is equal to 1 and the numerator is
bounded from above by x2 + (1− x)2. Plugging this into (5) yields the lower bound. ⊓⊔
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Now we want to look at the case F ∈ P(1), i.e., we have a vector of item sizes s, and the vector
of probabilities pF is given by pF = b/|b|1, where b is a perfect-packing configuration.

Theorem 22. It holds

2

3
≤ AECR(DNF,P(1)) ≤

(

∞
∑

i=1

(i − 1)!

ii

)−1

≈ 0.736.

If the maximum item size is greater than or equal to 1
2 the lower bound can be improved to

(

1 +
∑∞

i=2
1
i2 ·
(

1− 1
i

)i−2
)−1

≈ 0.686.

To prove this statement, we use again the coupon-collector ansatz, already used in the proof of
the lower bound for arbitrary discrete distributions.

Lemma 23. There are (n+ 1)n−1 vectors in {1, . . . , n}n, which cover (n, . . . , 1).

Proof. Our covering relationship is just a reformulation of parking functions. Every vector in
{1, . . . , n}n, which covers (n, . . . , 1) is a parking function. Konheim and Weiss showed in [12]
that there are (n+ 1)n−1 parking functions of length n. ⊓⊔

Proof (Theorem 22). We want to look at first at the lower bound. If the maximum item size is
bounded from above by 1

2 , then the lower bound is just the worst-case result: The total size of the
items in one bin is bounded from above by 3/2. Therefore, (3/2) ·DNF(L) ≥ s(L) ≥ OPT(L). So
we assume that there is an item with size greater than or equal to 1/2.

For our construction we could assume w.l.o.g. that F = F (m) is represented by s = (s1, . . . , sm),
where s1 < . . . < sm and pF is the uniform distribution on s. We draw items i.i.d. according to F ,
and let Yi denote the index of the size of the i-th drawn item. Let T̃ (m) denote the first time, that
Yt = m and Yu = m, where u < t, or that (Y1, . . . , Yt) covers (m, . . . , 1). In both cases the sum of

the items drawn is at least 1. It is clear that E
[

T
F (m)
DNF

]

≤ E

[

T̃ (m)
]

, and E

[

T̃ (1)
]

= 1.

Furthermore, it holds the following recursion for m ≥ 2:

E

[

T̃ (m)
]

=
m

m− 1
E

[

T̃ (m− 1)
]

+
(m− 1)m−2

mm−1
. (6)

Let us explain this: Assume that we draw the Yi uniformly from {1, . . . ,m}, until we cover
(m, . . . , 2) or draw m the second time. If we stop, because we have drawn m the second time,
then the bin is filled. If we need more than m − 1 items to cover (m, . . . , 2), then we also cover
(m, . . . , 1). If we have covered (m, . . . , 2) with exactly m−1 draws, then we have to draw one more
item to cover (m, . . . , 1). The previous lemma reveals that there are (m − 1) · (m − 2 + 1)m−1−2

possibilities to cover (m, . . . , 2) with exactly m − 1 items, using the largest item only once. This
yields the recursion.

Applying (6) several times, we achieve

E

[

T̃ (m)
]

= m · E
[

T̃ (1)
]

+

m
∑

i=2

m

i
·
(i− 1)i−2

ii−1

= m ·

(

1 +

m
∑

i=2

1

i2

(

1−
1

i

)i−2
)

≤ m ·

(

1 +

∞
∑

i=2

1

i2

(

1−
1

i

)i−2
)

.

Plugging this into (1) yields the lower bound.
Now we want to show the upper bound. Assume si ≥

∑m
j=i+1 sj for 1 ≤ i ≤ m. We use the

same argumentation as before. This time we only need an extra item, if we draw a permutation of
(m, . . . , 2) in the first m− 1 draws. This yields the recursion formula

E

[

T̃ (m)
]

=
m

m− 1
E

[

T̃ (m− 1)
]

+
(m− 1)!

mm−1
.
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Hence

E

[

T̃ (m)
]

= m ·

m
∑

i=1

(i − 1)!

ii
.

Let s = 1
Z(m,ǫ)

(

1− ǫ, (1− ǫ) · ǫ, (1− ǫ) · ǫ2, . . . , (1 − ǫ) · ǫm−1
)

, where Z(m, ǫ) is a normalisation

constant. If we choose ǫ small enough, we achieve E

[

T̃ (m)
]

. This yields the upper bound. ⊓⊔

We see that even in the analysis of this simple case there is room for improvement. Based on
simulations, we suppose that the upper bound represents the truth. Furthermore we were not able
to improve the worst-case bound (1 + x)−1 in the case that the maximum item size is bounded
from above by 1

2 .
Finally, let Ptwo denote all discrete perfect-packing distributions for which there exists a rep-

resentation in which every perfect-packing configuration bi contains at most two non-zero entries.

Theorem 24. Let F ∈ Ptwo, then

AECR(DNF, F ) ≥ 2/3.

Proof. Since every perfect-packing configurations contains only two item sizes, we can assume that
F is given by the uniform distribution on the vector of item sizes (g1, . . . , gm, sm, . . . , s1), where
g1 ≥ . . . ≥ gm ≥ sm ≥ . . . ≥ s1, and gi + si = 1 for 1 ≤ i ≤ m. The items gi have size at least 1/2.
Let T̃ denote the first time, we have drawn two items with size at least 1/2 or a large item and

a small item, such that their sum is greater than or equal to 1/2. We can compute P

[

T̃ > i
]

via

easy counting. Using an estimate of the sum of powers of integers we achieve

E
[

TF
DNF

]

=

∞
∑

i=0

P
[

TF
DNF > i

]

≤ 2 +

∞
∑

i=2

P

[

T̃ > i
]

= 2 +

∞
∑

i=2





mi

(2m)i
+

1

(2m)i

m
∑

j=2

i · (j − 1)i−1





= 2 +
1

2
+

∞
∑

i=2

1

2i
· i ·





1

mi

m−1
∑

j=1

ji−1



 ≤
5

2
+

∞
∑

i=2

1

2i
= 3.

Plugging this into (1) yields the desired bound. ⊓⊔

Combining this with the proof of Theorem 15, we obtain AECR(DNF,Ptwo) = 2/3.

5 Conclusions and Further Research

We have proven the first lower bound better than 1/2 for the asymptotic expected competitive
ratio of DNF that holds for any discrete distribution. Our lower bound is only slightly better
than 1/2 and there is still a considerable gap to the best known upper bound of 2/3, which we also
proved in this article. It is an interesting problem to close the gap between the lower and the upper
bound. We conjecture that the lower bound can be improved to 2/3. Furthermore, we have shown
that the asymptotic random-order ratio coincides with the asymptotic expected competitive ratio
under the mild assumption that the adversary is not allowed to add too many too small items.
We believe that this assumption is not needed and we conjecture that also for arbitrary inputs the
asymptotic random-order ratio coincides with the asymptotic expected competitive ratio for DNF.

Our analysis in Section 3 that shows the connection between the asymptotic random-order
ratio and the asymptotic expected competitive ratio under the previously mentioned assumption
can easily be adapted to the next-fit algorithm for bin packing. We expect that it can also be
generalized to more sophisticated algorithms for bin packing (e.g., to all bounded-space algorithms
with only a constant number of open bins).
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A Basics in Markov chains

A detailed introduction to the field of Markov chains can be found in [13]. We want to repeat here
the basics, which are relevant for this paper.

Let Ω be a finite set and P be a transition matrix on Ω, i.e., for each x ∈ Ω P (x, ·) is a
probability distribution on Ω.

A sequence of random variables (X0, X1, . . .) is a Markov chain with state space Ω and tran-
sition matrix P , if it holds

P
[

Xt+1 = xt+1 |X[0:t] = x[0:t]

]

= P (xt, xt+1),

for all t ∈ N0 and x[0:t] ∈ Ωt+1, such that P
[

X[0,t] = x[0:t]

]

> 0.
Two important properties of Markov chains are irreducibility and aperiodicity. We say that a

Markov chain is irreducible, if for all x, y ∈ Ω there exists an t ∈ N, such that P t(x, y) > 0, i.e.,
it is possible to reach state y beginning in state x. For each state x ∈ Ω, we define its period as
the greatest common divisor of the set {t ∈ N : P t(x, x) > 0}. We say that a Markov chain is
aperiodic, if the period of every state is equal to 1. Otherwise, we say it is periodic. Furthermore,
we can show that irreducibility implies that the periods of all states coincide.

We are especially interested in the long time behaviour of Markov chains. There, stationary
distributions play an important role. A distribution π on Ω is said to be stationary, if it fulfils the
condition π = πP . We will utilize the following statement: If a Markov chain is irreducible and
aperiodic, then the Markov chain possesses a unique stationary measure π, and the distribution of
Xn converges (exponentially) to π.

Finally, there exists an interesting connection between π and the first return time τx. τx is
defined as inf{t ∈ N : Xt = x}, where X0 = x. Then, it holds π(x) = Ex[τx]

−1.

B Proofs of statements in Section 3

As already mentioned, K denotes a universal constant, which does not depend on the considered
list L, and could differ from line to line.

B.1 Proof of Lemma 11

The proof of the lemma relies on the total variation distance. The total variation distance is a dis-
tance measure between two probability distributions. We will introduce the important statements
for our purposes, a more thorough overview could be found in [13].

Let Ω be a discrete set.

Definition 25. The total variation distance between two probability distributions µ and ν on Ω
is defined by

‖µ− ν‖TV = max
A⊂Ω

|µ(A) − ν(A)|.

We will work with two useful alternative characterizations of the total variation distance. One
of them relies on couplings.

Definition 26. A coupling of two probability distributions µ and ν is a pair of random variables
(X,Y ) defined on a single probability space such that the marginal distribution of X is µ and the
marginal distribution of Y is ν.

Lemma 27 (Proposition 4.2 and Proposition 4.7 in [13]). Let µ and ν be two probability
distributions on Ω. Then it holds

‖µ− ν‖TV =
1

2

∑

x∈Ω

|µ(x)− ν(x)|, and

‖µ− ν‖TV = inf{P[X 6= Y ] : (X,Y ) is a coupling of µ and ν}.
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A key ingredient is, that we are able to bound the difference between the expectations of f(X)
and f(Y ), where X and Y are random variables, in terms of the total variation distance and the
infinity norm of f .

Lemma 28. Let µ, ν be two probability distributions on Ω, X,Y : Ω → R random variables with
X ∼ µ and Y ∼ ν, and f : Ω → R. Then it holds

|E [f(X)]− E [f(Y )]| ≤ 2 ‖µ− ν‖TV · ‖f‖∞.

Proof. It holds

|E [f(X)]− E [f(Y )]| =

∣

∣

∣

∣

∣

∑

x∈Ω

(µ(x)− ν(x)) · f(x)

∣

∣

∣

∣

∣

≤ 2‖f‖∞ ·
1

2

∑

x∈Ω

|µ(x)− ν(x)| = 2‖f‖∞ · ‖µ− ν‖TV .

⊓⊔

Now we want to show that the difference between sampling with and without replacement is
small, if the sample size is small compared to the universe.

Lemma 29 (Theorem 6 in [14]). Let L = (a1, . . . , aN) and let F be the induced discrete distri-
bution. We assume that σ ∼ Unif(SN ).

Let µ be the distribution of (aσ(1), . . . , aσ(n)), and ν the distribution of In(F ). Then

‖µ− ν‖TV ≤
n2

2N
.

Proof. We use the following coupling: Let X be drawn according to ν. We set

Y =

{

X, if X is a legal sample w.r.t. sampling without replacement

Ỹ , Ỹ ∼ µ, otherwise.

Let A be the event, that we draw n different balls from an urn containing N different balls, w.r.t.
sampling with replacement. Furthermore let Ai denote the event, that in the i-th trial, we draw a
ball, which was not drawn in one of the i− 1 trials before. Then it holds

‖µ− ν‖TV ≤ 1− P [X = Y ]

= 1− P [X is a legal sample w.r.t. sampling without replacement]

≤ 1− P [A] = 1− P

[

n
⋂

i=1

Ai

]

= P

[

n
⋃

i=1

Ac
i

]

≤

n
∑

i=1

P [Ac
i ] =

n
∑

i=1

i

N
≤

n2

2N
.

⊓⊔

Since DNF(L) and OPT(L) are bounded from above by N(L), the proof of Lemma 11 follows
by applying the previous lemma and Lemma 28.

B.2 Proof of Theorem 9

We divide the proof of the theorem into three lemmas.

Lemma 30. Let L be an arbitrary instance, F the induced discrete distribution, and b := ⌈N(L)1/3⌉.
Then it holds

∣

∣

∣

∣

OPT(L)−
N(L)

b
· E [OPT(Ib(F ))]

∣

∣

∣

∣

≤ K ·N(L)2/3.
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Proof. The first step of the proof is splitting up the list into smaller sublists, and using that OPT
satisfies

OPT(L1) + OPT(L2)− 1 ≤ OPT(L1L2) ≤ OPT(L1) + OPT(L2) + 1,

where L1 and L2 are two lists, and L1L2 denotes the concatenation of them. This idea was brought
up in [8]. Afterwards we will apply Lemma 11.

Let L = (a1, . . . , aN ). To ease notation, we will write N instead of N(L). Let b =
⌈

N1/3
⌉

. Since
OPT does not depend on the order of the items it holds OPT(L) = Eσ [OPT(σ(L))]. Therefore we
show instead

∣

∣

∣

∣

E [OPT(σ(L))]−
N

b
· E [OPT(Ib(F ))]

∣

∣

∣

∣

≤ K ·N2/3.

To simplify the notation, let Lσ := σ(L). We divide Lσ into
⌈

N
b

⌉

sublists Lσ
1 , . . . , L

σ

⌈N
b ⌉

. Here,

for 1 ≤ i ≤
⌈

N
b

⌉

− 1, it is Lσ
i = (aσ(i−1)b+1, . . . , a

σ
ib), and Lσ

⌈N
b ⌉

= (aσ
(⌈N

b ⌉−1)b+1
, . . . , aσN ). Then for

1 ≤ i ≤
⌈

N
b

⌉

− 1, OPT(Lσ
i ) are identically distributed random variables, and OPT(Lσ

⌈N
b ⌉

) ≤ b. So,

using the estimate from Lemma 11, we get

Eσ [OPT(σ(L))] ≤

(⌈

N

b

⌉

− 1

)

E [OPT(Lσ
1 )] + b+

(⌈

N

b

⌉

− 1

)

≤
N

b
E [OPT(Lσ

1 )] + b+
N

b
≤

N

b
·

(

E [OPT(Ib(F ))] +
b3

N

)

+ b+
N

b

≤
N

b
E [OPT(Ib(F ))] + b2 + b+

N

b
.

In the same way we achieve

Eσ [OPT(σ(L))] ≥
N

b
E [OPT(Ib(F ))]− b2 − b−

N

b
,

which shows the statement. ⊓⊔

Lemma 31. Let L = (a1, . . . , aN ), F be the induced discrete distribution, and b := ⌈N(L)1/3⌉. It
holds

∣

∣

∣

∣

E [OPT(IN (F ))]−
N(L)

b
· E [OPT(Ib(F ))]

∣

∣

∣

∣

≤ K ·N(L)2/3.

This lemma can be proved in the same way as the previous one.

Lemma 32. Let L = (a1, . . . , aN ) be a list, and F the induced discrete distribution. It holds

∣

∣E
[

OPT(IN(L)(F ))
]

−N(L) · γ(F )
∣

∣ ≤ K ·N(L)2/3.

The proof of this lemma can be found in [17].
Finally, a simple application of the triangle inequality yields the proof of the theorem.
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