
An Iterative Decision-Making Scheme
for Markov Decision Processes

and Its Application to Self-adaptive Systems

Guoxin Su1(B), Taolue Chen2, Yuan Feng3, David S. Rosenblum1,
and P.S. Thiagarajan4

1 School of Computing, National University of Singapore, Singapore, Singapore
guoxinsu@gmail.com

2 Department of Computer Science, Middlesex University London, London, UK
3 Centre for Quantum Computation and Intelligent Systems,

University of Technology Sydney, Sydney, Australia
4 Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA

Abstract. Software is often governed by and thus adapts to phenom-
ena that occur at runtime. Unlike traditional decision problems, where a
decision-making model is determined for reasoning, the adaptation logic
of such software is concerned with empirical data and is subject to practi-
cal constraints. We present an Iterative Decision-Making Scheme (IDMS)
that infers both point and interval estimates for the undetermined transi-
tion probabilities in a Markov Decision Process (MDP) based on sampled
data, and iteratively computes a confidently optimal scheduler from a
given finite subset of schedulers. The most important feature of IDMS is
the flexibility for adjusting the criterion of confident optimality and the
sample size within the iteration, leading to a tradeoff between accuracy,
data usage and computational overhead. We apply IDMS to an existing
self-adaptation framework Rainbow and conduct a case study using a
Rainbow system to demonstrate the flexibility of IDMS.

1 Introduction

Software is often governed by and thus adapts to phenomena that occur at run-
time [22]. One typical example is the control software of autonomous systems,
such as driverless vehicles. Because the occurrence of runtime phenomena is
asynchronous with respect to the flow of the application logic, because not all
information about the phenomena is available at the design time, and because
the specification of the adaptive behavior may evolve over time, it is advanta-
geous to gather the complex adaptation logic into a component separated from

This work was partially supported by the Singapore Ministry of Education (Grant
Nos. R-252-000-458-133 and MOE2015-T2-1-137), the Australian Research Council
(Grant Nos. DP130102764 and DP160101652), the National Natural Science Founda-
tion of China (Grant Nos. 61428208 and 61502260), the CAS/SAFEA International
Partnership Program for Creative Research Team, and an overseas grant from the
State Key Laboratory of Novel Software Technology at Nanjing University.

c© Springer-Verlag Berlin Heidelberg 2016
P. Stevens and A. W ↪asowski (Eds.): FASE 2016, LNCS 9633, pp. 269–286, 2016.
DOI: 10.1007/978-3-662-49665-7 16



270 G. Su et al.

the application logic. In contrast to traditional decision problems where a deci-
sion model, such as a Markov Decision Process (MDP) [27], is determined for
reasoning, the adaptation logic of autonomous systems is governed by empirical
data and is subject to practical constraints. In many situations, one has to sacri-
fice the optimality of an adaptive solution to a certain extent in order to satisfy
various Quality-of-Service (QoS) constraints.

Consider a Web system that provides news content services. At some moment,
the system may detect high latency of content delivery. Suppose that the system
can lower the content fidelity (such as delivering multimedia contents in the text
mode) and/or increase the server pool size, and that the benefits or costs of these
operations are measured quantitatively. Further, to achieve more sophisticated
effects, operations can be combined to form a strategy. For example, one simple
strategy could be the following: Once “high latency” is detected, increase the
number of Virtual Machine (VM) instances by one; if “high latency” persists,
switch from the multimedia mode to the text mode. Because multiple strate-
gies built into the adaptation logic may be triggered by the same condition, an
additional mechanism is required to select one of them.

A key challenge of the strategy selection for the Web system is that some
probability parameters, such as successful chances of operations, are not fixed.
For example, if the VM number is increased by one, the probability that latency
will drop below the threshold may increase, but it still has to be estimated based
on runtime data. While the idealized goal is to select an optimal strategy, it is
important to take into account the practical constraints. For example, obsolete
data no longer reflects the current environmental situation; the time frame of
data sampling may be constrained by the tolerance of adaptation delay; the
sampling frequency may be restricted because of its performance overhead on
the network; and last but not the least, the adaptation should not downgrade
the functional performance of the system by consuming too much computational
capacity (e.g., CPU and RAM). In short, besides decision accuracy, runtime
decision-making has to address the limitation of data and computation resource.

The above adaptation model for the Web system can be formalized as an
MDP in which actions represent operations and schedulers represent strategies.
The runtime data are stored in a data structure (i.e., a set of integer matrices)
for estimating the transition probabilities of the MDP. Therefore, the prob-
lem of strategy selection is an instance of the general problem of minimizing
the (expected) cumulative cost for an MDP with empirically determined tran-
sition probabilities and a given subset of schedulers. Despite this problem is
well understood in the theory of MDPs [27], our first contribution is an Itera-
tive Decision-Making Scheme (IDMS) that supports a trade-off between three
important metrics, namely, accuracy, data usage and computational overhead.
The basic idea of IDMS is as follows:

1. We infer both point and interval estimates of transition probabilities for the
MDP decision model based on the data structure for runtime data.

2. Next, we compute a scheduler that minimizes the cumulative cost for a given
reachability problem.



An Iterative Decision-Making Scheme for Markov Decision Processes 271

3. We then determine whether this scheduler meets a criterion called confident
optimality. If yes, or if the maximal number of iterative steps is reached, the
iteration terminates; otherwise, the iteration returns to data sampling.

We formalize three metrics for IDMS: (i) the probability that a confidently opti-
mal scheduler is truly optimal, namely accuracy; (ii) the average sample size of
the iteration, which is a direct metric of data usage; and (iii) the average time
of iteration, which measures computational overhead conveniently. The trade-
off among these three metrics is realized by adjusting the criterion of confident
optimality and the sample size during the iteration. The core method of IDMS
is a value-iteration algorithm developed from probabilistic model checking [19].

The second contribution of this paper is an application of IDMS to self-
adaptive systems. Several high-level frameworks and approaches based on prob-
abilistic model checking have been proposed to aid the design of self-adaptive
systems, but with emphasis on different aspects of the adaptation [3,4,18,20,23].
However none of these works address the problem of making the aforementioned
tradeoff in the adaptation. We demonstrate that IDMS can be naturally embed-
ded into the Rainbow framework [11] which employs a standard, point-valued
MDP as its decision model, and thus extends the adaptation function of the
latter. We present a case study on a Rainbow system and the empirical evidence
that demonstrates the flexibility of IDMS.

The remainder of the paper is organized as follows. Section 2 presents the
formal models and core method. Section 3 presents the IDMS scheme. Section 4
describes the application to self-adaptive systems. Section 5 presents the case
study. Section 6 reports the related work. Section 7 concludes the paper.

2 Formal Model and Value-Iteration Method

In this section, we present our formal models and value-iteration method. The
position of our method in the state of the art is discussed in Sect. 6.

Definition 1 (MDP). An MDP is a tuple M = (S,Act, P, α, C) where

– S is a finite, non-empty state space,
– Act is a finite non-empty set of actions,
– α is the initial distribution over S,
– P = {Pa}a∈Act is a family of transition probability matrices indexed by a ∈

Act, and
– C : S → R≥0 is a cost function.

We require that, for each a ∈ Act and s ∈ S, Pa[s, t] ≥ 0 for all t ∈ S and∑
t∈S Pa[s, t] ∈ {0, 1}. We say action a is enabled at s if

∑
t∈S Pa[s, t] = 1.

Schedulers play a crucial role in the analysis of MDPs. For our purposes, it
suffices to consider simple schedulers, in which for each state s, the scheduler
fixes one of the enabled actions at s and selects the same action every time when
the system resides in s. Formally, a simple scheduler is a function σ : S → Act



272 G. Su et al.

such that σ(s) is one of the actions enabled at state s. In our setting, instead
of considering the whole set of schedulers, we work only with a (finite) subset
of simple schedulers Σ specified by the user. A path in M under σ is an infinite
sequence of states ρ = s0s1 · · · such that, for all i ≥ 0, Pa[si, si+1] > 0 for
a = σ(si). Let PathM,σ be the set of paths in M under σ. Let PathM,σ(s) be
the subset of paths that start from s. Let PrM,σ be the standard probability
distribution over PathM,σ as defined in the literature [1, Chap. 10].

The expected cumulative cost, or simply cumulative cost, of reaching a set G ⊆
S of goal states (called G-states hereafter) in M under σ, denoted CM,σ(G), is
defined as follows: First, let CM,σ(s,G) be the expected value of random variable
X : PathM,σ(s) → R≥0 such that (i) if s ∈ G then X(ρ) = 0, (ii) if ρ[i] /∈ G for
all i ≥ 0 then X(ρ) = ∞, and (iii) otherwise X(ρ) =

∑n−1
i=0 C(si) where sn ∈ G

and sj /∈ G for all j < n. Then, let CM,σ(G) =
∑

s∈S α(s) · CM,σ(s,G).
By the above definitions, for those states which do not reach the goal states

almost surely (viz. with probability less than 1), the cumulative cost is ∞. We
remark that other definitions on the costs of paths not reaching the goal states
do exist and can be found in [8]. However, they are more involved and are not
needed in the current setting. In order to compute the cumulative cost, we first
have to identify the set of states S=1 from which the probability to reach the goal
states in G is 1. This can be done by a standard graph analysis [1, Chap. 10].
Next, we solve the following system of linear equations with variables (xs)s∈S=1 :

xs = 0 if s ∈ G

xs = C(s) +
∑

t∈S=1
Pa[s, t] · xt if s /∈ G

(1)

where a = σ(s). When the scheduler is fixed, the MDP is reduced to a discrete-
time Markov chain (DTMC) and hence solving (1) is straightforward. One can
employ standard Jacobi or Gauss-Seidel itertaion methods to compute the least
fixpoint [31]. In detail, one starts from x(0) where x

(0)
s = 0 for all s ∈ S=1,

and computes x
(n+1)
s = C(s) +

∑
t∈S=1

Pa[s, t] · x
(n)
t if s �∈ G and 0 otherwise,

until maxs∈S |x(n+1)
s − x

(n)
s | < ε for some predetermined ε > 0. In practice,

and especially in probabilistic verification, this is usually more efficient than the
Gaussian elimination [19].

Interval-valued MDPs (IMDP) are MDPs where some of the transition prob-
abilities are specified as real intervals.

Definition 2 (IMDP). An IMDP is a tuple MI = (S,Act,P+,P−, α, C) where

– S, Act, α and C are defined the same as in Definition 1,
– P+ = {P+

a }a∈Act, P− = {P−
a }a∈Act are two families of nonnegative matrices

indexed by a ∈ Act, giving the upper and lower bounds of transition prob-
abilities respectively. Further, for each a ∈ Act, P+

a and P−
a have the same

corresponding 0- and 1-entries.

With MI = (S,Act,P+,P−, α, C) we associate a set of MDPs �MI� such that
M = (S,Act,P, α, C) ∈ �MI� if and only if for each a ∈ Act, P−

a ≤ Pa ≤ P+
a .

where ≤ is interpreted entry-wise. We call an M ∈ �MI� an instance of MI .



An Iterative Decision-Making Scheme for Markov Decision Processes 273

Given an IMDP MI and a simple scheduler σ, since the possible cumulative
cost of reaching G-states is in the form of an interval, we are interested in the
bounds of such an interval. The minimum cumulative cost of reaching G-states
in MI under σ is

Cmin
MI ,σ(G) = inf

M∈�MI�
CM,σ(G).

Because the maximum cumulative cost Cmax
MI ,σ(G) is symmetrical to the minimum

case, in the remainder of this section, we mainly deal with the latter.
To this end, as before we first identify states that reach the goal states G

almost surely (under σ) and are denoted by S=1. Owing to the assumption made
on IMDPs in Definition 2, this can be done by graph-analysis as on MDPs MI .
For those states not in S=1, the minimal cost is ∞ according to our convention.
We then consider the following Bellman equation over the variables (xs)s∈S=1 :

xs = 0 if s ∈ G

xs = min
P−

a ≤Pa≤P+
a

{C(s) +
∑

t∈S=1
Pa[s, t] · xt} if s /∈ G

(2)

where a = σ(s). Note that Pa is required to be a transition probability matrix.
Let x = (xs)s∈S=1 be the least fixpoint of (2). We easily obtain:

Proposition 1. Cmin
MI ,σ(G) =

∑
s∈S α(s)xs.

To solve (2), there are essentially two approaches. The first one is to reduce
it to linear programming (LP). However, despite theoretically elegant, this is
not practical for real-life cases. Instead, we apply the second approach, i.e., the
value-iteration method. For each iteration, the crucial part is to compute

min
P−

a ≤Pa≤P+
a

{
C(s) +

∑

t∈S=1
Pa[s, t] · xt

}

for a given x. This problem can be reduced to a standard linear program. Indeed,
for each s, introduce variables (yt)t∈S and consider the problem:

minimize C(s) +
∑

t∈S=1
ytxt

subject to
∑

t∈S=1
yt = 1 and P−

a [s, t′] ≤ yt′ ≤ P+
a [s, t′] for all t′ ∈ S=1.

This can be solved efficiently via off-shelf LP solvers (note that here xt’s and a are
given). Hence each iteration takes polynomial time. We also remark that the LP
here admits a very simple structure and only contains at most |S| variables (and
usually much less for practical examples), while the direct approach (based on
LP as well) requires at least |S|2+|S| variables and is considerably more involved.
Although it might take exponentially many iterations to reach the least fixpoint,
in practice one usually sets a stopping criteria such as maxs∈S |x(n+1)

s −x
(n)
s | < ε

for a fixed error bound ε > 0.



274 G. Su et al.

Let Cdif
MI ,σ(G) = Cmax

MI ,σ(G) − Cmin
MI ,σ(G). Because M, MI and G are clear

in the context, to simplify notations we make the following abbreviations:

Fully-Spelled CM,σ(G) Cmin
MI ,σ(G) Cmax

MI ,σ(G) Cdif
MI ,σ(G)

Abbreviated Cσ Cmin
σ Cmax

σ Cdif
σ

3 Iterative Decision-Making Scheme

In this section, we present main stages and techniques of IDMS and describe the
realization of trade-offs between the three metrics.

3.1 IDMS Preview and Example

IDMS is an iterative process that contains one pre-stage and five runtime stages
(i.e., Stage 1 to 5), as depicted in Fig. 1. The pre-stage builds up a parametric
MDP with transition probability parameters in the design time. At runtime Stage
1 collects data samples and Stage 2 infers point and interval estimates based
on the samples. By instantiating the parameters with the point and interval
estimates, Stage 3 builds up a (concrete) MDP and an IMDP. Stage 4 attempts
to compute a confidently optimal scheduler. Then the process either moves to
Stage 5 where a decision is made or goes back to Stage 1. The process terminates
when either a confidently optimal scheduler is returned, or the maximal time of
iteration (namely the maximal number of steps within the iteration) is reached.
Note as the decision making may need to be repeated periodically at runtime,
Stage 5 may be followed by Stage 1.

A parametric MDP example Meg(θ) is described in Fig. 2. The state space
of Meg(θ) is {s0, . . . , s7, sG} with s0 being the only initial state (i.e., the initial
distribution assigns 1 to s0 and 0 to other states) and sG being the only goal
state. The dashed arrows are probabilistic transitions, labeled by parameters
θ = (θ1, . . . , θ5). The solid arrows are non-probabilistic transitions (or, equiv-
alently, transitions with the fixed probability 1). The wavy arrows represent
non-deterministic transitions, with a and b being two actions. For Meg(θ), the
two actions induce two schedulers, denoted σa and σb, respectively. States of
Meg(θ) are associated with costs ranging from 0 to 2.

parametric
MDP

runtime data
collection

parameter
estimation

Is there a
con. opt.
scheduler?

decision
output

MDP and
IMDP

Fig. 1. Pre-stage and runtime stages of IDMS



An Iterative Decision-Making Scheme for Markov Decision Processes 275

s0
0 a s1

1

θ1

1−θ1

s2
1

θ2

1−θ2

s3
1

sG
0

b
θ3

1−θ3

s4
2

θ4

1−θ4

s6
1

s5
1

θ5

1−θ5

s7
2

Fig. 2. A parametric MDP example Meg(θ)

3.2 Data Structure and Parameter Estimation

IDMS does not presume a particular method for collecting runtime data but it
stores them in a specific data structure, namely a set of non-negative integer
matrices that are related to schedulers of the parametric MDP. The integer in
each entry represents the number of times that the corresponding transition
is recorded in the sampling time frame. For example, the two integer matrices
related to σa and σb of Meg(θ) are as follows:

Ma :

s1 s2 s3 sG[ ]
s1 0 N1,2 0 N1,G

s2 0 0 N2,3 N2,G

Mb :

s4 s5 s6 s7 sG
[ ]s0 N0,4 N0,5 0 0

s4 0 0 N4,5 0 N4,G

s5 0 0 0 N5,7 N5,G

where N�,� > 0, with � and 	 denoting (some) elements in {0, . . . , 7, G}, are
integer variables. N�,� is increased by 1 (i.e., N�,� ← N�,� +1) if a transition from
s� to s� is newly observed. Note that zero entries in Ma and Mb remain unchanged
for all time, because according to the structural specification of Meg(θ), the
correspondent transitions are impossible to occur.

The data structure is used to estimate parameters in the parametric MDP.
IDMS adopts two forms of estimation, namely point estimation and interval
estimation, which we illustrate using Ma. Note that Ma is used to estimate
parameters θ1 and θ2. For point estimation, θ1 is estimated as the numerical
value N1,2/(N1,2 +N1,G) and θ2 is estimated as N2,3/(N2,3 +N2,G). For interval
estimation, IDMS assumes that θ1 (resp., θ2) is the mean of a Bernoulli dis-
tribution and (N1,2, N1,G) (resp., (N2,3, N2,G)) forms a random sample of the
distribution. In other words, (N1,2, N1,G) denote a random sample containing
N1,2 copies of 1 and N1,G copies of 0, and (N2,3, N2,G) has a similar meaning.
Therefore, one can employ the standard statistical inference method to derive
a confidence interval for θ1 and one for θ2. By the laws of large numbers, if
N1,2 + N1,G (resp., N2,3 + N2,G) increases then the width of the resulted con-
fidence interval for θ1 (resp., θ2) likely decreases (when the confidence level is
fixed).



276 G. Su et al.

3.3 Confident Optimality

By instantiating the transition probability parameters in the parametric MDP
with the corresponding point estimates and interval estimates, one obtains a
concrete MDP M and an IMDP MI . Note that if [p, q] ⊂ [0, 1] instantiates a
parameter θ then, equivalently, [1 − q, 1 − p] instantiates 1 − θ. Clearly, M and
MI share the same state space S, initial distribution α and cost function C.
Moreover, M is an instance of MI , namely, M ∈ �MI�. From now on, for given
M and MI , we always assume M ∈ �MI�. A key decision-making criterion in
IDMS is formalized as follows:

Definition 3 (Confident Optimality). Given M, MI , G ⊆ S of goal states
and a finite nonempty subset Σ of schedulers, σ∗ ∈ Σ is confidently optimal if,
for all σ ∈ Σ\σ∗, the following two conditions hold:

Cσ∗ ≤ Cσ and

Cmax
σ∗ ≤ Cmin

σ + γ · Cdif
σ∗ where γ ≥ 0.

(3)

In words, a scheduler σ∗ in the given scheduler subset Σ of M (or, equiva-
lently, MI) is confidently optimal if for all other schedulers σ in Σ (i.e., σ �= σ∗):

– The cumulative cost (of reaching G-states) in M under σ∗ is not larger than
the cumulative cost in M under σ;

– The (1/γ)-portion of the difference between the maximum cumulative cost in
MI under σ∗ and the minimum cumulative cost in MI under σ is not larger
than the maximum-minimum difference of cumulative cost in MI under σ∗.

A correct illustrative example is presented in the latter text. It is noteworthy
that, different from an standard MDP problem, a subset of schedulers is explicitly
given in our definition.

The parameter γ, which is specified by the user, has the function of adjusting
the criterion of confident optimality. A confidently optimal scheduler may not
exist for the given MDP and IMDP; in some rare case, there may be more than
one confidently optimal schedulers. Note that if a sufficiently large value for γ is
selected, then the second condition in Eq. (3) is guaranteed to be true. If so, the
definition is degenerated to the standard definition of optimal cumulative costs
for MDPs with point-valued transition probabilities.

Given M,MI , G,Σ, γ, the following procedure decides whether a confidently
optimal scheduler σ∗ exists and returns σ∗ if it exists:

1. Compute Cσ for all σ ∈ Σ, and compute Σ1 ⊆ Σ such that Cσ1 = minσ∈Σ Cσ

if and only if σ1 ∈ Σ1.
2. Compute Cmax

σ1
for all σ1 ∈ Σ1, and compute Cmin

σ for all σ ∈ Σ.
3. If there is σ∗ ∈ Σ1 such that Cmax

σ∗ ≤ Cmin
σ + γ · Cdif

σ∗ where σ �= σ∗, then
return σ∗; otherwise, return “no confidently optimal scheduler”.

The procedure relies on the core method of value-iteration presented in Sect. 2.
The computational complexity of is dependent on the core value-iteration



An Iterative Decision-Making Scheme for Markov Decision Processes 277

method and the size of Σ. Note that although the number of all schedulers
in an MDP increases exponentially as the size of the MDP increases, in our case
a specific subset of schedulers Σ is predefined by the model builder. If we sup-
pose the value-iteration takes constant time (e.g., the model is fixed), then the
time complexity of the procedure is linear in the size of Σ.

We present an example to explain how IDMS is affected by γ and the sample
size. Suppose after instantiating θ of Meg(θ) with point estimates and interval
estimates, the cumulative cost intervals for schedulers σa and σb are [l1, u1] and
[l2, u2], respectively. The positions of l1, u1, l2 and u2 are illustrated on the left
side of the following drawing (where 0 ≤ p < q).

p q

l1 u1

l2 u2 p q

l′1 u′
1

l′2 u′
2

If u1 ≤ l2+γ(u1−l1), the above procedure returns σa. But if u1 > l2+γ(u1−
l1), neither σa nor σb is confidently optimal and so the procedure returns “no
confidently optimal scheduler”. If one lowers the value γ and/or increases the
sample size, the computed cost intervals usually shrink, as depicted on the right
side of the above drawing. Then there is a higher probability that a confidently
optimal scheduler (namely σa) is returned from the procedure and the iteration
of IDMS terminates.

3.4 Metrics and Tradeoff

One main advantage of IDMS is the flexibility that enables a tradeoff between the
three important metrics for practical, especially runtime, decision-making. The
three metrics are accuracy of the decision, data usage for making the decision
and computational overhead on the runtime system. Because random sampling
is involved in IDMS, under a specific scheduler of an MDP and an IMDP, the
cumulative cost and the minimum/maximum cumulative costs (of reaching the
goal states) are uncertain. Therefore, a confidently optimal scheduler may be
decided at each iterative step with a certain probability. Further, a confidently
optimal scheduler may not be the truly optimal one, which is defined based on
the unknown real values of the transition probability parameters in the abstract
MDP. In view of this, we define the three metrics as follows:

– Accuracy is the probability that a confidently optimal scheduler is optimal.
– Data usage is the average size of sampled data used in the iteration.
– Computational overhead is measured by the average iteration time (namely,

the average number of iterative steps).

Ideally, one wants to maximize the first one while minimize the latter two.
However, according to laws of statistics this is impossible. To obtain high accu-
racy in a statistical process (including IDMS), a large-sized sample has to be
used; although it is possible to set a high accuracy threshold and then try to
infer the result using a sample whose size is as small as possible, this usually
leads to a costly iterative process. Therefore, a practical solution is to achieve
a suitable tradeoff between the three metrics. In IDMS, to realize this tradeoff,
one can adjust the constant γ and the sample size within the iteration.



278 G. Su et al.

4 Application to Self-adaptive System

In this section, we describe an application of IDMS to self-adaptive systems. A
variety of frameworks are proposed to aid the design of self-adaptive systems
[12,13,25] and we focus on the Rainbow framework.

4.1 Rainbow Framework

We illustrate Rainbow with the example Z.com [11] which is a fictional news
website providing multi-media and textual news service while keeping the cost
of maintaining its server pool within its operational budget. Z.com has a client-
server architecture with three additional adaptation-relevant components, as
shown in Fig. 3: The Sensor collects runtime data; the Manager controls the
adaptation, such as switching the news content mode from multi-media to text
and vice versa; and the Effector executes the adaptation to affect the system.

In Rainbow, the adaptation is specified as strategies in its customized lan-
guage Stitch [9]. A strategy is a tree structure consisting of tactics, which in turn
contain operations. Figure 4 specifies two strategies a and b, guarded by a com-
mon condition cond where SNo and MaxSNo refer to the current server number
and the maximal server number, respectively.1 If strategy a is selected, operation
enlistSever[1] in tactic s1 is first executed. Next, if the variable hiLatency is true
then enlistSever[1] in tactic s2 is executed; otherwise strategy a terminates. Last,

Server 1 ⇒ Sensor

Client
... Manager

Server n ⇐ Effector

Fig. 3. Software architecture of Z.com

de f i ne cond := h iLa t en c y&!TextMode&(SNo<=MaxSNo−2);
s t r a tegy a [ cond ]{
t a c t i c s 1 : e n l i s t S e r v e r [ 1 ] {

t a c t i c s 2 : h iLa tency−>e n l i s t S e r v e r [ 1 ] {
t a c t i c s 3 : h iLa tency−>switchToTextMode ;}}}

s t r a tegy b [ cond ]{
t a c t i c s 4 : hiLoad−>e n l i s t S e r v e r [ 2 ] {

t a c t i c s 6 : h iLa tency−>switchToTextMode ;}
t a c t i c s 5 : ! h iLoad−>switchToTextMode{

t a c t i c s 7 : h iLa tency−>e n l i s t S e r v e r [ 2 ] ; } }
. . . % othe r s t r a t e g y s p e c i f i c a t i o n

Fig. 4. Strategy specification for Z.com in Stitch

1 For simplicity, the specification does not strictly follow the syntax of Stitch.



An Iterative Decision-Making Scheme for Markov Decision Processes 279

Table 1. Costs of operations in strategies a and b

Utility Dimension Operation

op(s1) op(s2) op(s3) op(s4) op(s5) op(s6) op(s7)

Content 0 0 1 0 1 1 0

Budget 1 1 0 2 0 0 2

if hiLatency persists to be true then switchToTextMode in tactic s3 is executed;
otherwise strategy a terminates. Strategy b is specified in a similar style.

To evaluate strategies, Rainbow uses utilities to describe the costs and ben-
efits of operations. The quantities of utilities are provided by human experts or
stakeholders. Table 1 describes two utilities called content and budget and the
costs of the operations in terms of the two. Note that because there is only one
operation in each tactic of the adaptation specification in Fig. 4, we use tactic
names to label operations—the correspondent operation to an tactic s is denoted
op(s). For example, if switchToTextMode is executed, then the content cost is,
say, 1; if enlistServer[i] with i ∈ {1, 2} is executed, then the budget cost is, say,
i. Then, the overall cost of an operation is the weighted sum of utilities. For
simplicity, we let the weights of all utilities equal to 1.

Rainbow characterizes uncertainty in the detection of guarding conditions
(such as hiLantency in tactic s2) as probabilities called likelihoods. The likelihoods
in strategies a and b are specified in Table 2. Note that because there is one
likelihood parameter in each tactic (except s1) of in Fig. 4, like for operations,
we also use tactic names to label likelihoods—the correspondent operation to an
tactic s is denoted lk(s). We explain how these likelihoods are elicited in Rainbow
later; for now, they are viewed as undetermined parameters.

It is not hard to observe a correspondence between the adaptation specifica-
tion of Z.com and an MPD model, where operations are represented by actions
and strategies are represented by schedulers. Indeed, the Stitch specification
under consideration can be translated into Meg(θ). Therefore, the adaptation
problem in Rainbow is an instance of the problem of selecting a strategy that
minimizes the cumulative cost (of reaching the goal states in the MDP).

4.2 Embedding IDMS into Rainbow

At least two methods to elicit likelihoods are supported in Rainbow. First, like
utilities and their weights, concrete values of likelihoods can be explicitly given
by human experts or stakeholders [9]. Second, sampling methods for estimating
likelihoods are also implemented in Rainbow [7,10]. For example, the Manager
can check the values of Boolean variables hiLatency and hiLoad as the system
operates and record the result. Then, with respect to the condition probabilities
described in Table 2, one easily obtains a sample for each parameter θi. Therefore,
we can embed IDMS into Rainbow economically, just by enhancing the reasoning
mechanism of strategy selection in the Manager with IDMS, but with little
change made to the Sensor and the Effector



280 G. Su et al.

Table 2. Likelihood parameters in strategies a and b

Likelihood Interpretation as a conditional probability

lk(s2) Pr(hiLatency=true | SNo=MaxSNo - 1 & textMode=true)

lk(s3) Pr(hiLatency=true | SNo=MaxSNo & textMode=true)

lk(s4) Pr(hiLoad=true | hiLatency=true & SNo=MaxSNo - 2 & textMode=true)

lk(s4) Pr(hiLoad=false | hiLatency=true & SNo=MaxSNo - 2 & textMode=true)

lk(s6) Pr(hiLatency=true | hiLoad=true & SNo=MaxSNo & textMode=true)

lk(s7) Pr(hiLatency=true | hiLoad=true & SNo=MaxSNo - 2 & textMode=false)

Rainbow exploits point estimates for likelihoods, as its decision model is a
standard MDP. Because the runtime data set cannot be arbitrarily large, point
estimates may be error-prone. Poor strategy selection often causes some extra
cost and reduced benefit. Even worse, the extra cost and reduced benefit may
accumulate if the non-optimal strategy is selected repeatedly. In view of this,
the interval estimation method in IDMS can complement to the point estima-
tion method in Rainbow, and leads to more stable decision-making outputs. By
applying IDMS to Rainbow, another and more important benefit is the pos-
sibility of making a tradeoff between accuracy, data usage and computational
overhead, thus improving the adaptation function of Rainbow.

5 Simulation-Based Experiment

5.1 Methodology and Setting

The general experimental methodology we adopt is simulation. Recall that IDMS
assumes that likelihood parameters in Z.com are means of Bernoulli distribu-
tions. We use Matlab to simulate the generation and collection of runtime data.
To this end, we need to fix the expected values of the Bernoulli random vari-
ables, namely the true values of θ of Meg(θ). We let θ1 = 2

3 , θ2 = 4
7 , θ3 = 1

3 ,
θ4 = 4

9 and θ5 = 4
9 . As the true values of θ are given, we also know which

scheduler is optimal. Indeed, by computation, the overall cost of strategy a is
2.0476 and that of strategy b is 2.0741. Thus, strategy a is optimal. It is note-
worthy that the difference between the above two overall costs may seem small,
but it is non-negligible because they are proportional to the weights of utility
dimensions, which may be large in some case, and also because the extra cost
may accumulate if the adaptation is triggered repeatedly.

To evaluate the flexibility of IDMS for making the intended tradeoff, we
implement the computing procedure presented in Sect. 3.3 in Matlab. Given
a sample of specific size for estimating each parameter θi of θ, and given a
specific value of γ, IDMS terminates with a certain probability, called termina-
tion probability in the experiment. Based on the termination probability, we can
immediately calculate the data usage and the computational overhead. Upon
termination, with a certain probability, the selected scheduler is strategy a. This



An Iterative Decision-Making Scheme for Markov Decision Processes 281

probability, called correctness rate in the experiment, is equal to the metric
of accuracy. Since we can simulate IDMS (applied to Meg(θ)), we can estimate
the correctness rate and termination probability using the standard Monte Carlo
estimation. In this experiment, we estimate the two for different sample sizes
and values of γ. Note that the confidence level of interval estimation is fixed in
IDMS and we set it to be 95 % in the experiment. The Matlab source code and
data are available on http://www.comp.nus.edu.sg/∼sugx/fase16/.

5.2 Experimental Data and Concrete Tradeoffs

The experimental data, summarized in Fig. 5, is generated from samples of n-size
with n ranging from 200 to 5,000 in an increment of 200, and with a selection
of values for γ as specified in the legends of the figures (where “large” refers to
a sufficiently large value of γ such that the computing procedure is degenerated
to a point estimation). For each n, the number of generalized samples is 10,000,
based on which we calculate the correctness rate and termination probability.

Figure 5 demonstrates the dependence of the correctness rate and termination
probability on γ and the sample size. Figure 5(a) shows that as γ decreases or
as the sample size increases, the correctness rate increases. In particular, except
for samples of small size (less than 1,000), IDMS provides a higher correctness
rate than the point estimation method. Figure 5(b) shows that as γ increases or
as the sample size increases, the termination probability increases. Note that if
a sufficiently large value for γ is selected, the termination probability is 1 for
samples of all selected sizes (and thus L8 is not depicted in Fig. 5(b).)

An important implication of Fig. 5 is that, by adjusting the value of γ and the
sample size in different ways, one is able to achieve different tradeoffs between
accuracy, data usage and computational overhead. To illustrate this flexibility,
Table 3 describes three cases where the three metrics have different priorities.
Based on Fig. 5, by selecting different pairs of γ and sample size, we obtain three

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Sample Size

C
or

re
ct

ne
ss

 R
at

es

L1(0.50)
L2(0.60)
L3(0.70)
L4(0.80)
L5(0.85)
L6(0.90)
L7(0.95)
L8(large)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Size

Te
rm

in
at

io
n 

Pr
ob

ab
ilit

ie
s

L1(0.50)
L2(0.60)
L3(0.70)
L4(0.80)
L5(0.85)
L6(0.90)
L7(0.95)

(b)

Fig. 5. (a) Correctness rates and (b) termination probabilities with different sample
sizes and γ values

http://www.comp.nus.edu.sg/~sugx/fase16/


282 G. Su et al.

Table 3. Priorities of metrics in three different cases

Metric Priority

A B C

Accuracy high medium low

Data usage low medium high

Computational overhead low high high

1000 1500 2000 2500 3000 3500 4000 4500 5000
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Sample Size

C
or

re
ct

ne
ss

 R
at

e

Scheme A
Scheme B
Scheme C

(a)

1000 1500 2000 2500 3000 3500 4000 4500 5000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sample Size

Te
rm

in
at

io
n 

Pr
ob

ab
ilit

y

Scheme A
Scheme B
Scheme C

(b)

Fig. 6. Three iteration schemes in items of (a) correctness rates and (b) termination
probabilities

examples of iteration schemes depicted in Fig. 6. Each marker in Fig. 6 refers
to an iterative step with a specific value of γ and a specific sample size. For
example, setting γ = 0.5 and the sample size as 1,400, according to Fig. 5, we
obtain the leftmost marker of Scheme A in Fig. 6. The other markers in Fig. 6
are identified in the same way. All three schemes terminate with probability
1 before or when the sample size reaches 5,000. It is easy to observe that the
schemes reflect the metric priorities in the corresponding cases in Table 3. For
example, Scheme A has a high correctness rate compared with the other two
schemes, because the priority of accuracy is high in Case A; it has a low average
termination probability and a high number of markers, because the priorities of
both data usage and computational overhead are low in Case A.

6 Related Work

Probabilistic model checking is a relatively mature technique that has been suc-
cessfully applied to a wide range of domains, and we refer the readers to Forejt
et al. [19] for a survey. The IMDP model considered in this paper falls into the
class of probabilistic models with uncertainty, which have received substantial
attention. For instance, in AI research, IMDPs were considered with different
objectives such as discounted sum and limiting average [21,30]. The motivation



An Iterative Decision-Making Scheme for Markov Decision Processes 283

of those works is to come up with an abstract framework, which is different from
our motivation of runtime decision-making. In robust control theory, IMDPs
or MDPs with more general forms of uncertainty are advocated to address the
robustness of the controller under potential perturbation of the system [24,32].
In this paper, we consider expected cumulative costs of reachability proper-
ties. On the computational aspect, some of the mentioned approaches [21,24,30]
also employed a value-iteration method. However, they mostly rely on ordering
between intervals which is not needed in our case. Furthermore, Puggelli et al.
[26] proposed polynomial algorithms for Markov chains with uncertainty based
on optimization techniques, but only for reachability and PCTL properties.

Several high-level frameworks and approaches based on probabilistic model
checking have been proposed for self-adaptive systems recently, but with empha-
sis on different aspects of the adaptation, such as QoS management and opti-
mization [4], adaptation decisions [20], verification with information of confidence
intervals [3], runtime verification efficiency and sensitivity analysis [18], and
proactive verification and adaptation latency [23]. None of those works addressed
the problem of making a practical tradeoff similar to the one supported by IDMS.
Rainbow [9] supports the computation of cumulative costs and/or rewards when
the likelihood parameters in the adaptation strategies are explicitly specified.
Subsequent work [5,6] employs a combination of a simulation method and prob-
abilistic model checking to evaluate properties such as resilience and adaptation
latency. As mentioned, our IDMS can be economically embedded into Rainbow
and extend the adaptation function of the latter.

We mention some other existing approaches to the design of self-adaptive
systems, which rely on mathematical methods related to probability theory and
statistics. Esfahani et al. [15,16] presented a general definition of adaptation
optimality using fuzzy mathematics, which accounts for not only the current
utility but also the optimal consequence of future operations. But IDMS esti-
mates the probability parameters based on runtime data. Epifani et al. [14] pre-
sented the KAMI framework to deal with the inaccuracy of parameters related
to the non-functional aspect of the system (such as reliability and performance),
and Bencomo et al. [2] presented a Bayesian network for modeling self-adaptive
systems. These two approaches rely on the Bayesian (point) estimation method
while IDMS exploits both point and interval estimates from the frequentist sta-
tistics theory. Finally, Filieri et al. [17] constructed approximate dynamic models
of a self-adaptive system and for synthesizing, from those models, a suitable con-
troller that guarantees prescribed multiple non-functional system requirements.
The method they used is from control theory, which is quite different from the
theory of MDPs.

7 Conclusions

We have presented IDMS, an iterative framework that supports a tradeoff among
three important metrics in practical runtime decision-making problems: accu-
racy, data usage and computational overhead. We have also instantiated IDMS
on the Rainbow framework and presented a simulation-based evaluation.



284 G. Su et al.

For future work, we plan to enhance IDMS with a mechanism for automati-
cally adjusting the confident optimality and the sample size based on the given
priorities of the three metrics. Another interesting topic is a generalization of
the value-iteration method in IMDP to synthesize a scheduler that minimizes
the cumulative cost, without prescribing a subset of schedulers.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

2. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision networks for decision-
making in self-adaptive systems: A case study. In: Proceedings of the 8th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS 2013, pp. 113–122. IEEE Press, Piscataway, NJ, USA (2013)

3. Calinescu, R., Ghezzi, C., Johnson, K., Pezzé, M., Rafiq, Y., Tamburrelli, G.:
Formal verification with confidence intervals: A new approach to establishing the
quality-of-service properties of software systems. IEEE Trans. Reliab. 99, 1–19
(2015)

4. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2011)

5. Camára, J., de Lemos, R.: Evaluation of resilience in self-adaptive systems using
probabilistic model-checking. In: 2012 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS), pp. 53–62, June 2012

6. Cámara, J., Moreno, G.A., Garlan, D.: Stochastic game analysis and latency aware-
ness for proactive self-adaptation. In: Proceedings of the 9th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS,
pp. 155–164. ACM, New York, NY, USA (2014)

7. Celiku, O., Garlan, D., Schmerl, B.: Augmenting architectural modeling to cope
with uncertainty. In: Proceedings of the International Workshop on Living with
Uncertainty (IWLU 2007), Atlanta, Georgia, USA (2007)

8. Chen, T., Forejt, V., Kwiatkowska, M.Z., Parker, D., Simaitis, A.: Automatic veri-
fication of competitive stochastic systems. Formal Method Syst. Des. 43(1), 61–92
(2013)

9. Cheng, S.-W.: Rainbow: Cost-Effective Software Architecture-based Self Adapta-
tion. Ph.D. thesis, Carnegie Mellon University (2008)

10. Cheng, S.-W., Garlan, D.: Handling uncertainty in autonomic systems. In: Pro-
ceedings of the International Workshop on Living with Uncertainty (IWLU 2007),
Atlanta, Georgia, USA (2007)

11. Cheng, S.-W., Garlan, D., Schmerl, B.: Architecture-based self-adaptation in the
presence of multiple objectives. In: ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS 2006), Shanghai, China (2006)

12. Cooray, D., Malek, S., Roshandel, R., Kilgore, D.: RESISTing reliability degrada-
tion through proactive reconfiguration. In: Proceedings of the IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE 2010, pp. 83–92.
ACM, New York, NY, USA (2010)

13. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: A framework for engineering
self-tuning self-adaptive software systems. In: Proceedings of the Eighteenth ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2010, pp. 7–16. ACM, New York, NY, USA (2010)



An Iterative Decision-Making Scheme for Markov Decision Processes 285

14. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proceedings of the 31st International Conference
on Software Engineering, ICSE 2009, pp. 111–121. IEEE Computer Society, Wash-
ington, DC, USA (2009)

15. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th Euro-
pean Conference on Foundations of Software Engineering, ESEC/FSE 2011, pp.
234–244. ACM, New York, NY, USA (2011)

16. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013)

17. Filieri, A., Hoffmann, H., Maggio, M.: Automated multi-objective control for self-
adaptive software design. In: Proceedings of the 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pp. 13–24 (2015)

18. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42, 75–99
(2015)

19. Forejt, V., Kwiatkowska, M., Norman, G., Parker, D.: Automated verification tech-
niques for probabilistic systems. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 53–113. Springer, Heidelberg (2011)

20. Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: Proceedings of the International Con-
ference on Software Engineering, ICSE 2013, pp. 33–42. IEEE Press (2013)

21. Givan, R., Leach, S.M., Dean, T.L.: Bounded-parameter Markov Decision
Processes. J. Artif. Intell. 122(1–2), 71–109 (2000)

22. Huebscher, M.C., McCann, J.A.: A survey of autonomic computing-degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 7: 1–7: 28 (2008)

23. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive self-adaptation under
uncertainty: A probabilistic model checking approach. In: Proceedings of the 10th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pp. 1–12.
ACM, New York, NY, USA (2015)

24. Nilim, A., Ghaoui, L.E.: Robust control of Markov Decision Processes with uncer-
tain transition matrices. Oper. Res. 53(5), 780–798 (2005)

25. Poladian, V., Garlan, D., Shaw, M., Satyanarayanan, M., Schmerl, B., Sousat, J.:
Leveraging resource prediction for anticipatory dynamic configuration. In: First
International Conference on Self-Adaptive and Self-Organizing Systems, SASO
2007, pp. 214–223 (2007)

26. Puggelli, A., Li, W., Sangiovanni-Vincentelli, A.L., Seshia, S.A.: Polynomial-time
verification of PCTL properties of MDPs with convex uncertainties. In: Sharygina,
N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 527–542. Springer, Heidelberg
(2013)

27. Puterman, M.L.: Markov decision processes. Handb. Oper. Res. Manage. Sci. 2,
331–434 (1990)

28. Su, G., Feng, Y., Chen, T., Rosenblum, D.S.: Asymptotic perturbation bounds for
probabilistic model checking with empirically determined probability parameters.
IEEE Trans. Softw. Eng. 99, 1–19 (2015)

29. Su, G., Rosenblum, D.S., Tamburrelli, G.: Reliability of run-time quality-of-service
evaluation using parametirc model checking. In: Proceedings of the 38th Interna-
tional Conference on Software Engineering, ICSE 2016. ACM, New York, NY, USA
(2016)



286 G. Su et al.

30. Tewari, A., Bartlett, P.L.: Bounded parameter markov decision processes with aver-
age reward criterion. In: Bshouty, N.H., Gentile, C. (eds.) COLT. LNCS (LNAI),
vol. 4539, pp. 263–277. Springer, Heidelberg (2007)

31. Varga, R.S.: Matrix Iterative Analysis. Springer Series in Computational Mathe-
matics. Springer, Heidelberg (2009)

32. Wiesemann, W., Kuhn, D., Rustem, B.: Robust markov decision processes. Math.
Oper. Res. 38(1), 153–183 (2013)


	An Iterative Decision-Making Scheme for Markov Decision Processes and Its Application to Self-adaptive Systems
	1 Introduction
	2 Formal Model and Value-Iteration Method
	3 Iterative Decision-Making Scheme
	3.1 IDMS Preview and Example
	3.2 Data Structure and Parameter Estimation
	3.3 Confident Optimality
	3.4 Metrics and Tradeoff

	4 Application to Self-adaptive System
	4.1 Rainbow Framework
	4.2 Embedding IDMS into Rainbow

	5 Simulation-Based Experiment
	5.1 Methodology and Setting
	5.2 Experimental Data and Concrete Tradeoffs

	6 Related Work
	7 Conclusions
	References


