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Abstract

The classical Menger’s theorem states that in any undirected (or directed) graph G, given
a pair of vertices s and t, the maximum number of vertex (edge) disjoint paths is equal to
the minimum number of vertices (edges) needed to disconnect from s and t. This min-max
result can be turned into a polynomial time algorithm to find the maximum number of vertex
(edge) disjoint paths as well as the minimum number of vertices (edges) needed to disconnect
s from t. In this paper we study a mixed version of this problem, called Mixed-Cut, where
we are given an undirected graph G, vertices s and t, positive integers k and l and the
objective is to test whether there exist a k sized vertex set S ⊆ V (G) and an l sized edge set
F ⊆ E(G) such that deletion of S and F from G disconnects from s and t. We start with a
small observation that this problem is NP-complete and then study this problem, in fact a
much stronger generalization of this, in the realm of parameterized complexity. In particular
we study the Mixed Multiway Cut-Uncut problem where along with a set of terminals
T , we are also given an equivalence relation R on T , and the question is whether we can
delete at most k vertices and at most l edges such that connectivity of the terminals in
the resulting graph respects R. Our main results is a fixed parameter algorithm for Mixed
Multiway Cut-Uncut using the method of recursive understanding introduced by Chitnis
et al. (FOCS 2012).
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1 Introduction

Given a graph, a typical cut problem asks for finding a set of vertices or edges such that their
removal from the graph makes the graph satisfy some separation property. The most fundamen-
tal version of the cut problems is Minimum Cut, where given a graph and two vertices, called
terminals, we are asked to find the minimum sized subset of vertices (or edges) of the graph such
that deleting them separates the terminals. Minimum cut is can be applied to several problems,
which at first do not look like cut problems. Examples include well studied problems such as
Feedback Vertex Set [5] and Odd Cycle Transversal [22]. Even though Minimum Cut
is known to be in polynomial time for both edge and vertex versions, it becomes NP-hard for
many of its generalizations.

Two of the most studied generalizations of Minimum Cut problem which are NP-hard
are Multiway Cut and Multicut. In the Multiway Cut problem, we are given a set of
terminals, and we are asked to delete minimum number of vertices (or edges) to separate the
terminals from each other. This problem is known to be NP-hard when the number of terminals
is at least three. In the Multicut problem, given pairs of terminals, we are asked to delete
minimum number of vertices (or edges) so that it separates all the given terminal pairs. The
Multicut problem is known to be NP-hard when the number of pairs of terminals is at least
three.

These problems are one of the most well studied problems in all those algorithmic paradigms
that are meant for coping with NP-hardness, such as approximation algorithms [1, 9, 11, 12,
14, 21]. The aim of this paper is to look at a generalization of Minimum Cut problem in
the realm of parameterized complexity. The field of parameterized complexity tries to provide
efficient algorithms for NP-complete problems by going from the classical view of single-variate
measure of the running time to a multi-variate one. It aims at getting algorithms of running
time f(k)nO(1), where k is an integer measuring some aspect of the problem. These algorithms
are called fixed parameter tractable (FPT) algorithms and the integer k is called the parameter.
In most of the cases, the solution size is taken to be the parameter, which means that this
approach gives faster algorithms when the solution is of small size. For more background on
parameterized complexity, the reader is referred to the monographs [8, 10, 20].

Cut problems were looked at under the realm of Parameterized Complexity by Marx [17]
for the first time, who showed that Multiway Cut is FPT when parameterized by the solu-
tion size and Multicut is FPT when parameterized by the solution size plus the number of
terminals. Subsequently, a lot of work has been done on cut problems in the field of parame-
terized complexity [3, 4, 7, 15, 16, 18, 19]. Recently, Chitnis et al. [6] introduced the technique
of randomized contractions and used that to solve the Unique Label Cover problem. They
also show that the same techniques can be applied to solve a generalization of Multiway Cut
problem, namely Multiway Cut-Uncut, where an equivalence relation R is also supplied
along with the set of terminals and we are to delete minimum number of vertices (or edges)
such that the terminals lie in the same connected of the resulting graph if and only if they lie
in the same equivalence class of R.

Another interesting generalization of the Minimum Cut problem is the one where we allow
both vertices and edges to be deleted to achieve the desired separation properties. In an instance
of Mixed Cut problem, we are asked whether we can separate the two given terminals by
deleting at most k vertices and at most l edges. The problem can also be looked at as asking
to delete k vertices so that there are at most l edge disjoint paths between the two terminals.

Even though the vertex and edge versions of Minimum Cut problem are polynomial time
solvable, we show that allowing deletion of both, the vertices and the edges, makes the Mixed
Cut problem NP-hard. To show that, we use a simple reduction from the Bipartite Partial
Vertex Cover problem which was recently shown to be NP-hard [2, 13]. Hence, Mixed Cut
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becomes interesting from the parameterized complexity point of view.
The Mixed Cut problem can also be generalized in the same way as Minimum Cut in

some cases. In the Mixed Multiway Cut problem, which is an analogue of Multiway Cut,
given a set of terminals, we are asked to delete at most k vertices and l edges to separate the
terminals from each other. Similarly, we can define Mixed Multiway Cut-Uncut (MMCU)
as an analogue of Multiway Cut-Uncut problem where we have to preserve the connectivity
between the terminals which belong to the same equivalence class, while separating the terminals
which belong to different equivalence classes, by deleting at most k vertices and at most l edges.
We defer the formal definition of the problem to the next section. It is easy to see that MMCU
not only generalized Mixed Cut and Mixed Multiway Cut, but also both edge and vertex
versions of Multiway Cut and Multiway Cut-Uncut problems.

Studying the parameterized complexity of MMCU is the main focus of this paper. We show
that MMCU is FPT when parameterized by the solution size, i.e. k+ l. By doing so, we show
that Mixed Cut is also FPT when parameterized by the solution size.

We use the irrelevant vertex technique introduced by Chitnis et al. [6] to solve the problem.
The main observation is that if there is a small vertex separation which divides the graph into
big parts, then we can recursively reduce the size of one of the big parts. Otherwise, the graph
is highly connected, and the structure of the graph can be exploited to obtain a solution. The
techniques and the presentation of the paper are heavily borrowed from that of [6], but we
do need many technical modifications to make the algorithm work for MMCU. Allowing edge
deletions makes us modify many of the initial operations on the graph. The algorithm in [6]
returns the minimum solutions in the recursive steps. Since we allow both edge and vertex
deletion, there is no clear ordering on the solutions, and hence we need to look for solutions of
all possible sizes while making the recursive call.

2 Preliminaries

In this section, we first give the notations and definitions which are used in the paper. Then
we state some basic properties of mixed-cuts and some known results which will be used later
in the paper.
Notations and Definitions: For a graph G, we denote the set of vertices of the graph by
V (G) and the set of edges of the graph by E(G). We denote |V (G)| and |E(G)| by n and m
respectively, where the graph is clear from context. For a set S ⊆ V (G), the subgraph of G
induced by S is denoted by G[S] and it is defined as the subgraph of G with vertex set S and edge
set {(u, v) ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S is denoted as G− S.
For F ⊆ E(G), by V (F ) we denote the set {v | ∃u such that uv ∈ F}. For a set Z = V ′ ∪ E′

where V ′ ⊆ V (G) and E′ ⊆ E(G), by G(Z) we denote the subgraph G′ = (V ′ ∪ V (E′), E′).
For a tuple X = (X,F ) such that X ⊆ V (G) and F ⊆ E(G), by G − X we denote the
graph G′ = (V (G) \ X,E(G) \ F ) and by V (X ) we denote the vertex set X ∪ V (G(E)). All
vertices adjacent to a vertex v are called neighbours of v and the set of all such vertices is
called open neighbourhood of v, denoted by NG(v). For a set of vertices S ⊆ V (G), we define
NG(S) = (∪v∈SN(v)) \ S. We drop the subscript G when the graph is clear from the context.

We define the Mixed Cut and Mixed Multiway Cut-Uncut problems as follows.

Mixed Cut
Input: A multigraph G, vertices s, t ∈ V (G), integers k and l.
Parameters: k, l
Question: Does there exist X ⊆ V (G) and F ⊆ E(G) such that |X| ≤ k, |F | ≤ l

and s and t are in different connected components of G− (X,F )?
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Mixed Multiway Cut-Uncut (MMCU)
Input: A multigraph G, a set of terminals T ⊆ V (G), and equivalence relation

R on the set T and integers k and l.
Parameters: k, l
Question: Does there exist X ⊆ (V (G) \ T ) and F ⊆ E(G) such that |X| ≤ k,

|F | ≤ l and for all u, v ∈ T , u and v belong to the same connected
component of G− (X,F ) if and only if (u, v) ∈ R?

We say that a tuple X = (X,F ), where X ⊆ V (G) \ T and F ⊆ E(G), is a solution to a
MMCU instance I = (G,T,R, k, l) if |X| ≤ k, |F | ≤ l and for all u, v ∈ T , u and v belong
to the same connected component of G − (X,F ) if and only if (u, v) ∈ R. We define a partial
order on the solutions of the instance I. For two solutions X = (X,F ) and X ′ = (X ′, F ′) of
a MMCU instance I, we say that X ′ ≤ X if X ′ ⊆ X and F ′ ⊆ F . We say that a solution X
to an MMCU instance I is minimal if there does not exist another solution X ′ to I such that
X ′ 6= X and X ′ ≤ X . For a solution X = (X,F ) of an MMCU instance I = (G,T,R, k, l) and
v ⊆ V (G), we say that X affects v if either v ∈ X or there exists u ∈ V (G) such that uv ∈ F .

Observation 1. If X = (X,F ) is a minimal solution to a MMCU instance I = (G,T,R, k, l),
then none of the edges in F are incident to X.

Lemma 1 ([6]). Given a set U of size n together with integers 0 ≤ a, b ≤ n, one can in
O(2O(min(a,b) log(a+b))n log n) time construct a family F of at most O(2O(min(a,b) log(a+b)) log n)
subsets of U , such that the following holds: for any sets A,B ⊆ U , A∩B = ∅, |A| ≤ a, |B| ≤ b,
there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅.

Definition 1 ([6]). Let G be a connected graph and V ∞ ⊆ V (G) a set of undeletable vertices. A
triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-good node separation, if |Z| ≤ k, Z∩V ∞ =
∅, V1 and V2 are vertex sets of two different connected components of G−Z and |V 1\V ∞|, |V2 \
V ∞| > q.

Definition 2 ([6]). Let G be a connected graph, V ∞ ⊆ V (G) a set of undeletable vertices, and
Tb ⊆ V (G) a set of border terminals in G. A pair (Z, (Vi)

l
i=1) is called a (q, k)-flower separation

in G (with regard to border terminals Tb), if the following holds:

• 1 ≤ |Z| ≤ k and Z ∩ V ∞ = ∅; the set Z is the core of the flower separation (Z, (Vi)
l
i=1);

• Vi are vertex sets of pairwise different connected components of G − Z, each set Vi is a
petal of the flower separation (Z, (Vi)

l
i=1);

• V (G) \ (Z ∪
⋃l

i=1 Vi), called a stalk, contains more than q vertices of V \ V ∞;

• for each petal Vi we have Vi ∩ Tb = ∅, |V i \ V ∞| ≤ q and NG(Vi) = Z;

• |(
⋃l

i=1 Vi) \ V
∞| > q.

Lemma 2 ([6]). Given a connected graph G with undeletable vertices V ∞ ⊆ V (G) and integers
q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n) time a (q, k)-good node separation of G,
or correctly conclude that no such separation exists.

Lemma 3 ([6]). Given a connected graph G with undeletable vertices V ∞ ⊆ V (G) and border
terminals Tb ⊆ V (G) and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n) time
a (q, k)-flower separation in G w.r.t. Tb, or correctly conclude that no such flower separation
exists.
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Lemma 4 ([6]). If a connected graph G with undeletable vertices V ∞ ⊆ V (G) and border
terminals Tb ⊆ V (G) does not contain a (q, k)-good node separation or a (q, k)-flower separation
w.r.t. Tb then, for any Z ⊆ V (G) \ V ∞ of size at most k, the graph G − Z contains at most
(2q+2)(2k −1)+ |Tb|+1 connected components containing a vertex of V (G)\V ∞, out of which
at most one has more than q vertices not in V ∞.

3 NP-completeness of Mixed Cut

We prove that Mixed Cut in NP-complete by giving a reduction from the Bipartite Partial
Vertex Cover problem which is defines as follows.

Bipartite Partial Vertex Cover (BPVC)
Input: A bipartite graph G = (X ⊎ Y,E), integers p and q
Output: Does there exist S ⊆ V (G) such that |S| ≤ p and at least q edges in E

are incident on X?

Theorem 1 ([2, 13]). BPVC is NP-complete.

For an instance of BPVC, we assume that the given bipartite graph does not have any
isolated vertices, as a reduction rule can be applied in polynomial time which takes care of
isolated vertices and produces an equivalent instance. Given an instance (G, p, q) of BPVC
where G = (X ⊎ Y,E) is a bipartite graph, we get an instance (G′, s, t, k, l) of Mixed Cut as
follows. To get the graph G′, we introduce two new vertices s and t and add all edges from s to
X and t to Y . More formally, G′ = (V ′, E′) where V ′ = V (G) ∪ {s, t} and E′ = E ∪ {sx | x ∈
X} ∪ {ty | y ∈ Y }. Then we put k = p and l = m − q, where m = |E|. It is easy to see that
(G, p, q) is a Yes instance of BPVC if and only if (G′, s, t, k, l) is a Yes instance of Mixed
Cut, and hence we get the following theorem.

Theorem 2. Mixed Cut is NP-complete even on bipartite graphs.

4 An algorithm for MMCU

In this section, we describe the FPT algorithm for MMCU. To that end, we first describe how
we can bound the number of equivalence classes in a connected component of the given graph.

4.1 Reduction of Equivalence Classes

We first show that if there exists a vertex which has a large number of vertex disjoint paths
to terminals which are in different equivalence classes, then that vertex has to be part of the
solution.

Lemma 5. Let I = (G,T,R, k, l) be a MMCU instance and let v ∈ V (G) \ T . Assume that
there exist k + l + 2 paths P1, P2, . . . , Pk+l+2 in G, such that:

• for each 1 ≤ i ≤ k+ l+2, the path Pi is a simple path that starts at v and ends at vi ∈ T ;

• any two paths Pi and Pj , i 6= j, are vertex disjoint except for the vertex v.

• for any i 6= j, (vi, vj) /∈ R.

Then for any solution (X,F ) of I we have v ∈ X.
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Proof. For a contradiction assume that v /∈ X. Since for i 6= j, any two paths Pi and Pj are
vertex disjoint except for the vertex v, we have that after we delete vertices of X and edges of
F there are still two paths remaining among the given collection, say Pa and Pb. But then we
get a path from some va ∈ T to some vertex vb ∈ T in G− (X,F ) by concatenating Pa and Pb

such that (va, vb) /∈ R. This contradicts the fact that (X,F ) is a solution to I.

Lemma 6. Let I = (G,T,R, k, l) be a MMCU instance. For any v ∈ V (G), we can verify of
v satisfies conditions of Lemma 5 in O((k + l)n2) time.

Proof. To verify whether a vertex v ∈ V (G) satisfies the conditions of Lemma 5 we do as
follows. Given a graph G we transform it into a directed network D as follows. For every edge
uv ∈ E(G) we have two directed arcs (u, v) and (v, u) in E(D) and for every equivalence class
Z ∈ R we make a new vertex tz and give a directed arc from z ∈ Z to tz (that is we add (z, tz).
Finally, we add a super-sink t and give directed arc (tz, t) for every Z ∈ R. Furthermore, give
every arc unit capacity. Now to check whether v satisfies the conditions of Lemma 5 all we
need to check whether there is a flow of size k + l + 2 in D from v to t. This can be done by
running k + l + 2 rounds of augmenting path and thus the running time is upper bounded by
O((k + l + 2) · (|E(D)| + |V (D)|)). Thus the claimed running time follows.

Step 1. For each v ∈ V (G), if v satisfies the conditions of Lemma 5, delete v from the graph
and decrease k by one; if k becomes negative by this operation, return No. Then restart the
algorithm.

Using the algortihm described in Lemma 6, each application of Step 1 takes O((k+l)n3) time.
As Step 1 can not be applied more than k times, all applications of the step take O(k(k+ l)n3)
time. Now we show how application of Step 1 gives a bound on number of equivalence classes.

Lemma 7. Let I = (G,T,R, k, l) be the instance of MMCU which we get after the exhaustive
application of Step 1. If there exists a connected component in G containing terminals from
more than (k + l)(k + l + 1) equivalence classes of R, then I is a No instance of MMCU.

Proof. For a contradiction assume that I is a Yes instance of MMCU. We will show that if
this is the case then there exists an opportunity to apply Step 1. Let (X,F ) be a solution to I
and X ′ be a set of vertices containing all of X and exactly one vertex from each of the edges
in F . Clearly, the size of X ′ is at most k + l. Let C1, . . . , Cs be the connected components of
G−X ′ that contains at least one terminal vertices. Since G contains terminals from more than
(k + l)(k + l + 1) equivalence classes of R and each connected component of G −X ′ contains
vertices from at most one equivalence class we have that s > (k+ l)(k+ l+1). Thus by Pigeon
Hole Principle there exists a vertex v ∈ X ′ that has neighbors in at least k + l + 2 connected
components. These connected components together with v imply that we could apply Step 1.
This contradicts our assumption that on I Step 1 is no longer applicable. Thus indeed I is a
No instance of MMCU.

Step 2. If there exist u, v ∈ T such that u and v lie in different connected components of G or
there exists a connected component of G with terminals of more than (k+l)(k+l+1) equivalence
classes or R, return No.

Correctness of Step 2 follows from Lemma 7 and it can be applied in O(n2) time. In the next
step, take care of disconnected graphs which helps us assume that the input graph is connected.

Step 3. Let C1, C2, . . . Ct be the vertices corresponding to the connected components of the graph
G in the input instance I = (G,T,R, k, l). For each Ci and for every k′ ∈ {0, 1, . . . , k} and
l′ ∈ {0, 1, . . . , l} we pass the instance I i

k′,l′ = (G,T ∩ Ci,R|T∪Ci
, k′, l′) to the next step. If

for every i ∈ {1, . . . , t} there exists I i
k′
i
,l′
i

such that the subroutine returns Yes for I i
k′
i
,l′
i

and
∑

i∈{1,...,t} k
′
i ≤ k,

∑

i∈{1,...,t} l
′
i ≤ l, then return Yes, otherwise return No.
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The correctness of this step is easy to see, as after the application of Step 2, each equivalence
class is confined to at most one connected component of the graph. The step can be applied
in O(n2) time and gives rise to O(kln) subproblems. After application of Step 3, we can
assume that G is connected and that the number of equivalence classes in G are bounded by
(k + l)(k + l + 1).

4.2 Operations on the Graph

Definition 3. Let I = (G,T,R, k, l) be an MMCU instance and let v ∈ V (G)\T . By bypassing
a vertex v we mean the following operation: we delete the vertex v from the graph and, for any
u1, u2 ∈ NG(v), we add an edge (u1, u2) if it is not already present in G.

Definition 4. Let I = (G,T,R, k, l) be an MMCU instance and let u, v ∈ T . By identifying
vertices u and v, we mean the following operation: we make a new set T ′ = (T \ {u, v})∪{xuv}
and for each edge of the form uw ∈ E(G) or vw ∈ E(G), we add an edge xuv to E(G). Observe
that the operation might add parallel edges.

Lemma 8. Let I = (G,T,R, k, l) be a MMCU instance, let v ∈ V (G) \ T and let I ′ =
(G′, T,R, k, l) be the instance I with v bypassed. Then:

• if X = (X,F ) is a solution to I ′, then X is a solution to I as well;

• if X = (X,F ) is a solution to I and v /∈ X and for all u ∈ N(v) vu /∈ F then X is a
solution to I ′ as well.

Proof. We first prove the first item in the lemma. Suppose X = (X,F ) is a solution to I ′ but
it is not a solution to I. This implies that either there exists (x, y) ∈ R and x and y belong to
two different connected components of G−X or (x, y) /∈ R and they are in the same connected
component of G − X . In the first case we know that x and belongs to the same connected
component of G′ − X and thus we know that the two connected components of G − X which
contain x and y has neighbors of v. This contradicts that x and y belong to two different
connected components of G−X . For the later case if there is a path containing x and y then it
must contain v but then in G′ we have an edge between the end-points of v on this path, which
in turn would imply a path between x and y in G′ − X . One can prove the second statement
along the similar lines.

Lemma 9. Let I = (G,T,R, k, l) be a MMCU instance and let u, v ∈ T be two different
terminals with (u, v) /∈ R, such that uv ∈ E(G), then for any solution X = (X,F ) of I, we
have uv ∈ F .

The proof of the Lemma 9 follows from the fact that any solution must delete the edge uv
to disconnect u from v. The proof of the next lemma follows by simple observation that u and
v have at least k + l + 1 internally vertex disjoint paths or from the fact that (u, v) ∈ R and
thus after deleting the solution they must belong to the same connected component and thus
every minimal solution does not use the edge uv ∈ E(G).

Lemma 10. Let I = (G,T,R, k, l) be a MMCU instance and let u, v ∈ T be two different
terminals with (u, v) ∈ R, such that uv ∈ E(G) or |NG(u) ∩NG(v)| > k + l. Let I ′ be instance
I with terminals u and v identified. Then set of minimal solutions of I and I ′ is the same.

Lemma 11. Let I = (G,T,R, k, l) be an MMCU instance and let V ′ = {v1, v2, . . . , vt} ⊆ T
be different terminals of the same equivalence class of R, pairwise nonadjacent and such that
NG(u1) = NG(u2) = · · · = NG(ut) ⊆ V (G) \ T and t > l + 2. Let I ′ be obtained from I by
deleting all but l + 2 terminals in U (and all pairs that contain the deleted terminals in R).
Then the set of minimal solutions to I and I ′ are equal.
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Proof. Without loss of generality, let the set deleted terminals be U ′ := {ul+3, . . . , ut} and let
N := NG(u1) = NG(u2) = · · · = NG(ut). Let u, v ∈ V (G) \ U ′. We claim that for any minimal
solution X = (X,F ) of I, u and v are in the same connected component of G− X if and only
if they are in the same connected component of G′ − X . The backward direction is trivial. To
show the forward direction, we just need to show that F does not contain any edges incident
on U , because then if a path visits a vertex in U ′, then we can redirect it via one of ui’s which
remain in the graph. For v ∈ X ∩ N , by Observation 1, we have that F does not contain any
edges incident on v. For v ∈ N \X, there are ua, ub ∈ U \U ′ which are adjacent to v in G−X .
This gives us that v lies in the same connected component of G−X as U , and hence a minimal
solution does not contain any of the edges between x and U . This shows that X is a minimal
solution for I ′ as well.

For the converse, let X be a minimal solution to I ′. We just need to show that if u, v ∈ T
such that v ∈ T \U ′ and u ∈ U ′, they lie in same connected component of G−X if and only if
(u, v) ∈ R. Since l ≥ 0, we have that |U \ U ′| ≥ 2. Now it is easy to see that N ( X because
otherwise the vertices of U \U ′ will not be in the same connected component of G′−X . Hence,
there exists x ∈ N \X. Since |NG′(X) ∩U ′| = l+ 2, v is adjacent to at least 2 vertices of U ′ in
G′ −X . Without loss of generality, let u1, u2 ∈ U \U ′ be these two vertices. Now let v ∈ T \U ′

and u ∈ U ′. If (v, u1) ∈ R, then v and x belong to the same connected component of G′ − X
and hence v and u belong to same connected component of G − X . Similarly if (v, u1) /∈ R),
then v and x belong to the different connected components of G′−X and hence v and u belong
to different connected components of G− X . This concludes the proof of the lemma.

Lemma 12. Let I = (G,T,R, k, l) be an MMCU instance and let uv ∈ E(G) be an edge with
multiplicity more than l + 1. Then for any minimal solution X = (X,F ) of I, F does not
contain any copies of uv.

Proof. If {u, v} ∩X 6= ∅, then by Observation 1, we have that none of the copies of uv are in
F . Otherwise, F contains at most l copies of edge uv. Let X ′ = (X,F \ {uv}). Then we have
that for any two x, y ∈ V (G), x and y are adjacent in G−X if and only if they are adjacent in
G− X ′, contradicting the minimality of X .

a minimal solution for I ′ as well.

4.3 Borders and Recursive Understanding

In this section, we define the bordered problem and describe the recursive phase of the algorithm.
Let I = (G,T,R, k, l) be an MMCU instance and let Tb ⊆ V (G)\T be a set of border terminals,
where |Tb| ≤ 2(k + l). Define Ib = (G,T,R, k, l, Tb) to be an instance of the bordered problem.
By P(Ib) we define the set of all tuples P = (Xb, Eb,Rb, k

′, l′), such that Xb ⊆ Tb, Eb is an
equivalence relation on Tb \Xb, Rb is an equivalence relation on T ∪ (Tb \Xb) such that Eb ⊆ Rb

and Rb|T = R, k′ ≤ k and l′ ≤ l. For a tuple P = (Xb, Eb,Rb, k
′, l′), by GP we denote the

graph G ∪Eb, that is the graph G with additional edges Eb.
We say that as tuple X = (X,F ) is a solution to (Ib,P) where P = (Xb, Eb,Rb, k

′, l′) if
|X| ≤ k′, |F | ≤ l′ and for all u, v ∈ T ∪ (Tb \ Xb), u and v belong to the same connected
component of GP − (X,F ) if and only if (u, v) ∈ Rb. We also say that X is a solution to
Ib = (G,T,R, k, l, Tb) whenever X is a solution to I = (G,T,R, k, l). Now we define the
bordered problem as follows.
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Border-Mixed Multiway Cut-Uncut(B-MMCU)
Input: An MMCU instance I = (G,T,R, k, l) with G being connected and a

set Tb ⊆ V (G)\T such that |Tb| ≤ 2(k+l); denote Ib = (G,T,R, k, l, Tb).
Output: For each P = (Xb, Eb,Rb, k

′, l′) ∈ P(Ib), output a solP = XP being a
minimal solution to (Ib,P), or solP = ⊥ if no solution exists.

It is easy to see that MMCU reduces to B-MMCU, by putting Tb = ∅. Also, in this case,
any answer to B-MMCU for P = (∅, ∅,R, k, l) returns a solution for MMCU instance. To
bound the size of the solutions returned for an instance of B-MMCU we observe the following.

|P(Ib)| ≤ (k + 1)(l + 1)(1 + |Tb|(|Tb|+ (k + l)(k + l + 1)))|Tb|

≤ (k + 1)(l + 1)(1 + 2(k + l)2(k + l + 3))2(k+l)

= 2O((k+l) log(k+l))

This is true because Rb has at most (k + l)(k + l + 1) + |Tb| equivalence classes, Eb has
at most Tb equivalence classes, each v ∈ Tb can either go to Xb or choose an equivalence
class in Rb and Eb, and k′ and l′ have k + 1 and l + 1 possible values respectively. Let q =
(k+2l)(k+1)(l+1)(1+2(k+ l)2(k+ l+3))2(k+l)+k+ l, then all output solutions to a B-MMCU
instance Ib affect at most q − (k + l) vertices in total. Now we are ready to prove the lemma
which is central for the recursive understanding step.

Lemma 13. Assume we are given a B-MMCU instance Ib = (G,T,R, k, l, Tb) and two disjoint
sets of vertices Z, V ∗ ⊆ V (G), such that |Z| ≤ k + l, Z ∩ T = ∅, ZW := NG(V

∗) ⊆ Z,
|V ∗ ∩ Tb| ≤ k + l and the subgraph of G induced by W := V ∗ ∪ ZW is connected. Denote
G∗ = G[W ], T ∗

b = (Tb ∪ ZW ) ∩W , T ∗ = T ∩W , R∗ = R|T∩W and I∗ = (G∗, T ∗, R∗, k, l, T ∗
b ).

Then I∗ is a proper B-MMCU instance. Moreover, if we denote by (sol∗P∗)P∗∈P(I∗
b
) an arbitrary

output to the B-MMCU instance I∗
b and

U(I∗
b ) = T ∗

b ∪ {v ∈ V (G) | P∗ ∈ P(I∗
b ), sol

∗
P∗ = X ∗

P∗ 6= ⊥ and X ∗
P∗ affects v},

then there exists a correct output (solP)P∈P(Ib) to the B-MMCU instance Ib such that whenever
solP = XP 6= ⊥ and XP is a minimal solution to (Ib,P) then V (XP ) ∩ V ∗ ⊆ U(I∗

b ).

Proof. To see that I∗
b is a proper B-MMCU instance, we observe that G∗ = G[W ] is connected,

|ZW | ≤ |Z| ≤ k + l and |V ∗ ∩ Tb| ≤ k + l, and hence |T ∗
b | ≤ 2(k + l).

To show the second part of the lemma, let us assume P = (Xb, Eb,Rb, k
′, l′) ∈ P(Ib). Let

XP = (X,F ) be a solution to (Ib,P). We show that there exists another solution X ′
P = (X ′, F ′)

to (Ib,P) such that |X ′| ≤ |X|, |F ′| ≤ |F | and V (X ′
P) ∩ V ∗ ⊆ U(I∗

b ). To that end, we
define a tuple P∗ = (X∗

b , E
∗
b ,R

∗
b , k

∗, l∗) as follows. Let F ′′ := F \ E(G[W ]), X ′′ := (X \ V ∗)
and X ′′

P = (X ′′, F ′′). Let G′
P be the graph such that V (G′

P ) = V (G) \ W and E(G′
P ) =

E(GP − V ∗) \E(GP [ZW ]. Observe that V (G∗) ∩ V (G′
P ) = ZW and E(G∗) ∩ E(G′

P ) = ∅.

• X∗
b = X ∩ T ∗

b .

• E∗
b is an equivalence relation on T ∗

b \X∗
b such that for (u, v) ∈ E∗

b if and only if u and v
are in the same connected component of G′

P −X ′′
P .

• R∗
b is an equivalence relation on T ∗ ∪ (T ∗

b \X∗
b ) such that (u, v) ∈ R∗

b if and only if u and
v are in the same connected component of GP − XP .

• k∗ := |X ∩W | and l∗ := |F ∩ E(G[W ])|.
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Since |X| ≤ k′ ≤ k and |F | ≤ l′ ≤ l, we have that k∗ ≤ k and l∗ ≤ l. Also, E∗
b ⊆ R∗

b because
they are both corresponding to relation of being in the same connected component, but the
graph considered for defining E∗

b is a subgraph of the one considered for defining R∗
b . Hence

we have that P∗ ∈ P(I∗
b ). We claim that (X ∩W,F ∩ E[(G[W ])) is a solution to (I∗

b ,P
∗). By

definition, we have that |X ∩W | ≤ k∗ and |F ∩ E[(G[W ])| ≤ l∗. Also, by definition of X∗
b , we

have that X ∩ W ∩ T ∗
b = X∗

b . Now look at two vertices u, v ∈ T ∗ ∪ (T ∗
b \X∗

b ). By definition,
we have that (u, v) ∈ R∗

b if and only if there exists a path P connecting u and v in GP − XP .
We claim that such a path P exists if and only if there exists a path P ∗ connecting u and v
in G∗

P∗ − (X ∩W,F ∩ E(G[W ])). It is indeed so, because subpath of P with internal vertices
in V (G) \ W corresponds to an edge in E∗

b and vice versa. Thus, u and v are in the same
connected component of G∗

P∗ − (X ∩ W,F ∩ E[(G[W ])) if and only if (u, v) ∈ R∗
b and hence

(X ∩W,F ∩ E[(G[W ])) is a solution to (I∗
b ,P

∗).
So we get that sol∗P∗ = X ∗

P∗ =: (X∗, F ∗) 6= ⊥ and |X∗| ≤ k∗ and |F ∗| ≤ l∗. Let X ′
P =

(X ′, F ′), where X ′ = (X \ W ) ∪ X∗ and F ′ = (F \ E(G[W ])) ∪ F ∗. We claim that X ′
P is a

solution for (Ib,P). As |X∗| ≤ |X ∩W | and |F ∗| ≤ |F ∩E(G[W ]), we have that |X ′| ≤ |X| ≤ k′

and |F ′| ≤ |F | ≤ l′. Also, since X∗
b = X ∩ T ∗

b by definition of X∗
b and by properties of X ∗

P∗, we
have that X∗

b = X∗ ∩ T ∗
b . Hence, X ∩ T ∗

b = X∗ ∩ T ∗
b and (X,F ) is a solution for (Ib,P) which

gives X ′ ∩ Tb = Xb.
Now let us look at two vertices u, v ∈ T ∪ (Tb \Xb). We need to show that u and v lie in the

same connected component of GP −X ′
P if and only if they lie in the same connected component

of GP − XP . This will conclude the proof of the lemma.
Let u, v ∈ T ∪ (Tb \Xb) lie in the same connected component of GP −XP . Let D := T ∪ (Tb \

Xb) ∪ ZW . Let P be a path connecting u and v in GP − XP and let u = v0, v1, v2, . . . , vr = v
be the sequence of vertices that lie on P in that order such that vi ∈ D for all i ∈ {0, 1, . . . , r}.
Since X\V ∗ = X ′\V ∗ andX∩D = X ′∩D = Xb∪X

∗
b , we have vi /∈ X ′ for all i ∈ {0, 1, 2, . . . , r}.

Now, to finish this direction of the proof, we need to show that the vertices vi and vi+1 lie in
same connected component of GP − X ′

P for all i ∈ {0, 1, . . . , r − 1}.
Let Pi be the subpath of P between vi and vi+1. As ZW ⊆ D, Pi is either a path in G′

P or
a path in GP [W ]. For the first case, we know that X \ V ∗ = X ′ \ V ∗ and also we have that
F \F ∗ = F ′ \F ∗, and hence the path is also present on G′

P −XP and hence in GP −X ′
P . In the

second case, we have that (vi, vi+1) ∈ R∗
b . As (X

′∩W,F ′∩E(G[W ])) = (X∗, F ∗) is a solution to
(I∗

b ,P
∗), we infer that vi and vi+1 are connected via a path P ∗

i in G∗
P∗ −(X ′∩W,F ′∩E(G[W ])).

Hence, u and v are connected in GP −X ′
P if the path P ∗ does not use any edge w1w2 ∈ E∗

b . By
definition of E∗

b , w1w2 ∈ E∗
b if and only if w1 and w2 lie in the same connected component of

G′
P−(X ′′, F ′′). But we know that X ′′ = X\V ∗ = X ′\V ∗ and F ′′ = F \E(G[W ]) = F ′\E(G[W ])

and hence w1 and w2 are also connected in G′
P − X ′′

P and hence in GP − X ′
P . This completes

one direction of the proof.
For the other direction, the proof is completely symmetrical and we omit the details. This

completes the proof of the lemma.

Now we describe the recursive step of the algorithm.

Step 4. Assume we are given a B-MMCU instance Ib = (G,T,R, k, l, Tb). Invoke first the
algorithm of Lemma 2 in a search for (q, k + l)-good node separation (with V ∞ = T ). If it
returns a good node separation (Z, V1, V2), let j ∈ {1, 2} be such that |Vj ∩Tb| ≤ k+ l and denote
Z∗ = Z, V ∗ = Vj . Otherwise, if it returns that no such good node separation exists in G, invoke
the algorithm of Lemma 3 in a search for (q, k + l)-flower separation w.r.t. Tb (with V ∞ = T
again). If it returns that no such flower separation exists in G, pass the instance Ib to the next
step. Otherwise, if it returns a flower separation (Z, (Vi)

l
i=1), denote Z∗ = Z and V ∗ =

⋃l
i=1 Vi.

In the case we have obtained Z∗ and V ∗ (either from Lemma 2 or Lemma 3), invoke the
algorithm recursively for the B-MMCU instance I∗

b defined as in the statement of Lemma 13
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for separator Z∗ and set V ∗, obtaining an output (sol∗P∗)P∗ ∈ P(I∗
b ). Compute the set U(I∗

b ).
Bypass (in an arbitrary order) all vertices of V ∗ \ (T ∪ U(I∗

b )). Recall that T ∗
b ⊆ U(I∗

b ), so
no border terminal gets bypassed. After all vertices of V ∗ \ U(I∗

b ) are bypassed, perform the
following operations on terminals of V ∗ ∩ T :

1. As long as there exist two different u, v ∈ V ∗ ∩ T such that (u, v) /∈ R, and uv ∈ E(G),
then delete the edge uv and decrease l by 1; if l becomes negative by this operation, return
⊥ for all P ∈ P(Ib).

2. As long as there exist two different u, v ∈ V ∗∩T such that (u, v) ∈ R and either uv ∈ E(G)
or |NG(u) ∩NG(v)| > k + l, identify u and v.

3. If the above two rules are not applicable, then, as long as there exist three pairwise dis-
tinct terminals u1, u2, . . . , ut ∈ T of the same equivalence class of R that have the same
neighborhood and t > l + 2, delete ui for i > l + 2 from the graph (and delete all pairs
containing ui from R).

Let I ′
b be the outcome instance.

Finally, restart this step on the new instance I ′
b and obtain a family of solutions (solP)P∈P(I′

b
)

and return this family as an output to the instance Ib.

We first verify that the application of Lemma 13 is justified in Step 4. By definitions of good
node separations and flower separations and by choice of V ∗, we have that |V ∗∩Tb| ≤ k+ l and
G[V ∗ ∪ NG(V

∗)] is connected. Also, the recursive calls are applied to strictly smaller graphs
because in good node separation, V2 is deleted in the recursive call while in the other case, by
definition of flower separation, we have that Z ∪

⋃l
i=1 Vi is a proper subset of V (G).

After the bypassing operations, we have that V ∗ contains at most q vertices that are not
terminals (at most k + l border terminals and at most q − (k + l) vertices which are neither
terminals nor border terminals). Let us now bound the number of terminal vertices once Step 4
is applied. Note that, after Step 4 is applied, for any v ∈ T ∩V ∗, we have NG(v) ⊆ (V ∗ \T )∪Z
and |(V ∗ \ T ) ∪ Z| ≤ (q + k + l). Due to the first and second rule in Step 4, for any set
A ⊆ (V ∗ \ T ) ∪ Z of size k + l + 1, at most one terminal of T ∩ V ∗ is adjacent to all vertices
of A. Due to the third rule in Step 4, for any set B ⊆ (V ∗ \ T ) ∪ Z of size at most k + l and
for each equivalence class of R, there are at most l + 2 terminals of this equivalence class with
neighborhood exactly B. Let q′ := |T ∪ V ∗|, then we have the following.

q′ ≤ (q + k + l)k+l+1 + (l + 2)(k + l)(k + l + 1)

k+l
∑

i=1

(q + k + l)i = 2O((k+l)2 log(k+l))

Lemma 14. Assume that we are given a B-MMCU instance Ib = (G,T,R, k, l, Tb) on which
Step 4 is applied, and let I ′

b be an instance after Step 4 is applied. Then any correct output to
the instance I ′

b is a correct output to the instance Ib as well. Moreover, if Step 4 outputs ⊥ for
all P ∈ P(I ′

b), then this is a correct output to Ib.

Proof. We first note that by Lemma 13, for all P ∈ P(Ib), for all the vertices v /∈ U(I∗
b ), there

exists a minimal solution to (Ib,P) that does not affect v, hence by Lemma 8, the bypassing
operation is justified. The second and third rules are justified by Lemma 10 and Lemma 11
respectively. The first rule is justified by Lemma 9, and if application of this rule makes l
negative then for any P ∈ P(Ib), there is no solution to (Ib,P).

Now we do a running time analysis for Step 4. The applications of Lemma 2 and Lemma 3
take time O(2O(min(q,k+l) log(q+k+l))n3 log n) = O(2O((k+l)2 log(k+l))n3 log n). Let n′ = |V ∗|; the
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recursive step is applied to a graph with at most n′+k+l vertices and, after bypassing, there are
at most min(n−1, n−n′+ q+ q′) vertices left. Moreover, each bypassing operation takes O(n2)
time, the computation of U(I∗

b ) takes O(2O((k+l) log(k+l))n) time. Each application of Lemma 9
takes O(n2) time and it can be applied at most l times. So all applications of Lemma 9 take
O(ln2) time. Application of Lemma 10 takes O((k + l)n2) time per operation, which can
be implemented by having a counter for each pair of terminals and increasing those counters
accordingly by considering every pair of terminals of NG(x), for each x ∈ V (G) \T . Since when
a counter reaches value k+ l+1 for vertices u, v, we know that |NG(u)∩NG(v)| > k+ l, the total
time consumed is bounded by O((k + l)n2). Application of Lemma 11 takes O(n2 log n) time
per operation, since we can sort terminals from one equivalence class according to their sets of
neighbours. Since both Lemma 10 and Lemma 11 decrease the number of terminals by at least
1, when applied, they can be applied at most n times. Hence, all applications of Lemma 10 and
Lemma 11 takes total O(n3(k + l + log n)) time. We also note that values of k and l do not
change during the recursive calls. So, we get the following recurrence relation for the running
time of Step 4 as a function of vertices of the graph G.

T (n) ≤ max
q+1≤n′≤n−q−1

(

O(2O((k+l)2 log(k+l))n3 log n)+T (n′+k+ l)+T (min(n−1, n−n′+q+q′))
)

Solving the recurrence gives T (n) = O(2O((k+l)2 log(k+l))n4 log n) in the worst case, which is
the desired upper bound for the running time of the algorithm.

4.4 High Connectivity phase

In this section we describe the high connectivity phase for the algorithm. Assume we have a
B-MMCU instance Ib = (G,T,R, k′, l′, V ∞, Tb) where Step 4 is not applicable. Let us fix P =
(Xb, Eb,Rb, k, l) ∈ P(Ib). We iterate through all possible values of P and try to find a minimal
solution to (Ib,P). Since |P(Ib)| = 2O((k+l) log(k+l)) it results in a factor of 2O((k+l) log(k+l)) in
the running time. For a graph G, by L(G) we denote the set V (G) ∪ E(G). Similarly, for a
tuple X = (X,F ), by L(X ) we denote the set X ∪F . Since we have assumed that Step 4 is not
applicable, for any X = (X,F ) where X ⊆ V (G)\T , F ⊆ E(G), |X| ≤ k and |F | ≤ l, Lemma 4
implies that the graph G−X contains at most t := (2q+2)(2(k+ l)−1)+2(k+ l)+1 connected
components containing a non-terminal, out of which at most one can contain more than q
vertices outside T . Let us denote its vertex set by big(X ) (observe that this can possibly be the
empty set, in case such a component does not exist). We once again need to use lemmas 9-11
to bound number of terminals.

Step 5. Apply Lemma 9, Lemma 10 and Lemma 11 exhaustively on the set T of terminals in
the graph (as done in rules 1-3 of Step 4, but doing it for all of T instead of just T ∩V ∗). Then
remove all but l + 1 copies of edges having multiplicity more than l + 1.

The running time analysis of applying lemmas 9-11 in this step is exactly the same as the
one done in Step 4 and takes O(n3(k + l + log n)) time. Deletion of copies of parallel edges is
justified by Lemma 12 and takes time at most O(mn). Hence, the total time taken by this step
is O(n3(k+ l+ log n)). Now we define the notion of interrogating a solution, which will help us
in highlighting the solution.

Definition 5. Let Z = (Z,F ′) where Z ⊆ V (G) \ T , F ′ ⊆ E(G), |Z| ≤ k and |F ′| ≤ l and let
S ⊆ L(G) \ T . We say that S interrogates Z if the following holds:

• S ∩ L(Z) = ∅;
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• for any connected component C of G − Z with at most q vertices outside T , all vertices
and edges of C belong to S ∪ T .

Lemma 15. Let q′′ = (qt + k + l)k+l+1 + (l + 2)(k + l)(k + l + 1)
∑k+l

i=1(qt + k + l)i. Let F
be a family obtained by the algorithm of Lemma 4 for universe U = L(G) \ T and constants

a = q′′+ qt+
(

q′′+qt
2

)

and b = k+ l, Then, for any Z = (Z,F ′) where Z ⊆ V (G)\T , F ′ ⊆ E(G),
|Z| ≤ k and |F ′| ≤ l, there exists a set S ∈ F that interrogates Z.

Proof. Let Z = (Z,F ′) where Z ⊆ V (G) \ T , F ′ ⊆ E(G), |Z| ≤ k and |F ′| ≤ l. Let A be the
union of vertex sets of all connected components of G−Z that have at most q vertices outside
T and let B be the set of edges of these connected components. By Lemma 4, |A \ T | ≤ qt.
Also, since we have applied Step 5 exhaustively, we have that no two terminals are adjacent in
the graph. Let C = {u |uv ∈ E(G) ∩ F ′, v ∈ A ∩ T}. Clearly, C ∩ T = ∅, |C| ≤ l and for any
v ∈ A∩T , N(v) ⊆ (A \T )∪Z ∪C which gives |N(A∩T )| ≤ |(A \T )∪Z ∪C| ≤ qt+ k+ l. Now
doing the same analysis as in Step 4 gives us |A∩T | ≤ q′′. Since all the edges in the graph have

multiplicity at most l + 1), we have that |A ∪B| ≤ q′′ + qt+ (l + 1)
(

q′′+qt
2

)

and |L(Z)| ≤ k + l.
So, by Lemma ??, there is a set S ∈ F that is disjoint with L(Z) and contains (A \ T )∪B. By
construction of A and B, S interrogates Z. This completes the proof of the lemma.

Step 6. Compute the family F from Lemma 15 and branch into |F| subcases, indexed by sets
S ∈ F . In a branch S we seek for a minimal solution XP to (Ib,P), which is interrogated by S.

Note that since we have q′′ = 2O((k+l)2 log(k+l)) and q, t = 2O((k+l) log(k+l)), the family F of
Lemma 1 is of size O(2O((k+l)3 log(k+l)) log n) and can be computed in O(2O((k+l)3 log(k+l))n log n)
time. The correctness of Step 6 is obvious from Lemma 15. As discussed, it can be applied in
O(2O((k+l)3 log(k+l))n log n) time and gives rise to O(2O((k+l)3 log(k+l)) log n) subcases.

Lemma 16. Let XP = (X,F ) be a solution to (Ib,P) interrogated by S. Then there exists a
set T big ⊆ T ∪ (Tb \Xb) that is empty or contains all vertices of exactly one equivalence class
of Rb, such that X ⊆ (Xb ∪ NG(S(T

big)) and F = AG,X(S(T big)), where S(T big) is the union
of vertex sets of all connected components of G(S ∪ T ∪ (Tb \ Xb)) that contain a vertex of
(T ∪ (Tb \Xb))\T

big and AG,X(S(T big)) is set of edges in G which have at least one end point in
S(T big) but do not belong to any of the connected components of G[S(T big)] and are not incident
on X.

Proof. Let XP = (X,F ). Consider the graph GP −XP and let bigP(XP) be the vertex set of the
connected component of GP − XP that contains big(XP) (recall that GP is the graph G with
additional edges Eb ; thus bigP(XP) may be significantly larger than big(XP)). If big(XP) = ∅,
then we take bigP(XP) to be the empty set as well. As XP is a solution to (Ib,P), we have
X ∩ Tb = Xb. Define T big = (T ∪ (Tb \Xb)) ∩ bigP(XP); as XP is a solution to (Ib,P), T big is
empty or contains vertices of exactly one equivalence class of Rb.

Now let C be the vertex set of a connected component of G − XP that contains a vertex
v ∈ (T ∪ (Tb \ Xb)) \ T big. Clearly, v /∈ bigP(XP ). As S interrogates XP , bigP(XP ) contains
big(XP ) and X∩ (T ∪Tb) = Xb ⊆ Tb, we infer that C is the vertex set of a connected component
of G(S ∪ T ∪ (Tb \ Xb)) as well. As v ∈ C, C is a connected component of G[S(T big)]. Let
X ′ = Xb ∪ (X ∩NG(S(T

big))) and let F ′ = AG,X′(S(T big))∩F . We claim that X ′ = (X ′, F ′) is
a solution to (Ib,P).

As Xb ⊆ X, we have that X ′ ⊆ X and hence |X ′| ≤ k. Also, since F ′ ⊆ F , we have that
|F ′| ≤ l. Moreover, as X ′ ⊆ X, F ′ ⊆ F and XP = (X,F ) is a solution to (Ib,P), if (u, v) ∈ Rb

then u and v are in the same connected component of GP − X ′
P . We now show that for any

(u, v) /∈ Rb the vertices u and v are in different connected components of GP − X ′
P . For the

sake of contradiction, let u, v ∈ T ∪ (Tb \ Xb) such that (u, v) /∈ Rb, u and v lie in the same
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connected component of GP − X ′
P and distance between u and v is minimum possible. Let P

be the shortest path between u and v in GP − X ′
P .

As XP = (X,F ) is a solution to (Ib,P), u and v lie in different connected components of
GP − XP . Without loss of generality, let v /∈ T big and let C be the connected component of
G−XP that contains v. Since (u, v) /∈ Rb and G−XP is a subgraph of GP −XP , we have that
u /∈ C. Since for every edge xy in G such that x ∈ C and y /∈ C, we have that either y ∈ X ′ or
xy ∈ F ′, the path P contains an edge v1u1 ∈ Eb such that v1 ∈ C and u1 /∈ C. So in that case
we have that v1, u1 ∈ Tb and hence (v1, u1) ∈ Rb. Also, since v1 ∈ C, (v, v1) ∈ Rb and since
Rb is an equivalence relation, we have that (v, u1) ∈ Rb. But by our assumption, (u, v) /∈ Rb,
which gives that (u1, u) /∈ Rb. Hence u1, u ∈ T ∪ (Tb \Xb) such that (u1, u) /∈ Rb and they are
connected by a proper subpath of P in GP − X ′

P , which contradicts our choice of u, v and P .
This completes the proof of the lemma.

Now we are ready to give the final step of the algorithm. The correctness of the step follows
from Lemma 16 and the fact that if S interrogates a solution X to (Ib,P), then |NG(S(T

big))| ≤
k + l.

Step 7. For each branch, where S is the corresponding guess, we do the following. For each set
T big that is empty or contains all vertices of one equivalence class of Rb, if |NG(S(T

big))| ≤ k+l,
then for each X ⊆ Xb ∪NG(S(T

big)) such that |X| ≤ k, and F = AG,X(S(T big)), check whether
(X,F ) is a solution to (Ib,P) interrogated by S. For each P, output a minimal solution to
(Ib,P) that is interrogated by S. Output ⊥ if no solution is found for any choice of S, T big and
X.

Note that R has at most (k + l)(k + l + 1) equivalence classes. As |Tb| ≤ 2(k + l), we
have Rb ≤ (k + l)(k + l + 3), and hence there are at most (k + l)(k + l + 3) + 1 choices of the
set T big. For each T big, computing NG(S(T

big)) and checking whether |NG(S(T
big))| ≤ k + l

takes O(n2) time. Since Xb ≤ k, there are at most (k + 1)(2k + l)k choices for X, and then
computing F = AG,X(S(T big)) and checking whether (X,F ) is a solution to (Ib,P) interrogated
by S take O(n2) time each. Finally, checking whether the solution is minimal or not and
computing a minimal solution takes additional O((k + l)n2) time. Therefore Step 7 takes
O(2O((k+l)3 log(k+l))n2 log n) time for all subcases.

This finishes the description of fixed-parameter algorithm for MMCU and we get the fol-
lowing theorem.

Theorem 3. MMCU can be solved in O(2O((k+l)3 log(k+l))n4 log n) time.

References

[1] A. Agarwal, N. Alon, and M. Charikar. Improved approximation for directed cut problems.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego,
California, USA, June 11-13, 2007, pages 671–680, 2007.

[2] N. Apollonio and B. Simeone. The maximum vertex coverage problem on bipartite graphs.
Discrete Applied Mathematics, 165:37–48, 2014.

[3] N. Bousquet, J. Daligault, and S. Thomassé. Multicut is FPT. In Proceedings of the 43rd
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