
An Automaton Learning Approach to Solving
Safety Games over Infinite Graphs

Daniel Neider
Department of Electrical Engineering

University of California at Los Angeles, USA

Ufuk Topcu
Department of Electrical and Systems Engineering

University of Pennsylvania, USA

Abstract—We propose a method to construct finite-state re-
active controllers for systems whose interactions with their
adversarial environment are modeled by infinite-duration two-
player games over (possibly) infinite graphs. The proposed
method targets safety games with infinitely many states or with
such a large number of states that it would be impractical—
if not impossible—for conventional synthesis techniques that
work on the entire state space. We resort to constructing finite-
state controllers for such systems through an automata learning
approach, utilizing a symbolic representation of the underlying
game that is based on finite automata. Throughout the learning
process, the learner maintains an approximation of the winning
region (represented as a finite automaton) and refines it using
different types of counterexamples provided by the teacher until
a satisfactory controller can be derived (if one exists). We present
a symbolic representation of safety games (inspired by regular
model checking), propose implementations of the learner and
teacher, and evaluate their performance on examples motivated
by robotic motion planning in dynamic environments.

I. INTRODUCTION

We propose an automata learning-based method to construct
reactive controllers subject to safety specifications. We model
the interaction between a controlled system and its possibly
adversarial environment as a two-player game over a graph [1].
We consider games over infinite graphs. In this setting, the
conventional techniques for reactive controller synthesis (e.g.,
fixed-point computations) are not applicable anymore. There-
fore, we resort to a learning-based approach for constructing
finite-state reactive controllers for the controlled system. The
learning takes place in a setting akin to counterexample-guided
inductive synthesis (CEGIS) [2] between a teacher, who has
knowledge about the safety game in question, and a learner,
whose objective is to identify a controller using information
disclosed by the teacher in response to (incorrect) conjectures.

A natural context for the proposed method is one in which the
interaction between the controlled system and its environment
is so complex that it can be represented only by graphs with
infinitely many vertices (e.g., motion planning over unbounded
grid worlds) or “practically infinitely many" states (i.e., the
number of possible configurations is so large that the game
becomes impractical for conventional techniques). Additionally,
in situations where a complete description of the game is not
available in a format amenable to existing game solvers [3],
[4], there may still exist human experts (or automated oracles,
as in Section IV) who have sufficient insight into how the
controlled system should behave and can act as teacher.

We focus on games with safety specifications, which already
capture practically interesting properties (e.g., safety and
bounded-horizon reachability). However, games over infinite
graphs require special attention on the representation and
manipulation of the underlying graph structure. Hence, one of
our main contributions is a symbolic representation of safety
games, called rational safety games, that follows the idea of
regular model checking [5] in that it represent sets of vertices
by regular languages and edges by so-called rational relations.

A straightforward approach to solve (rational) safety games
is computing a winning set for the controlled system (i.e., a
safe subset of the vertices in which the system can force to
remain). Once a winning set is computed, a strategy for the
system is determined by choosing its moves (in each of its
turns) to stay inside the set, which is possible regardless of the
moves of the environment. We use winning sets as a proxy for
an actual controller, and the objective of the learning task is
the construction of a winning set. In fact, learning a winning
set rather than a controller results in more permissive strategies
(and potentially smaller solutions) as the moves of the system
do not need to be fixed during the learning process.

We develop a framework for learning winning sets for
rational safety games and particular implementations of a
teacher and learner. The actual learning works iteratively. In
each iteration, the learner conjectures a winning set, represented
as a deterministic finite automaton. The teacher performs
a number of checks and returns, based on whether the
conjecture passes the checks, a counterexample. Following
the ICE learning framework [6] and partially deviating from
the classical learning frameworks for regular languages [7],
[8], the counterexample may be one of the following four
types: positive, negative, existential implication and universal
implication counterexamples. Based on the response from the
teacher, the learner updates his conjecture. If the conjecture
passes all checks (i.e., the teacher returns no counterexample),
the learning process terminates with the desired controller.

A learning-based approach offers several advantages: First,
even though the underlying game may be prohibitively large,
the reactive controller necessary to realize the specifications
often has a compact representation in practice; for example,
depending on the given task specification in a robotic motion
planning scenario, only a small subset of all possible rich
interactions between the robot and its dynamic environment
over a possibly large workspace is often relevant. Second, since

ar
X

iv
:1

60
1.

01
66

0v
1 

 [
cs

.F
L

] 
 7

 J
an

 2
01

6



learning-based approaches usually identify “small" solutions (as
they typically produce intermediate conjectures of increasing
size), their runtime mainly depends on the size of the solution
rather than the size of the underlying game. Third, learning-
based approaches reduce the gap between human designers and
construction of reactive controllers by hiding the complexity
of the underlying game from the learner.

Finally, we demonstrate the use of our overall learning-based
framework empirically on a series of examples motivated by
robotic motion planning in dynamic environments.

Related Work: Games over infinite graphs have been studied
in the past, predominantly in the case of games over pushdown
graphs [9]. The games we consider here, however, are played
over a richer class of graphs and require different techniques to
be solved. Also, a constraint-based approach to solving games
over infinite graphs has recently been proposed [10].

Learning-based techniques for games over infinite graphs
have already been studied in the context of reachability
games [11]; in fact, our symbolic representation of safety
games is a generalization of the representation proposed there.
In the context of safety games, recent work [12] has already
demonstrated the ability of learning-based approaches to extract
small reactive controllers from a priori constructed controllers
with possibly large number of states. In this work, we by-pass
the a priori construction of possibly large reactive controllers by
learning (an appropriate representation of) a controller directly.

II. RATIONAL SAFETY GAMES

This section recaps infinite-duration, two-player safety games
as well as basic concepts of automata theory and introduces
rational safety games.

a) Safety Games: We consider safety games (i.e., infinite
duration two-person games on graphs) as popularized by
McNaughton [1]. A safety game is played on an arena
A = (V0, V1, E) consisting of two nonempty, disjoint sets
V0, V1 of vertices (we denote their union by V ) and a directed
edge relation E ⊆ V × V . In contrast to the classical (finite)
setting, we allow V0 and V1 to be countable sets. As shorthand
notation, we write the successors of a set X ⊆ V of vertices
as E(X) = {y | ∃x ∈ X : (x, y) ∈ E}.

We consider safety games with initial vertices, which are
defined as triples G = (A, F, I) consisting of an arena A =
(V0, V1, E), a set F ⊆ V of safe vertices, and a set I ⊆ F of
initial vertices. Such safety games are played by two players,
named Player 0 and Player 1, as follows: A token is placed on
some initial vertex v0 ∈ I and, in each turn, the player owning
the current vertex moves the token to a successor vertex of
his choice. This process of moving the token is repeated ad
infinitum, thereby forming an infinite sequence of vertices,
which is called a play. Formally, a play is an infinite sequence
π = v0v1 . . . ∈ V ω that satisfies v0 ∈ I and (vi, vi+1) ∈ E
for all i ∈ N. The set F defines the winning condition of the
game in the sense that a play v0v1 . . . is winning for Player 0
if vi ∈ F for all i ∈ N—otherwise it is winning for Player 1.

A strategy for Player σ, σ ∈ {0, 1}, is a mapping
fσ : V ∗Vσ → V , which prescribes how to continue playing. A

strategy fσ is called winning if any play v0v1 . . . that is played
according to the strategy (i.e., that satisfies vi+1 = fσ(v0 . . . vi)
for all i ∈ N and vi ∈ Vσ) is winning for Player σ. A
winning strategy for Player 0 straightforwardly translates into a
controller satisfying the given safety specifications and, hence,
we restrict ourselves to compute winning strategies for Player 0.

Computing a winning strategy for Player 0 is usually reduced
to finding a so-called winning set.

Definition 1 (Winning set): For a safety game G = (A, I, F )
over the arena A = (V0, V1, E), a winning set is a set W ⊆ V
satisfying (1) I ⊆ W , (2) W ⊆ F , (3) E({v}) ∩W 6= ∅ for
all v ∈W ∩ V0 (existential closedness), and (4) E({v}) ⊆W
for all v ∈W ∩ V1 (universal closedness).

By computing a winning set, one immediately obtains a
strategy for Player 0: starting in an initial vertex, Player 0
simply moves to a successor vertex inside W whenever it is
his turn. A straightforward induction over the length of plays
proves that every play that is played according to this strategy
stays inside F , no matter how Player 1 plays, and, hence, is
won by Player 0 (since I ⊆W ⊆ F ). A winning set is what
we want to compute—or, more precisely, learn.

Games over infinite arenas require a symbolic representation
in order to work with them algorithmically. We follow the
idea of regular model checking [5], an approach in verification,
and represent sets of vertices by regular languages and edges
by so-called rational relations. Before we can introduce our
symbolic representation of safety games, however, we need to
recap basic concepts and notations of automata theory.

b) Basics of Automata Theory: An alphabet Σ is a
nonempty, finite set, whose elements are called symbols. A word
over the alphabet Σ is a sequence u = a1 . . . an of symbols
ai ∈ Σ for i ∈ {1, . . . , n}; the empty sequence is called
empty word and denoted by ε. Given two words u = a1 . . . am
and v = b1 . . . bn, the concatenation of u and v is the word
u · v = uv = a1 . . . amb1 . . . bn. The set of all words over the
alphabet Σ is denoted by Σ∗, and a subset L ⊆ Σ∗ is called a
language. The set of prefixes of a language L ⊆ Σ∗ is the set
Pref (L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}.

A nondeterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0,∆, F ) consisting of a nonempty, finite set Q of states,
an input alphabet Σ, an initial state q0 ∈ Q, a transition
relation ∆ ⊆ Q×Σ×Q, and a set F ⊆ Q of final states. A run
of an NFA A on a word u = a1 . . . an is a sequence of states
q0, . . . , qn such that (qi−1, ai, qi) ∈ ∆ for i ∈ {1, . . . , n}. We
denote this run by A : q0

u−→ qn. An NFA A accepts a word
u ∈ Σ∗ if A : q0

u−→ q with q ∈ F . The set L(A) = {u ∈ Σ∗ |
A : q0

u−→ q, q ∈ F} is called language of A. A language L is
said to be regular if there exists an NFA A with L(A) = L.
Finally, NFAΣ denotes the set of all NFAs over Σ.

A deterministic finite automaton (DFA) is an NFA in which
(p, a, q) ∈ ∆, (p, a, q′) ∈ ∆ implies q = q′. We replace the
transition relation ∆ with a transition function δ : Q×Σ→ Q.

We define rational relations by resorting to transducers. A
transducer is an NFA T = (Q, Σ̂, q0,∆, F ) over the alphabet
Σ̂ = (Σ ∪ {ε}) × (Γ ∪ {ε})—Σ and Γ are both alphabets—
that processes pairs (u, v) ∈ Σ∗ × Γ∗ of words. The run of



a transducer T on a pair (u, v) is a sequence q0, . . . , qn of
states such that (qi−1, (ai, bi), qi) ∈ ∆ for all i ∈ {1, . . . , n},
u = a1 . . . an, and v = b1 . . . bn; note that u and v do not
need to be of equal length since any ai or bi can be ε. A pair
(u, v) is said to be accepted by T if there exists a run of T
on (u, v) that starts in the initial state and ends in a final state.
As an acceptor of pairs of words, a transducer T defines a
relation, namely the relation consisting of exactly the pairs
accepted by T , which we denote by R(T ). Finally, a relation
R ⊆ Σ∗ × Γ∗ is called rational if there exists a transducer
T with R(T ) = R. (This definition of rational relations is
simplified from that in [13] but sufficient for our purpose.)

Our learning framework relies on the two well-known facts.
Lemma 1: Let R ⊆ Σ∗ × Γ∗ be a rational rela-

tion and X ⊆ Σ∗ a regular set. Then, (1) the relation
R−1 = {(y, x) | (x, y) ∈ R} is again rational, and a
transducer defining this set can be constructed in linear time;
and (2) the set R(X) = {y ∈ Γ∗ | ∃x ∈ X : (x, y) ∈ R},
called the image of X under R, is again regular, and an NFA
accepting this set can be constructed effectively.

c) Rational Safety Games: A rational safety game is a
symbolic representation of a safety game in terms of regular
languages and rational relations.

Definition 2: A rational arena over the alphabet Σ is an arena
AΣ = (V0, V1, E) where V0, V1 ⊆ Σ∗ are regular languages
and E ⊆ V × V is a rational relation.

The definition of rational safety games is now immediate.
Definition 3: A rational safety game over the alphabet Σ is

a safety game GΣ = (AΣ, F, I) where AΣ is a rational arena
over Σ and F, I ⊆ Σ∗ are regular languages.

In the remainder, we assume regular languages to be given as
NFAs and rational relations as transducers. In addition, we use
these notions interchangeably when referring to rational arenas
and rational safety games; for instance, we write a rational
area AΣ = (V0, V1, E) as AΣ = (AV0

,AV1
, TE) given that

L(AV0
) = V0, L(AV1

) = V1, and R(TE) = E.
Let us illustrate rational safety games through an example.
Example 1: Consider a simple example motivated by motion

planning, sketched in Figure 1a, in which a robot moves on
an infinite, discrete one-dimensional grid that is “bounded on
the left”. The robot can move left or right to an adjacent cell
(provided that it has not reached edge of the grid) or it can stay
at its current position. The grid is partitioned into a safe and
an unsafe area, the former being shown shaded in Figure 1a.
The safe area is parameterized by an integer k ∈ N \ {0} and
consists of all position greater than or equal to k. The robot
starts somewhere inside the safe area.

The robot’s movement is governed by two adversarial players,
called system and environment; the system can move the robot
to the right or keep it at its current position, whereas the
environment can move the robot to the left (if the edge has not
been reached) or keep it at its current position. The players
move the robot in alternation, and the system moves first. The
system’s objective is to stay within the safe area, whereas the
environment wants to move the robot out of it. Note that the
system can win, irrespective of k, by always moving right.

0 1 2 4 5 . . .

(a) A robot moving on a one-dimensional discrete grid. The figure
shows the setting for k = 2.

(s, 0) (e, 1) (s, 2) (e, 3)

(e, 0) (s, 1) (e, 2) (s, 3) . . .

(b) The safety game G2. Player 0 vertices are drawn as ellipses and and
Player 1 vertices are drawn as squares. Shaded vertices belong to F .

Fig. 1. Illustration of the safety game discussed in the introductory example.

A formalization as safety game is straightforward. Player 0
corresponds to the system and Player 1 corresponds to the
environment. The arena A = (V0, V1, E) consists of vertices
V0 = {s} ×N and V1 = {e} ×N—s, respectively e, indicates
the player moving next—as well as the edge relation E ={(

(s, i), (e, i + 1)
)
| i ∈ N

}
∪
{(

(e, i + 1), (s, i)
)
| i ∈ N

}
.

The safety game itself is the triple Gk = (A, F, I) with F =
{s, e} × {i ∈ N | i ≥ k} and I = {s} × {i ∈ N | i ≥ k}.
Figure 1b sketches the game Gk for the case k = 2.

We now turn Gk into a rational safety game. To this end, we
label each vertex uniquely with a finite word. In our example,
we choose Σ = {s, e, l} and associate the vertex (x, i) ∈
{s, e} × N with the word xli where li is the encoding of i in
unary. We represent the sets V0 and V1 by the following NFAs:

AV0 :
s

l AV1 :
e

l

Moreover, we represent the edges by the following transducer:

TE :
(s, e) (e, s)

(l, l)

(ε, l)

(l, l)

(l, ε)

Finally, the NFA

. . .AF :
s, e l l l

l

k − 1 states

represents the set F ; similarly, I is represented by a copy of
AF in which the transition labeled with e is omitted.

It is worth mentioning that rational arenas not only subsume
finite arenas but also a rich class of of infinite arenas, including
such encoding computations of Turing machines. Hence, the
problem of determining the winner of a rational safety game
is undecidable, and any algorithm for computing a winning
set can at best be a semi-algorithm (i.e., an algorithm that, on
termination, gives the correct answer but does not guarantee
to halt). The algorithm we design in this paper is of this kind
and guarantees to learn a winning set if one exists. To ease
description, we always assume that a winning set set exists.

III. THE LEARNING FRAMEWORK

Our learning framework is an extension of the ICE frame-
work proposed by Garg et. al. [6], which deals with learning
loop invariants from positive and negative data as well as



implications. The learning takes place between a teacher, who
has (explicit or implicit) knowledge about the rational safety
game in question, and a learner, whose objective is to learn
a DFA accepting a winning set, but who is agnostic to the
game. We assume that the teacher announces the alphabet of
the game before the actual learning starts.

The learning proceeds in a CEGIS-style loop [2]. In every
iteration, the learner conjectures a DFA, let us call it C, and
the teacher checks whether L(C) is a winning set—this kind
of query is often called equivalence or correctness query.
Although the teacher does not know a winning set (the
overall objective is to learn one after all), he can resort to
Conditions (1)–(4) of Definition 1 in order to decide whether
L(C) is a winning set. If L(C) satisfies Conditions (1)–(4)
(i.e., L(C) is a winning set), then the teacher replies “yes” and
the learning ends. If this is not the case, the teacher returns
a counterexample witnessing the violation of one of these
conditions, and the learning continues with the next iteration.
The definition below fixes the protocol between the teacher
and the learner and defines counterexamples.

Definition 4 (Teacher for rational safety games): Let GΣ =
(AΣ, F, I) be a rational safety game over the rational arena
AΣ = (V0, V1, E). Confronted with a DFA C, a teacher for GΣ

replies as follows:

1) If I 6⊆ L(C), then the teacher returns a positive coun-
terexample u ∈ I \ L(C).

2) If L(C) 6⊆ F , then the teacher returns a negative
counterexample u ∈ L(C) \ F .

3) If there exists u ∈ L(C)∩V0 such that E({u})∩L(C) = ∅,
then the teacher picks such a u and returns an existential
implication counterexample (u,A) ∈ Σ∗ ×NFAΣ where
L(A) = E({u}).

4) If there exists u ∈ L(C) ∩ V1 such that E({u}) 6⊆ L(C),
then the teacher picks such a u and returns a universal
implication counterexample (u,A) ∈ Σ∗ ×NFAΣ where
L(A) = E({u}).

If C passes all four checks, the teacher replies “yes”. The
order in which the teacher performs these checks is arbitrary.

It is easy to see that the language of a conjecture is indeed
a winning set if the teacher replies “yes” (since it satisfies
all conditions of Definition 1). The meaning of a positive
counterexample is that any conjecture needs to accepts it, but it
was rejected. Similarly, a negative counterexample indicates that
any conjecture has to reject it but it was accepted. An existential
implication counterexample (u,A) means that any conjecture
accepting u has to accept at least one v ∈ L(A), which
was violated by the current conjecture. Finally, a universal
implication counterexample (u,A) means that any conjecture
accepting u needs to accept all v ∈ L(A). At this point, it is
important to note that Definition 4 is sound (in particular, both
types of implication counterexamples are well-defined due to
Lemma 1 Part 2) and every counterexample is a finite object.

Let us illustrate this learning framework through an example.
Example 2: We revisit the setting of Example 1 for the case

k = 2 and describe how the learner learns a winning set.

Suppose that the learner conjectures the DFA C0 with
L(C0) = ∅. As C0 fails Check 1 (it passes all other checks),
the teacher returns a positive counterexample, say u = sll ∈ I .

Next, suppose the learner conjectures the DFA C1 with
L(C1) = {sln | n ≥ 2}, which passes all checks but Check 3
(as the players alternate but L(C1) does not contain a vertex
of the environment). The teacher replies with an existential im-
plication counterexample, say (sll,A) with L(A) = {ell, elll}.

In the next round, let us assume that the learner conjectures
the DFA C2 with L(C2) = {sln | n ≥ 2} ∪ {elm | m ≥ 3}.
This conjecture passes all checks (i.e., L(C2) is a winning set),
the teacher replies “yes”, and the learning ends.

It is important to note that classical learning frameworks
for regular languages that involve learning from positive and
negative data only, such as Gold’s passive learning [7] or
Angluin’s active learning [8], are insufficient in our setting. If
the learner provides a conjecture C that violates Condition (3)
or (4) of Definition 1, the teacher is stuck. For instance, if
C does not satisfy Condition (4), the teacher does not know
whether to exclude u or to include E({u}). Returning an
implication counterexample, however, resolves this problem in
that it communicates exactly why the conjecture is incorrect
and, hence, allows the learner to make progress.1

IV. A GENERIC TEACHER

We now present a generic teacher that, taking a rational safety
game as input, answers queries according to Definition 4. For
the remainder of this section, fix a rational safety game GΣ =
(AΣ,AF ,AI) over the rational arena AΣ = (AV0

,AV1
, TE),

and let C be a DFA conjectured by the learner.
To answer a query, the teacher performs Checks 1 to 4

of Definition 4 as described below. If the conjecture passes
all checks, the teacher returns “yes”; otherwise, he returns a
corresponding counterexample, as described next.

Check 1 (initial vertices): The teacher computes an NFA
B with L(B) = L(AI) \ L(C). If L(B) 6= ∅, he returns a
positive counterexample u ∈ L(B).

Check 2 (safe vertices): The teacher computes an NFA
B with L(B) = L(C) \ L(AF ). If L(B) 6= ∅, he returns a
negative counterexample u ∈ L(B).

Check 3 (existential closure): To check existential closure,
the teacher successively computes three NFAs:

1) An NFA B1 with L(B1) = R(TE)−1(L(C)); the language
L(B1) contains all vertices that have a successor in L(C).

2) An NFA B2 with L(B2) = L(AV0
)\L(B1); the language

L(B2) contains all vertices of Player 0 that have no
successor in L(C).

3) An NFA B3 with L(B3) = L(C) ∩ L(B2); the language
L(B3) contains all vertices of Player 0 that belong to
L(C) and have no successor in L(C).

Every u ∈ L(B3) is a witness that C is not existentially closed.
Hence, if L(B3) 6= ∅, the teacher picks an arbitrary u ∈ L(B3)

1Garg et. al. [6] argue comprehensively why implications needed in a robust
invariant learning framework. Their arguments also apply to our setting as
one obtains a setting similar to Garg et. al.’s by considering a solitary game
with Player 1 as the only player.



and returns the existential implication counterexample (u,A)
where L(A) = R(TE)({u}).

Check 4 (universal closure): To check universal closure,
the teacher, again, computes three NFAs:

1) An NFA B1 with L(B1) =
(
L(AV0

) ∪ L(AV1
)
)
\ L(C);

the language L(B1) contains all vertices not in L(C).
2) An NFA B2 with L(B2) = R(TE)−1(L(B1)); the lan-

guage L(B2) contains all vertices that have a successor
not belonging to L(C).

3) An NFA B3 with L(B3) = L(AV1
) ∩ L(C) ∩ L(B2); the

language L(B3) contains all vertices of Player 1 that are
in L(C) and have at least one successor not in L(C).

Every u ∈ L(B3) is a witness that C is not universally closed.
Hence, if L(B3) 6= ∅, the teacher picks an arbitrary u ∈ L(B3)
and returns the universal implication counterexample (u,A)
where L(A) = R(TE)({u}).

All checks can be performed using standard methods of
automata theory, including product constructions, projections,
determinizing automata, and emptiness checks (see Lemma 1).

V. A LEARNER FOR RATIONAL SAFETY GAMES

We design our learner with two key features: (1) the learner
always conjectures a DFA consistent with the counterexamples
received so far (we make this precise shortly), and (2) the
learner always conjectures a minimal consistent DFA (i.e., a
DFA with the least number of states among all DFAs that are
consistent with the received counterexamples). The first design
goal prevents the learner from making the same mistake twice,
while the second design goal facilitates convergence of the
overall learning (assuming that a winning set exists).

To meet these goals, our learner stores counterexamples in
a data structure, which we call sample. Formally, a sample is
a four-tuple S = (Pos,Neg ,Ex ,Uni) consisting of a finite
set Pos ⊂ Σ∗ of positive words, a finite set Neg ⊂ Σ∗ of
negative words, a finite set Ex ⊂ Σ∗ × NFAΣ of existential
implications, and a finite set Uni ⊂ Σ∗ ×NFAΣ of universal
implications. We encourage the reader to think of a sample as
a finite approximation of the safety game learned thus far.

In every iteration, our learner constructs a minimal DFA
consistent with the current sample. A DFA B is called consistent
with a sample S = (Pos,Neg ,Ex ,Uni) if

1) Pos ⊆ L(B);
2) Neg ∩ L(B) = ∅;
3) u ∈ L(B) implies L(B)∩L(A) 6= ∅ for each (u,A) ∈ Ex ;
4) u ∈ L(B) implies L(A) ⊆ L(B) for each (u,A) ∈ Uni .

Constructing a DFA that is consistent with a sample is
possible only if the sample does not contain contradictory
information. Contradictions can arise in two ways: first, Pos
and Neg are not disjoint; second, the (alternating) transitive
closure of the implications in Ex and Uni contains a pair
(u, v) with u ∈ Pos and v ∈ Neg . This observation justifies to
introduce the notion of contradiction-free samples: a sample
S is called contradiction-free if a DFA that is consistent with
S exists. Since we assume that Player 0 wins from set I , a

Algorithm 1: A learner for rational safety games

1 Initialize an empty sample S = (Pos,Neg ,Ex ,Uni) with
Pos = ∅, Neg = ∅, Ex = ∅, and Uni = ∅;

2 repeat
3 Construct a minimal DFA AS consistent with S;
4 Submit AS to an equivalence query;
5 if the teacher returns a counterexample then
6 Add the counterexample to S;
7 end
8 until the teacher replies “yes” to an equivalence query;
9 return AS ;

winning set exists and the counterexamples returned by the
teacher always form contradiction-free samples.2

After having constructed a minimal consistent DFA, the
learner conjectures it to the teacher. If the teacher replies “yes”,
the learning terminates. If the teacher returns a counterexample,
on the other hand, the learner adds it to the appropriate set in S
and iterates. This procedure is sketched as Algorithm 1. Note
that, by definition of the teacher, a conjecture is guaranteed to
accept a wining set once the learning terminates.

It is left to describe how the learner actually constructs a
minimal DFA that is consistent with the current sample. How-
ever, this task, known as passive learning, is computationally
hard (i.e., the corresponding decision problem is NP-complete)
already in the absence of implications [7]. Our strategy to
approach this hurdle is to translate the original problem into a
sequence of satisfiability problems of formulas in propositional
Boolean logic and use highly optimized constraint solvers as
a practically effective means to solve the resulting formulas
(note that a translation into a logical formulation is a popular
and effective strategy). More precisely, our learner creates
and solves propositional Boolean formulas ϕSn , for increasing
values of n ∈ N, n ≥ 1, with the following two properties:

1) The formula ϕSn is satisfiable if and only if there exists a
DFA with n states that is consistent with S.

2) A model M of ϕSn (i.e., a satisfying assignment of
the variables in ϕSn) contains sufficient information to
construct a DFA, denoted by AM, that has n states and
is consistent with S .

If ϕSn is satisfiable, then Property 2 enables us to construct
a consistent DFA from a model. However, if the formula is
unsatisfiable, then the parameter n has been chosen too small
and the learner increments it (e.g., by one or using a binary
search). This procedure is summarized as Algorithm 2. We
show its correctness shortly in Section V-B.

The key idea of the formula ϕSn is to encode a DFA with n
states by means of Boolean variables and to pose constraints on
those variables. Our encoding relies on a simple observation:
for every DFA there exists an isomorphic (hence, equivalent)
DFA over the state set Q = {0, . . . , n− 1} with initial state

2In fact, checking for contradictions equips the learner with a means to
detect that the game is won by Player 1. However, since determining the
winner of a rational safety game is undecidable, any sample obtained during
the learning might be contradiction-free despite the fact that Player 1 wins.



Algorithm 2: Computing a minimal consistent DFA.

Input: A contradiction-free sample S
Output: A minimal DFA that is consistent with S

1 n← 0;
2 repeat
3 n← n+ 1;
4 Construct and solve ϕSn ;
5 until ϕSn is satisfiable, say with model M;
6 return AM;

q0 = 0; moreover, given that Q and q0 are fixed, any DFA
with n states is uniquely determined by its transitions and final
states. Therefore, we can fix the state set of the prospective
DFA as Q = {0, . . . , n − 1} and the initial state as q0 = 0;
the alphabet Σ is announced by the teacher.

Our encoding of transitions and final states follows an idea
from [14] (independently due to [15]). We introduce Boolean
variables dp,a,q and fq where p, q ∈ Q and a ∈ Σ, which
have the following meaning: setting dp,a,q to true means that
the transition δ(p, a) = q exists in the prospective DFA, and
setting fq to true means that q is a final state.

To make sure that the variables dp,a,q encode a deterministic
transition function, we impose two constraints:∧

p∈Q

∧
a∈Σ

∧
q,q′∈Q,q 6=q′

¬dp,a,q ∨ ¬dp,a,q′ (1)∧
p∈Q

∧
a∈Σ

∨
q∈Q

dp,a,q (2)

Let ϕDFA
n be the conjunction of Formulas (1) and (2). Given

a model M of ϕDFA
n (we assume a model to be a map from

the variables of a formula to the set {true, false}), deriving
the encoded DFA is straightforward, as shown next.

Definition 5: Let M be a model of ϕDFA
n . We define

the DFA AM = (Q,Σ, q0, δ, F ) by (1) δ(p, a) = q
for the unique q ∈ Q with M(dp,a,q) = true; and
(2) F = {q ∈ Q | M(fq) = true}. (Recall that we fixed
Q = {0, . . . , n− 1} and q0 = 0.)

To enforce that AM is consistent with the given sample
S = (Pos,Neg ,Ex ,Uni), we impose further constraints,
corresponding to the four requirements of consistent DFAs:
• a formula ϕPos

n asserting Pos ⊆ L(AM);
• a formula ϕNeg

n asserting Neg ∩ L(AM) = ∅;
• a formula ϕEx

n asserting that u ∈ L(AM) implies
L(AM) ∩ L(A) 6= ∅ for each (u,A) ∈ Ex ; and

• a formula ϕUni
n asserting that u ∈ L(AM) implies

L(AM) ⊆ L(A) for each (u,A) ∈ Uni .
Then, ϕSn := ϕDFA

n ∧ ϕPos
n ∧ ϕNeg

n ∧ ϕEx
n ∧ ϕUni

n . We here
sketch formula ϕUni

n and refer the reader to Appendix A for a
detailed presentation of the remaining formulas. A description
of ϕPos

n and ϕNeg
n can also be found in [14].

A. The formula ϕUni
n

We break the construction of ϕUni
n down into smaller parts.

Roughly speaking, we construct for each universal implication

ι = (u,A) ∈ Uni a formula ϕιn that asserts L(A) ⊆ L(AM) if
u ∈ L(AM). The formulas ϕUni

n is then the finite conjunction∧
ι∈Uni ϕ

ι
n. For the remainder, let us fix a universal implication

ι ∈ Uni , say ι = (u,A) with A = (QA,Σ, q
A
0 ,∆A, FA), and

let Ante(Uni) = {u | (u,A) ∈ Uni} be the set of all words
occurring as antecedent of a universal implication.

As a preparatory step, we introduce auxiliary Boolean vari-
ables that track the runs of AM on words of Pref (Ante(Uni))
in order to detect when AM accepts the antecedent of a
universal implication. More precisely, we introduce variables
xu,q where u ∈ Pref (Ante(Uni)) and q ∈ Q, which have the
meaning that xu,q is set to true if AM : q0

u−→ q (i.e., AM

reaches state q on reading u):
xε,q0 (3)∧

u∈Pref (Ante(Uni))

∧
q 6=q′∈Q

¬xu,q ∨ ¬xu,q′ (4)

∧
ua∈Pref (Ante(Uni))

∧
p,q∈Q

(xu,p ∧ dp,a,q)→ xua,q (5)

Formula (3) asserts that xε,q0 is set to true since any run
starts in the initial state q0. Formula (4) enforces that for
every u ∈ Pref (Ante(Uni)) there exists at most one q ∈
Q such that xu,q is set to true (in fact, the conjuction of
Formulas (2)–(5) implies that there exists a unique such state).
Finally, Formula (5) prescribes how the run of AM on a word
u ∈ Pref (Ante(Uni)) proceeds: if AM reaches state p on
reading u (i.e., xu,p is set to true) and there exists a transition
from p to state q on reading the symbol a ∈ Σ (i.e., dp,a,q is
set to true), then AM reaches state q on reading ua and xua
needs to be set to true .

We now define ϕιn. The formula ranges, in addition to dp,a,q ,
fq, and xu,q, over Boolean variables yιq,q′ where q ∈ Q and
q′ ∈ QA, which track runs of A and AM. Their precise
meaning is the following: if there exists a word u ∈ Σ∗ with
AM : q0

u−→ q and A : qA0
u−→ q′, then yιq,q′ is set to true:

yιq0,qA0
(6)∧

p,q∈Q

∧
(p′,a,q′)∈∆A

(yιp,p′ ∧ dp,a,q)→ yιq,q′ (7)

Formula (6) enforces yι
q0,qA0

to be set to true because

AM : q0
ε−→ q0 and A : qA0

ε−→ qA0 . Formula (7) is similar
to Formula (5) and describes how the runs of AM and A
proceed: if there exists a word v such that AM : q0

v−→ p and
A : qA0

v−→ p′ (i.e., yιp,p′ is set to true) and there are transitions
(p′, a, q′) ∈ ∆A and δ(p, a) = q in AM, then AM : q0

va−→ q
and A : qA0

va−→ q′, which requires yιq,q′ to be set to true .
Finally, the next constraint ensures that whenever AM

accepts u (i.e., the antecedent is true), then all words that
lead to an accepting state in A also lead to an accepting state
in AM (i.e., the consequent is true).(∨

q∈Q
xu,q ∧ fq

)
→
(∧
q∈Q

∧
q′∈FA

yιq,q′ → fq
)

(8)

Let ϕAnte(Uni)
n be the conjunction of Formulas (3), (4), and

(5) as well as ϕιn the conjunction of Formulas (6), (7), and (8).
Then, ϕUni

n is the (finite) conjunction ϕAnte(Uni)
n ∧

∧
ι∈Uni ϕ

ι
n.



B. Correctness of the Learner

We now sketch a correctness proof of the learner—we refer
the reader to Appendix B for a detailed proof. First, we state
that ϕSn has the desired properties.

Lemma 2: Let S be a sample, n ≥ 1, and ϕSn be as defined
above. Then, the following statements hold: (1) If M |= ϕSn ,
then AM is a DFA with n states that is consistent with S.
(2) If there exists a DFA that has n states and is consistent
with S, then ϕSn is satisfiable.

Next, let us show the correctness of Algorithm 2.
Theorem 1: Given a contradiction free-sample S , Algorithm 2

returns a minimal DFA (in terms of the number of states) that
is consistent with S . If a minimal consistent DFA has k states,
then Algorithm 2 terminates after k iterations.

Proof: Given a sample S, suppose that there exists a
DFA that has k states and is consistent with S. Then, ϕSn is
satisfiable for all n ≥ k (see Lemma 2). Moreover, if M is a
model of ϕSn , then AM is a DFA with n states that is consistent
with S . Since Algorithm 2 increases the parameter n by one in
every iteration (starting with n = 1), the algorithm eventually
finds the smallest value for which ϕSn is satisfiable (after k
iterations) and, hence, a consistent DFA of minimal size.

Finally, we can prove the correctness of our learner.
Theorem 2: Given a teacher, Algorithm 1, equipped with

Algorithm 2 to construct conjectures, terminates and returns a
(minimal) DFA accepting a winning set if one exists.

Proof: Theorem 2 follows from three observations about
the learner: (1) The learner never conjectures the same DFA
twice (due to Theorem 1 and the fact that counterexamples are
added to the sample). (2) The conjectures grow monotonically
in size (due to minimality of conjectures) with increasing n, and
(3) adding counterexamples to a sample does not rule out any
solution (as every DFA accepting a winning set is consistent
with any sample produced during the learning). Now, suppose
a DFA accepting a winning set exists, say with k states. Due
to Observations 1 and 2, the learner eventually conjectures a
DFA with k states and, moreover, cannot conjecture a larger
DFA (due to Observation 3 and the minimality of conjectures).
Hence, the learner eventually conjectures a DFA with k states
that accepts a winning set, and the learning terminates.

VI. EXPERIMENTS

In order to demonstrate the feasibility of our learning
approach, we implemented a Java prototype using the BRICS
automaton library [16] and Microsoft’s Z3 [17] constraint solver.
The source code, including the games used in the experiments,
is available at http://preview.tinyurl.com/n7a7byj.

In addition to the learner of Section V, we implemented a
learner based on the popular RPNI algorithm [18], which is
a polynomial time algorithm for learning DFAs from positive
and negative words. For this learner, we modified the RPNI
algorithm such that it constructs a consistent DFA from
existential and universal implications in addition to positive
and negative words (a detailed presentation can be found in
Appendix C). In contrast to Algorithm 2, our modified version
of RPNI cannot guarantee to find smallest consistent DFAs

and, hence, the resulting learner is a fast heuristic that is sound
but in general not complete. Another limitation is that it can
only handle implication counterexamples of the form (u,A)
where L(A) is finite. We refer to the learner of Section V as
SAT learner and the RPNI-based learner as RPNI learner.

Our experiments are on a slightly restricted type of games:
1) Edge relations are automatic. Automatic relations are

defined by transducers that do not possess transitions of the
form (a, ε) and (ε, b) but rather use a dedicated padding
symbol to balance the length of their input-words.3

2) Each vertex of an arena has a finite (but not necessarily
bounded) number of outgoing edges.

Restriction 1 simplifies the implementation of the teacher.
Restriction 2 is due to the limitation of the RPNI learner.

We use two benchmark suits: the first suite serves to demon-
strate the feasibility of our techniques for various examples,
predominantly taken from the area of motion planning; the
second suite serves to assess the performance of our techniques
when confronted with games of increasing “complexity”. All
games were given as finite automata, and we employed the
teacher described in Section IV. We conducted all experiments
on an Intel Core i7-4510U CPU (running Microsoft Windows
8.1) with a memory limit of 4 GiB and a runtime limit of 300 s.

A. Examples

We consider the following examples.
Diagonal game: A robot moves on an infinite, discrete two-
dimensional grid world from one cell to an adjacent cell.
Player 0 controls the robot’s vertical movement, whereas
Player 1 controls the horizontal movement. Both players
move the robot in alternation, and Player 0’s objective is to
stay inside a margin of two cells around the diagonal.

Box game: A version of the diagonal game in which Player 0’s
objective is to stay within a horizontal stripe of width three.

Solitary box game: A version of the box game in which
Player 0 is the only player and has control over both the
horizontal and the vertical movement.

Evasion game: Two robots move in alternation on an infinite,
two-dimensional grid. Each robot is controlled by a player.
Player 0’s objective is to avoid collision with Player 1’s robot.

Follow game: A version of the evasion game in which
Player 0’s objective is to keep his robot within a distance of
two cells (in the Manhattan distance) from Player 1’s robot.

Program-repair game: A finitely-branching version of the
program-repair game described by Beyene et al. [10].
Table I lists the overall time taken by each of the two

learners to learn a winning set (including the time taken by the
teacher) as well as further statistics of the learning process. The
second column |G| corresponds to sum of states of all automata
constituting a game (size of the game), which serves as measure
for the complexity of a game. The remaining columns list the
number of iterations, the number of states of the learned DFA,
and the cardinality of each set of the final sample.

3Automatic relations constitute a proper subset of rational relations, but are
still expressive enough to encode computations of Turing machines.

http://preview.tinyurl.com/n7a7byj


TABLE I
RESULTS OF THE FIRST BENCHMARK SUITE

SAT learner RPNI learner

Game |G| Time in s Iter. Size |Pos| |Neg| |Ex | |Uni | Time in s Iter. Size |Pos| |Neg| |Ex | |Uni |

Diagonal 29 1.352 62 4 1 55 2 3 1.000 77 6 1 54 10 11
Box 25 0.516 32 4 1 30 0 0 0.188 15 5 1 10 1 2
Solitary Box 22 4.289 81 6 1 77 2 0 0.156 16 6 1 13 1 0
Follow 53 165.670 294 7 2 269 10 12 timeout (> 300 s)
Evasion 56 140.888 255 7 2 232 11 9 2.316 142 12 1 115 14 11
Program-repair 41 1.948 62 3 2 55 4 0 0.438 31 4 1 20 9 0

101 102 103 104 105
10−1

100

101

102

103

k′

tim
e

in
s

SAT learner
RPNI learner

101

103

105

|G
|

SAT learner
RPNI learner
|G|

Fig. 2. Results of the scalability benchmark.

As Table I shows, the SAT learner computed the winning sets
for all games, whereas the RPNI learner computed the winning
sets for all but the Follow game. Since the RPNI learner does
not compute minimal consistent DFAs, we expected that it is
on average faster than the SAT learner, which turned out to be
the case. However, the RPNI learner fails to terminate within
the time limit on the Follow game, and the large number of
iterations seem to indicate that the learner in fact diverges.

Finally, it is important to note that the teacher replied
implication counterexamples in all but one experiment. This
observation highlights that classical learning algorithms, which
learn from positive and negative words only, are insufficient to
learn winning sets (since the learning would be stuck at that
point) and one has to move to a richer learning framework.

B. Scalability Benchmarks

To assess the scalability of our technique when confronted
with inputs of increasing size, we modified the game of
Example 1 such that the safe region is now determined by two
parameters, namely k and k′, and contains all positions in the
interval [k, k′] (we assume k < k′ and fix k = 1). In this new
setting, the number of states of the automaton AF increases
when k′ increases as the automaton needs to count in unary
to check the position of the robot.

Figure 2 depicts the overall time taken to learn a winning
set, depending on the parameter k′. To put the runtimes into
perspective, it also shows the size of the games.

On the scalability benchmark suite, the RPNI learner was
about one order of magnitude faster than the SAT learner and
can computed a winning set for games up to a combined size
of 50 000. The SAT learner, on the other hand, computed a
winning set for games up to a combined size of 10 000 but did
not terminate for game with k′ = 50 000. While a thorough
assessment remains as part of future work, our results promise

applicability to practically interesting problem instances.

VII. CONCLUSION

We developed an automata learning method to construct
finite-state reactive controllers for systems whose interactions
with their environment are modeled by infinite-state games.
We focused on the practically interesting family of safety
games, utilized a symbolic representation of the underlying
game, developed specific implementations of the learner and
the teacher, and demonstrated the feasibility of the method on
a set of problems motivated by robotic motion planning.

REFERENCES

[1] R. McNaughton, “Infinite games played on finite graphs,” Ann. Pure
Appl. Logic, vol. 65, no. 2, pp. 149–184, 1993.

[2] S. Itzhaky, S. Gulwani, N. Immerman, and M. Sagiv, “A simple inductive
synthesis methodology and its applications,” in OOPSLA 2010. ACM,
2010, pp. 36–46.

[3] R. Ehlers, V. Raman, and C. Finucane, “Slugs GR(1) synthesizer,” 2014,
available at https://github.com/LTLMoP/slugs/.

[4] A. Bohy, V. Bruyère, E. Filiot, N. Jin, and J.-F. Raskin, “Acacia+, a tool
for ltl synthesis,” in CAV, 2012, pp. 652–657.

[5] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili, “Regular model
checking,” in CAV 2000, ser. LNCS, vol. 1855. Springer, 2000, pp.
403–418.

[6] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “ICE: A robust
framework for learning invariants,” in CAV 2014, ser. LNCS, vol. 8559.
Springer, 2014, pp. 69–87.

[7] E. M. Gold, “Complexity of automaton identification from given data,”
Information and Control, vol. 37, no. 3, pp. 302–320, 1978.

[8] D. Angluin, “Learning regular sets from queries and counterexamples,”
Inf. Comput., vol. 75, no. 2, pp. 87–106, 1987.

[9] O. Kupferman, N. Piterman, and M. Y. Vardi, “An automata-theoretic
approach to infinite-state systems,” in Time for Verification, Essays in
Memory of Amir Pnueli, ser. LNCS, vol. 6200. Springer, 2010, pp.
202–259.

[10] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko, “A
constraint-based approach to solving games on infinite graphs,” in POPL
2014. ACM, 2014, pp. 221–234.

[11] D. Neider, “Reachability games on automatic graphs,” in CIAA 2010,
ser. LNCS, vol. 6482. Springer, 2010, pp. 222–230.

[12] ——, “Small strategies for safety games,” in ATVA 2011, ser. LNCS,
vol. 6996. Springer, 2011, pp. 306–320.

[13] A. Blumensath and E. Grädel, “Finite presentations of infinite structures:
Automata and interpretations,” Theory Comput. Syst., vol. 37, no. 6, pp.
641–674, 2004.

[14] D. Neider and N. Jansen, “Regular model checking using solver
technologies and automata learning,” in NFM 2013, ser. LNCS, vol.
7871. Springer, 2013, pp. 16–31.

[15] M. Heule and S. Verwer, “Exact DFA identification using SAT solvers,”
in ICGI 2010, ser. LNCS, vol. 6339. Springer, 2010, pp. 66–79.

[16] A. Møller, “dk.brics.automaton – finite-state automata and regular
expressions for Java,” 2010, http://www.brics.dk/automaton/.

[17] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in TACAS
2008, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

http://www.brics.dk/automaton/


[18] J. Oncina and P. Garcia, “Inferring regular languages in polynomial
update time,” in Pattern Recognition & Image Analysis, 1992, pp. 49–61.



APPENDIX A
CONSTRUCTING CONSISTENT DFAS

USING CONSTRAINT SOLVERS

The key building block of our learner is an algorithm that,
given a sample S , produces a smallest DFA that is consistent
with S. Recall that the learner translates this problem into
a series of satisfiability problem of propositional Boolean
formulas ϕSn and uses a constraint solver to check their
satisfiability.

In the following, we describe in detail how the formula ϕSn
is constructed. For the sake of a self-contained presentation,
we repeat parts of Section V; as a beneficial side-effect, this
repetition allows us to provide further explanations of the
formulas presented in Section V. Moreover, to facilitate a
more concise and accessible description, we define ϕSn slightly
different. In particular, we introduce a formula ϕWn , which
tracks the run of AM on words occurring in the sample (in
Pos , Neg , and as antecedent of an implication). In contrast
to Section V (where we defined the formula ϕUni

n to track
the run of AM on the set Ante(Uni)) this approach results
in more concise and easier to understand formulas since (a
prefix of) a word can occur more than once in a sample. As a
consequence, however, the formula ϕUni

n has to be changed in
comparison to Section V.

Recapping the main ideas and encoding of states and transitions

The key idea of the formula ϕSn is to encode a DFA with n
states by means of Boolean variables and to pose constraints on
those variables in order to obtain a DFA that is consistent with
the given sample. Our encoding relies on a simple observation:
if we fix the alphabet, the set of states and the initial state,
then any DFA with n states is uniquely determined (up to
isomorphism) by its transitions and final states. Hence, we can
without loss of generality fix the state set of the prospective
DFA to be Q = {0, . . . , n − 1} and the initial state to be
q0 = 0; the alphabet Σ is determined by the given game.

To encode the transitions and the final states, we introduce
Boolean variables dp,a,q and fq where p, q ∈ Q and a ∈ Σ,
which have the following meaning: assigning true to dp,a,q
means that the transition δ(p, a) = q exists in the prospective
DFA, and assigning true to fq means that q is a final state.

To make sure that the variables dp,a,q indeed encode a
deterministic transition function, we impose the following
constraints.∧

p∈Q

∧
a∈Σ

∧
q,q′∈Q,q 6=q′

¬dp,a,q ∨ ¬dp,a,q′ (9)∧
p∈Q

∧
a∈Σ

∨
q∈Q

dp,a,q (10)

Formula (9) and (10) are the same as Formula (1) and (2)
of Section V, respectively: Formula (9) enforces that dp,a,q
encode a deterministic function, while Formula (10) asserts
that the function is total.

Let ϕDFA
n (d, f) be the conjunction of Formulas (9) and (10)

where d denotes the list of variables dp,a,q and f denotes the

list of variables fq for p, q ∈ Q and a ∈ Σ. Given a model
M of ϕDFA

n , deriving the encoded DFA is straightforward, as
shown next.

Definition 6: Let M |= ϕDFA
n (d, f). We define the DFA

AM = (Q,Σ, q0, δ, F ) by
• δ(p, a) = q for the unique q ∈ Q with M(dp,a,q) = true;

and
• F = {q ∈ Q |M(fq) = true}.

(Recall that we fixed Q = {0, . . . , n− 1} and q0 = 0.)
To produce a DFA that is consistent with a sample, we add

further constraints:
• a formula ϕPos

n asserting Pos ⊆ L(AM);
• a formula ϕNeg

n asserting Neg ∩ L(AM) = ∅;
• a formula ϕEx

n asserting for each (u,A) ∈ Ex that u ∈
L(AM) implies L(AM) ∩ L(A) 6= ∅; and

• a formula ϕUni
n asserting for each (u,A) ∈ Ex that u ∈

L(AM) implies L(AM) ⊆ L(A).
Moreover, we add an auxiliary formula ϕWn , which we discuss
shortly. Then,

ϕSn := ϕDFA
n ∧ ϕWn ∧ ϕPos

n ∧ ϕNeg
n ∧ ϕEx

n ∧ ϕUni
n

is the desired formula.
The pivotal idea of these formulas is to impose constraints

on the variables dp,a,q and fq, which, in turn, determine the
DFA AM. Having this in mind, it is easier to describe the
effects of these constraints by referring to M rather then to the
variables themselves. However, we thereby implicitly assume
that the formula is satisfiable and that the valuation M is a
model.

THE FORMULA ϕWn

To ensure that the prospective automaton AM is consistent
with the given sample, we need a mechanism to determine
whether AM accepts or rejects the words occurring in the
sample. The idea is to track the run of AM on all prefixes of
the set

W = Pos ∪Neg ∪Ante(Ex ) ∪Ante(Uni),

which contains all positive and negative words as well as all
words that occur as antecedent of an existential or universal
implication. The idea is to introduce auxiliary Boolean variables
xu,q where u ∈ Pref (W ) and q ∈ Q; the intended meaning
of these variables is that if the prospective DFA AM reaches
state q on reading the word u, then xu,q is set to true. The
following constraints enforce this.

xε,q0 (11)∧
u∈Pref (W )

∧
q 6=q′∈Q

¬xu,q ∨ ¬xu,q′ (12)

∧
ua∈Pref (W )

∧
p,q∈Q

(xu,p ∧ dp,a,q)→ xua,q (13)

Since any run starts in the initial state q0, Formula (11) asserts
that xε,q0 is set to true . Formula (12) enforces that for every
u ∈ Pref (W ) there exists at most one q ∈ Q such that



xu,q is set to true (in fact, the conjuction of Formulas (10)–
(13) implies that there exists a unique such state). Finally,
Formula (13) prescribes how the run of AM on a word u ∈
Pref (W ) proceeds: if AM reaches state p on reading u (i.e.,
xu,p is set to true) and there exists a transition from p to state
q on reading the symbol a ∈ Σ (i.e., dp,a,q is set to true), then
AM reaches state q on reading ua and xua is set to true .

Let ϕWn (d, f, x) be the conjunction of Formulas (11), (12),
and (13) where d and f are as above and x is the list of
variables xu,q for u ∈ Pref (W ) and q ∈ Q. Then a stright-
forward induction proves the following lemma (see, e.g., Neider
and Jansen [14]).

Lemma 3: Let n ≥ 1, M a model of

ϕDFA
n (d, f) ∧ ϕWn (d, f, x),

and AM the DFA defined according to Definition 6. Then,
AM : q0

u−→ q implies M(xu,q) = true for all u ∈ Pref (W ).

THE FORMULAS ϕPos
n AND ϕNeg

n

Having introduced the formula ϕWn , it is straightforward to
enforce a correct behavior of AM on Pos and Neg . To assert
that AM accepts all words in Pos , we impose the constraint∧

u∈Pos

∧
q∈Q

xu,q → fq, (14)

which ensures that state q is a final state if AM reaches q on
reading a word u ∈ Pos . Similarly, the constraint∧

u∈Neg

∧
q∈Q

xu,q → ¬fq (15)

makes sure that state q is not a final state if AM reaches q
on reading a word u ∈ Neg , hence, asserting that all words of
Neg are rejected.

Let ϕPos
n (d, f, x) denote Formula (14) and ϕNeg

n (d, f, x)
denote Formula (15) where d, f , and x are as above. Then,
we obtain the following results.

Lemma 4: Let S = (Pos,Neg ,Ex ,Uni) be a sample, n ≥ 1,
and

ψPos
n (d, f, x) := ϕDFA

n (d, f) ∧ ϕWn (d, f, x) ∧ ϕPos
n (d, f, x).

Then, the following statements hold:
1) If M |= ψPos

n , then AM is a DFA with n states that
satisfies Pos ⊆ L(AM).

2) If a DFA B with n states exists that satisfies Pos ⊆ L(B),
then ψPos

n is satisfiable.
Lemma 5: Let S = (Pos,Neg ,Ex ,Uni) be a sample, n ≥ 1,

and

ψNeg
n (d, f, x) := ϕDFA

n (d, f) ∧ ϕWn (d, f, x) ∧ ϕNeg
n (d, f, x).

Then, the following statements hold:
1) If M |= ψNeg

n , then AM is a DFA with n states that
satisfies Neg ∩ L(AM) = ∅.

2) If a DFA B with n states exists that satisfies Neg∩L(B) =
∅, then ψNeg

n is satisfiable.

Let us now prove Lemma 4. The proof of Lemma 5 is
analogous.

Proof of Lemma 4: To prove the Statement 1, assume
M |= ψPos

n and let AM be the DFA constructed according to
Definition 6. Furthermore, pick an arbitrary u ∈ Pos . Then,
Lemma 3 implies that if AM reaches state q on reading u,
then M(xu,q) = true . Additionally, Formula (14) asserts that
q is a final state and, therefore, AM accepts u by Definition 6.
Since this is true for all u ∈ Pos , we obtain Pos ⊆ L(AM).

To prove the second statement, let B = (QB,Σ, q
B
0 , δB, FB)

be a DFA with n states that satisfies Pos ⊆ L(B). The key
idea is to translate B into a valuation V that satisfies ψPos

n .
To simplify this translation a bit, we assume without loss of
generality that the sets of states of B and AM coincide (i.e.,
QB = Q); one can easily achieve this by renaming states. The
definition of V is a follows:
• For each p, q ∈ QB and a ∈ Σ, we set dp,a,q to true if

and only if δB(p, a) = q.
• For each q ∈ QB, we set fq to true if and only if q ∈ FB.
• For each u ∈ W , we set xu,q to true if and only if
B : qB0

u−→ q.
It is not hard to verify that V indeed satisfies ψPos

n since
V(xu,q) is defined according to the runs of B on the inputs
u ∈W .

THE FORMULA ϕUni
n

The formula ϕUni
n needs to enforce that L(AM) respects all

universal implications in Uni . (Recall that the learner stores
universal and existential implication as a pair (u,A) where
u ∈ Σ∗ is a word and A is an NFA over Σ.) To achieve this,
we construct for each universal implication ι = (u,A) ∈ Uni
a formula ϕιn that asserts L(A) ⊆ L(AM) if u ∈ L(AM). The
formulas ϕUni

n is then the (finite) conjunction
∧
ι∈Uni ϕ

ι
n.

Given a universal implication ι ∈ Uni , say ι = (u,A) with
A = (QA,Σ, q

A
0 ,∆A, FA), the key idea of the formula ϕιn

is to track the runs of AM and A in parallel. To this end,
we introduce new auxiliary variables yιq,q′ where q ∈ Q and
q′ ∈ QA, which have the following meaning: the variable
yιq,q′ is set to true if there exists a word v ∈ Σ∗ such that
AM : q0

v−→ q and A : qA0
v−→ q′. The following constraints

assert this.

yιq0,qA0
(16)∧

p,q∈Q

∧
(p′,a,q′)∈∆A

(yιp,p′ ∧ dp,a,q)→ yιq,q′ (17)

Formula (16) enforces yι
q0,qA0

to be set to true because

AM : q0
ε−→ q0 and A : qA0

ε−→ qA0 . Formula (17) is similar
to Formula (13) and describes how the runs of AM and A
proceed: if there exists a word v such that AM : q0

v−→ p and
A : qA0

v−→ p′ (i.e., yιp,p′ is set to true) and there are transitions
(p′, a, q′) ∈ ∆A and δ(p, a) = q in AM, then AM : q0

va−→ q
and A : qA0

va−→ q′, which requires that yιq,q′ has to be set to
true as well.

Note that the variables yιq,q′ do not track runs exactly: it is
possible that a variable yq,q′ is set to true even without the



existence of a word v ∈ Σ∗ that induces the runs AM : q0
v−→ q

and A : qA0
v−→ q′. This inaccuracy, however, is sufficient to

obtain the desired result.
In order to express that AM indeed respects the universal

implication ι, we add the implication∨
q∈Q

xu,q ∧ fq

→
∧
q∈Q

∧
q′∈FA

yιq,q′ → fq

 . (18)

This formula ensures that whenever AM accepts u (i.e., the
antecedent is true), then all words that lead to an accepting
state in A also lead to an accepting state in AM (i.e., the
consequent is true).

Let ϕιn(d, f, x, yι) be the conjunction of Formulas (16), (17),
and (18) where d, f , as well as x are as above and yι is the
list of all yιq,q′ for q ∈ Q and q′ ∈ QA. Additionally, let ϕEx

n

be the conjunction

ϕUni
n (d, f, x, y) :=

∧
ι∈Uni

ϕιn(d, f, x, yι),

where y denotes the list of all variables occurring in yι for
each ι ∈ Uni . Then, the following holds.

Lemma 6: Let S = (Pos,Neg ,Ex ,Uni) be a sample, n ≥ 1,
and

ψUni
n (d, f, x, y) := ϕDFA

n (d, f)

∧ ϕWn (d, f, x) ∧ ϕUni
n (d, f, x, y).

Then, the following statements hold:
1) If M |= ψUni

n , then AM is a DFA with n states that
satisfies for all (u,A) ∈ Uni that u ∈ L(AM) implies
L(A) ⊆ L(AM).

2) If a DFA with n states exists that satisfies for all (u,A) ∈
Uni that u ∈ L(AM) implies L(A) ⊆ L(AM), then
ψUni
n is satisfiable.

Proof: We split the proof in two parts: we first show
Statement 1 and subsequently Statement 2.

To prove Statement 1, we show that for an universal implication
ι = (u,A) ∈ Uni , a model M of the formula

ψιn(d, f, x, yι) := ϕDFA
n (d, f) ∧ ϕWn (d, f, x) ∧ ϕιn(d, f, x, yι)

results in an automaton AM that respects ι (i.e., u ∈ L(AM)
implies L(A) ⊆ L(AM)). The claim of Statement 1 then
follows immediately because ϕUni

n is the conjunction of the
individual formulas ϕιn. In the following, fix an universal
implication ι = (u,A) ∈ Uni , assume M |= ψιn, and let AM

be the DFA constructed according to Definition 6.
Given an universal implication ι = (u,A), say with

A = (QA,Σ, q0,∆A, FA), we first show by induction over the
length of inputs v ∈ Σ∗ that the variables yιq,q′ have indeed the
desired meaning (i.e., AM : q0

v−→ q and A : qA0
v−→ q′ imply

M(yιq,q′) = true).

Base case (v = ε) Both AM : q0
ε−→ q0 and A : qA0

ε−→ qA0 hold
by definition of runs. Moreover, Formula (16) enforces
M(yι

q0,qA0
) = true . Thus, the claim holds.

Induction step (v = v′a) Assume AM : q0
v′−→ p

a−→ q and
A : qA0

v′−→ p′
a−→ q′. Thus, there exists transitions

(p′, a, q′) ∈ ∆A and δ(p, a) = q; the latter means
M(dp,a,q) = true by Definition 6. Moreover, applying
the induction hypothesis yields M(yιp,p′) = true. In this
situation, Formula (17) enforces M(yιq,q′) = true , which
proves the claim.

Having established the meaning of the variables yιq,q′ , it is
now straightforward to prove thatAM satisfies L(A) ⊆ L(AM)
if u ∈ L(AM). If AM accepts u, say AM : q0

u−→ q with
q ∈ F , then we know that M(xu,q) = true (by Lemma 3)
and M(fq) = true (by Definition 6). In this situation, the
antecedent of Formula (18) is satisfied. Thus, its consequent
is necessarily satisfied as well because M is a satisfying
assignment of ψUni

n . This, in turn, ensures that whenever A
accepts a word v ∈ Σ∗, say A : qι0

v−→ q′ with q′ ∈ FA, then the
run AM : q0

v−→ q is also accepting: the induction above shows
that M(yιq,q′) = true and, since the consequent of Formula (18)
ensures that M(yιq,q′) = true implies M(fq) = true for
all q ∈ Q and q′ ∈ FA, also M(fq) = true holds. Hence,
L(A) ⊆ L(AM) because v was chosen arbitrarily. Since these
arguments are true for all ι ∈ Uni , the DFA AM respects all
implications in Uni .

To prove Statement 2, suppose that B = (QB,Σ, q
B
0 , δB, FB)

is a DFA with n states that respects all universal implications
in Uni . Similar to the proof of Lemma 3, we translate this
DFA into a assignment V that satisfies ψUni

n . For the sake of
this translation, we assume without loss of generality that the
state stets of B and AM coincide (i.e., QB = Q).

The translation is as follows:
• For each p, q ∈ QB and a ∈ Σ, we set V(dp,a,q) = true

is and only if δB(p, a) = q.
• For each q ∈ QB, we set V(fq) = true if and only if
q ∈ FB.

• For each u ∈W and q ∈ QB, we set V(xu,q) = true if
and only if B : qB0

u−→ q.
• For each universal implication ι = (u,A) ∈ Uni with
A = (QA,Σ, q

A
0 ,∆A, FA), q ∈ QB, and q′ ∈ QA, we set

V(yιq,q′) = true if a v ∈ Σ∗ exists such that B : q0
v−→ q

and A : qA0
v−→ q′.

It is not hard to verify that V satisfies ϕDFA
n ∧ϕWn . To show

that is also satisfies ϕUni
n , fix a universal implication ι = (u,A),

say with A = (QA,Σ, q
A
0 ,∆A, FA). We first observe that V

satisfies Formulas (16) and (17) since the variables yιq,q′ track
the runs of both automata on inputs v ∈ Σ∗. Second, if u /∈
L(B), then V does not satisfy the antecedent of Formula (18)
and, hence, satisfies Formula (18). If u ∈ L(B), on the other
hand, consider the runs B : qB0

v−→ q and A : qA0
v−→ q′ on

some input v ∈ Σ∗. Then, V(yιq,q′) = true by definition of V.
Moreover, if A accepts v (i.e., q′ ∈ FA), then B accepts v as
well (i.e., q ∈ FB) because B respects all implications in Uni .
Hence, V(fq) = true by definition of V. Thus, the valuation
V satisfies the consequent of Formula (18) (since v was chosen
arbitrary), which implies that V satisfies Formula (18). Finally,



we note that these arguments are true for each ι ∈ Uni and,
thus, V satisfies ϕUni

n .

THE FORMULA ϕEx
n

The formula ϕEx
n needs to enforce that L(AM) respects all

existential implications in Ex . Similar to the previous formula,
we construct for each existential implication ι = (u,A) ∈ Ex
a formula φιn that asserts L(AM) ∩ L(A) 6= ∅ if u ∈ L(AM).
The formulas ϕEx

n is then the (finite) conjunction
∧
ι∈Ex φ

ι
n.

The formulas φιn work similar to the formulas ϕιn introduced
above. Given an existential implication ι = (u,A), say with
A = (QA,Σ, q

A
0 ,∆A, FA), the key idea is again to track the

runs of AM and A in parallel. In contrast to ϕUni
n , however,

it is no longer sufficient to build upon the variables yq,q′ as
they do not track the runs exactly; recall that yq,q′ might be
set to true even without the existence of a word that induces
runs to the state q ∈ AM and q′ ∈ A. This fact prevents us
from enforcing the existence of a word in the intersection
L(AM) ∩ L(A) based on the variables yq,q′ (should this be
necessary due to AM accepting the antecedent of ι).

We approach this problem by tracking the parallel runs of
AM and A exactly, exploiting the following simple fact about
finite automata.

Observation 1: Let B1 = (QB1
,Σ, qB1

0 ,∆B1
, FB1

) and B2 =
(QB2 ,Σ, q

B2
0 ,∆B2 , FB2) be two NFAs. Then, a word w ∈ Σ∗

with B1 : qB1
0

w−→ q and B2 : qB2
0

w−→ q′ exists if and only
if a word w′ ∈ Σ∗ of length at most |QB1

||QB2
| − 1 with

B1 : qB1
0

w′

−→ q and B2 : qB2
0

w′

−→ q′ exists.
To see why Observation 1 is true, suppose there exists an

input w ∈ Σ∗ of length greater than k = |QB1 ||QB2 | − 1
with B1 : qB1

0
w−→ q and B2 : qB2

0
w−→ q′. Then, there has to be

a pair of states occurring in these runs that repeats at least
once. The (nonempty) part of w in between this repetition can
be removed, resulting in a word w′ with B1 : qB1

0
w′

−→ q and

B2 : qB2
0

w′

−→ q′. By repeating this argument successively, one
obtains a word of length less of equal to k that leads to state
q in B1 and state q′ in B2.

As Observation 1 shows, it is indeed enough to consider
words of length at most k = n|A| − 1 in order to track the
parallel runs of AM and A exactly. We do so by means of
new auxiliary variables zιq,q′,` where q ∈ Q, q′ ∈ QA, and
` ∈ {0, . . . , k}, which have the following meaning: the variable
zιq,q′,` is set to true if and only if there exists a word v ∈ Σ∗

with |v| = ` such that AM : q0
v−→ q and A : qA0

v−→ q′. The
following formulas constrain the variables zq,q′,` as described.

zιq0,qA0 ,0
∧

∧
(q,q′)∈Q×QA\{(q0,qA0 )}

¬zιq,q′,0

(19)∧
p,q∈Q

∧
(p′,a,q′)∈∆A

∧
`∈{0,...,k−1}

(zιp,p′,` ∧ dp,a,q)→ zιq,q′,`+1

(20)

∧
q∈Q

∧
q′∈QA

∧
`∈{1,...,k}

zιq,q′,` →∨
p∈Q

∨
(p′,a,q′)∈∆A

dp,a,q ∧ zιp,p′,`−1 (21)

Formula (19) makes sure that zι
q0,qA0 ,0

is set to true , whereas

all other variables zιq,q′,0 are set to false, since AM : q0
ε−→

q0 and A : qA0
ε−→ qA0 are the only runs on the empty word.

Formula (20) is similar to Formula (13) and describes how
the runs of both automata proceed: if there exists a word
v ∈ Σ∗ with |v| < k that induces the runs AM : q0

v−→ q
and A : qA0

v−→ q′ (i.e., zιq,q′,|v| is set to true) and there exists
transitions (p′, a, q′) ∈ ∆A and δ(p, a) = q (i.e., dp,a,q is set
to true), then the word va induces the runs AM : q0

va−→ q
and A : qA0

va−→ q′, which implies that zιq,q′,|va| has to be set to
true as well. In a similar manner, Formula (21) prevents zιq,q′,`
from being set to true if there exists no input of length ` that
leads to the states q in AM and state q′ in A; an exemption
to this constraint is the pair of initial states.

Finally, adding the implication∨
q∈Q

xu,q ∧ fq

→
∨
q∈Q

∨
q′∈FA

∨
`∈{0,...,k}

zιq,q′,` ∧ fq


(22)

enforces that L(AM) indeed respects the implication ι =
(u,A): if AM accepts u (signaled by the antecedent being
true), then there also has to exist an input on which both
automata reach final states (indicated by the consequent being
set to true), hence, proving L(AM) ∩ L(A) 6= ∅.

Let φιn(d, f, x, zι) be the conjunction of Formulas (19)–(22)
where d, f , and x are as above and zι is a list of variables
zιq,q′,` for q ∈ Q, q′ ∈ QA, and ` ∈ {0, . . . , k}. Moreover, let
ϕEx
n be the conjunction

ϕEx
n (d, f, x, z) :=

∧
ι∈Ex

φιn(d, f, x, zι),

where z denotes the list of all variables occurring in zι. Then,
the following holds.

Lemma 7: Let S = (Pos,Neg ,Ex ,Uni) be a sample, n ≥ 1,
and

ψEx
n (d, f, x, z) := ϕDFA

n (d, f)∧ϕWn (d, f, x)∧ϕEx
n (d, f, x, z).

Then, the following statements hold:

1) If M |= ψEx
n , then AM is a DFA with n states that

satisfies for all (u,A) ∈ Ex that u ∈ L(AM) implies
L(AM) ∩ L(A) 6= ∅.

2) If a DFA with n states exists that satisfies for all (u,A) ∈
Ex that u ∈ L(AM) implies L(AM) ∩ L(A) 6= ∅, then
ψEx
n is satisfiable.

Proof of Lemma 7: This proof is similar to the proof of
Lemma 6. Again, we split this proof into two part: we first
prove Statement 1 and subsequently Statement 2.



To prove Statement 1, we show that for an existential implica-
tion ι = (u,A) ∈ Ex , a model of the formula

ψιn(d, f, x, zι) := ϕDFA
n (d, f) ∧ ϕWn (d, f, x) ∧ φιn(d, f, x, zι)

results in an automaton AM that respects ι (i.e., u ∈ L(AM)
implies L(AM) ∩ L(A) 6= ∅). The claim of Statement 1 then
follows immediately because ϕEx

n is the conjunction of the
individual formulas φιn. In the following, fix an existential
implication ι = (u,A) ∈ Ex , assume M |= ψιn, let AM be the
DFA constructed according to Definition 6 and k = n|QA|−1.

We first prove that the variable zιq,q′,`, where ` ∈ {0, . . . , k},
is set to true if and only if there exists a v ∈ Σ∗ with |v| ≤ `
such that AM : q0

v−→ q and A : qA0
v−→ q′. This proof proceeds

by induction over `.
Base case (` = 0) The empty word ε is the unique word v ∈

Σ∗ with |v| = 0. By definition of runs, AM : q0
ε−→ q0 and

A : qA0
ε−→ qA0 . Moreover, Formula (19) makes sure that

zι
q0,qA0 ,0

is set to true, whereas zιq,q′,0 is set to false for
all other pairs of states. In addition, Formula (21) does
not restrict any variable in the case ` = 0. Hence, the
claim holds.

Induction step (` = `′ + 1) To prove the direction from left to
right, assume M(yιq,q′,`) = true. Then, Formula (21)
asserts that there exists a state p ∈ Q and a transi-
tion (p′, a, q′) ∈ ∆ such that M(zιp,p′,`′) = true and
M(dp,a,q) = true (the latter means that AM contains the
transition δ(p, a) = q). In addition, applying the induction
hypothesis yields that there exists a word v′ ∈ Σ∗ with
|v′| = `′ such that AM : q0

v−→ p and A : qA0
v−→ p′. Thus,

v = v′a is a word of length ` satisfying AM : q0
v−→ q

and A : qA0
v−→ q′, which proves the claim.

To prove the reverse direction, let v = v′a ∈ Σ∗ be a
word of length ` and assume that AM : q0

v−→ p
a−→ q and

A : qA0
v−→ p′

a−→ q′. Thus, we know that (p′, a, q′) ∈ ∆A
and δ(p, a) = q (the latter implying M(dp,a,q) = true).
In addition, applying the induction hypothesis yields
M(zp,p′,`′) = true. In this situation, Formula (20)
enforces that zq,q′,` has to be set to true, which proves
the claim.

Having established the correct meaning of the variables
zq,q′,`, proving that AM satisfies L(AM) ∩ L(A) 6= ∅ if
u ∈ L(AM) is now straightforward: If u ∈ L(AM), say
AM : q0

u−→ q with q ∈ F , then we know that xu,q is set to
true (by Lemma 3) and that M(fq) = true (by Definition 6).
In this situation, the antecedent of Formula (19) is satisfied,
which implies that its consequent is satisfied as well (since
M is a model of ψιn). This means that there exist q ∈ Q,
q′ ∈ FA, and ` ∈ {0, . . . , k} such that both M(zq,q′,`) = true
and M(fq) = true . The former asserts that there exists a word
v ∈ Σ∗ (of length `) such that AM : q0

v−→ q and A : qA0
v−→ q′

(according to the induction above); on the other hand, the latter
means q ∈ F . Hence v is accepted by both automata and,
consequently, u ∈ L(AM) implies L(AM) ∩ L(A) 6= ∅.

To prove Statement 2, let B = (QB,Σ, q
B
0 , δB, FB) be a DFA

with n states that satisfies L(B) ∩ L(A) 6= ∅ if u ∈ L(B) for

all (u,A) ∈ Ex . Similar to the previous proofs, we translate
B into a satisfying valuation V of the variables d, f , x, and z.
For the sake of this translation, we once more assume without
loss of generality that the sets of states of B and AM coincide
(i.e., QB = Q). The definition of V then is as follows:
• For each p, q ∈ QB and a ∈ Σ, we set V(dp,a,q) = true

if and only if δB(p, a) = q.
• For each q ∈ QB, we set V(fq) = true if and only if
q ∈ FB.

• For each u ∈W and q ∈ QB, we set V(xu,q) = true if
and only if B : qB0

u−→ q.
• For each ι = (u,A) ∈ Ex , where A =

(QA,Σ, q
A
0 ,∆A, FA), q ∈ QB, and q′ ∈ QA, we set

V(zιq,q′,`) = true if and only if there exists a word
v ∈ Σ∗ with length ` ≤ n|QA| − 1 such that B : qB0

v−→ q
and A : qA0

v−→ q′ .
It is not hard to verify that V satisfies ϕDFA

n ∧ϕWn . To see why
it also satisfies ϕEx

n , pick a universal implication (u,A) ∈ Ex ,
say with A = (QA,Σ, q

A
0 ,∆A, FA), and let k = |QB||QA|

(recall that |QB| = n = |Q|). First, it is not hard to see that
V satisfies Formulas (19) to (21) since these formulas exactly
describe the runs of B and A on words of length at most k.
Second, if u /∈ L(B), then V does not satisfy the antecedent of
Formula (22) and, hence, satisfies Formula (22). If u ∈ L(B),
on the other hand, we know that L(B) ∩ L(A) 6= ∅.

In other words, there exists a word v ∈ L(B) ∩ L(A) such
that B : qB0

v−→ q and A : qA0
v−→ q′ where q ∈ FB and q′ ∈ FA.

Moreover, Observation 1 allows us to assume without loss of
generality that |v| ≤ k. In this situation, V(zιq,q′,|v|) = true
and V(fq) = true holds by definition of V. Hence, V satisfies
the consequent of Formula (22), which implies that V satisfies
Formula (22) as well. Finally, since these arguments are true
for each ι ∈ Ex , the valuation V satisfies ϕEx

n .

APPENDIX B
CORRECTNESS OF THE SAT LEARNER

The fact that formula ϕSn has the desired properties is a
straightforward corollary of Lemmas 4 to 7.

Corollary 1: Let S = (Pos,Neg ,Ex ,Uni) be a sample,
n ≥ 1, and

ϕSn(d, f, x, y, z) := ϕDFA
n (d, f)∧ϕWn (d, f, x)∧ϕPos

n (d, f, x)

∧ ϕNeg
n (d, f, x) ∧ ϕUni

n (d, f, x, y) ∧ ϕEx
n (d, f, x, z).

Then, the following statements hold:
1) If M |= ϕSn , then AM is a DFA with n states that is

consistent with S.
2) If a DFA with n states exists that is consistent with S,

then ϕSn is satisfiable.
Having established that formula ϕSn has the desired proper-

ties, we can now show that Algorithm 2 computes a smallest
DFA that is consistent with a given sample.

Theorem 3: Given a contradiction free-sample S , Algorithm 2
returns a minimal DFA (in terms of the number of states) that
is consistent with S . In addition, if a minimal consistent DFA
has k states, then Algorithm 2 terminates after k iterations.



Proof of Theorem 3: Theorem 3 follows directly from
the properties of the formula ϕSn (see Corollary 1): Given a
sample S , suppose that a DFA with k states that is consistent
with S exists. Then, the formula ϕSn is satisfiable for all n ≥ k.
Moreover, if M |= ϕSn , then AM is a DFA with n states that is
consistent with S . Since Algorithm 2 increases the parameter
n by one in every iteration (starting with n = 1), the algorithm
eventually finds the smallest value for which ϕSn is satisfiable
(after k iterations) and, thus, a consistent DFA of minimal size.

We are now ready to prove the correctness of the SAT
learner.

Theorem 4: Given a teacher for a rational safety game, Al-
gorithm 1, equipped with Algorithm 2 to construct conjectures,
terminates and returns a (minimal) DFA accepting a winning
set if one exists.

Proof of Theorem 4: Due to the way the teacher answers
queries, is is clear that the DFA returned by the SAT learner
accepts a winning set. Thus, it is left to show that the SAT
learner terminates (given that a winning set exists) and that
its result is of minimal size. To this end, we first make three
observations:

1) The SAT learner never conjectures the same DFA twice.
This is due to the fact that the SAT learner only conjectures
DFAs that are consistent with the sample of the iteration
in which is was constructed. Moreover, a simple proof
by contradiction shows that the conjecture of the current
iteration is also consistent with the samples of all previous
iterations since a new sample results from adding a
counterexample (i.e., a word or an implication) to the
sample the previous iteration. Hence, the conjectures Ai
of iteration i and Aj of iteration j < i differ at least on
the counterexample added in iteration j.

2) The SAT learner conjectures DFAs that grow monotoni-
cally in size. To see why, suppose that conjecture Ai+1

of iteration i+ 1 has less states than the conjecture Ai of
iteration i. As argued above, Ai+1 is also consistent with
the sample Si, but has fewer states than Ai. This, however,
contradicts the fact that Algorithm 2 always constructs
consistent DFAs of minimal size (see Theorem 3).

3) Any DFA accepting a winning set is consistent with any
sample produces during the learning. In other words,
adding counterexamples does not rule out solutions.

Theorem 4 can now be proven as follows. Suppose that
a winning set exists and let A be a smallest DFA, say with
k states, that accepts a winning set. Since no smaller DFA
accepting a winning set exists and due to Observations 1 and
2, we know that the SAT learner eventually conjectures a DFA
with at least k states. Towards a contradiction, assume that the
SAT learner does not conjecture a DFA with k accepting a
winning set. This means that the learner eventually conjectures
a DFA with more than k states. Then, however, Observation 3 in
connection with the fact that the SAT learner always produces
smallest consistent DFAs implies that there exists no DFA
with k states accepting a winning set. This is a contradiction.
Hence, the SAT learner eventually conjectures a minimal DFA

accepting a winning set, which passes the teacher’s query, and
terminates.

APPENDIX C
RPNI LEARNER

The RPNI learner works in a restricted setting in which every
vertex of the arena has a finite (but not necessarily bounded)
number of outgoing edges (i.e., E({v}) is finite for all v ∈ V ).
This implies that implication counterexamples are of the form
(u,A) with L(A) being finite.

The RPNI learner works identical to the SAT learner, but uses
a different method to construct a consistent DFA from a sample.
While the SAT learner uses a constraint solver for this task (see
Algorithm 2), the RPNI learner employs a modified version
of the popular RPNI algorithm [18], which is a polynomial
time heuristic for learning DFAs from positive and negative
words (we adapted the RPNI algorithm such that it now learns
DFAs not only from positive and negative words but also
from existential and universal implications). In contrast to
Algorithm 2, however, the modified RPNI algorithm does not,
in general, produce minimal consistent DFAs but is much faster.
Hence, we encourage the reader to think of the RPNI learner as
a heuristic, which uses a faster means to construct conjectures
but can no longer guarantee to terminate given that a winning
set exists.

As a preparatory step, we first present the original RPNI
algorithm. Then, we show how to modify the RPNI algorithm
such that it can handle existantial and universal in addition
to positive and negative words. Finally, we present the RPNI
learner and

A. The RPNI Algorithm

The RPNI algorithm is a so-called passive learning algorithm
for regular languages. It takes two disjoint, finite sets Pos ⊂
Σ∗ and Neg ⊂ Σ∗ as input and constructs a DFA A that
satisfies Pos ⊆ L(A) and Neg ∩ L(A) = ∅. The algorithm
runs in time and space polynomial in |Pref (Pos ∪Neg)| and,
hence, the constructed DFA can, in general, not be minimal (as
the problem it solves is NP-complete, see Gold [7]). It turns
out, however, that the RPNI algorithm often produces “small”
automata in practice.

The RPNI algorithm operates on given sets Pos and Neg
as follows. It first constructs the prefix-tree acceptor of the
set Pos (i.e., the tree-like automaton that accepts exactly the
set Pos). Then, it successively tries to merges states of this
automaton (in a fixed order), where a merge is considered to
be successful if the resulting DFA still rejects all words in Neg .
If a merge was successful, RPNI proceeds to merge further
states of the resulting automaton. If it was not successful, the
merged automaton is discarded and RPNI proceeds with the
automaton of the last successful merge. The algorithm stops
once there are no more merges left.

For our purpose, it is helpful to view the RPNI algorithm
as a concrete instance of a generic state-merging algorithm,



which is sketched in pseudo code as Algorithm 3.4 In this more
abstract setting, the learning algorithm takes a finite collection
κ of data as input and outputs a DFA that satisfies a given
(decidable) property p (which usually refers to κ); in the case
of RPNI, κ is the pair (Pos,Neg) and the property p states
that the resulting DFA has to accept all words in Pos and
to reject all words in Neg . The pivotal idea of Algorithm 3
is to start with a potentially large initial DFA that satisfies
property p and then reduce its size by merging states, thereby
discarding merges that result in a DFA that violates p. Since
merging states of a DFA increase its language, we encourage
the reader to think of merging as a means of generalization.

Algorithm 3: Generic state-merging algorithm

Input: A collection of data κ
Output: A DFA machine A that passes test(A)

1 Ainit = (Q,Σ, q0, δ, f)← init(κ);
2 (q0, . . . , qn)← order(Q);

3 ∼0← {(q, q) | q ∈ Q};
4 for i = 1, . . . , n do
5 if qi 6∼i−1 qj for all j ∈ {0, . . . , i− 1} then
6 j ← 0;
7 repeat
8 Let ∼ be the smallest congruence that

contains ∼i−1 and the pair (qi, qj);
9 j ← j + 1;

10 until test(Ainit/∼);
11 ∼i←∼;
12 else
13 ∼i←∼i−1;
14

15 end

16 return Ainit/∼n
;

Algorithm 3 uses three functions init, order, and test, which
have the following effects:
• The function init receives a finite collection of data as

input and returns a (potentially large) DFA that satisfies
property p (assuming that this is possible).

• The function order receives a finite set Q as input and
returns an ordered sequence of the elements of Q.

• The function test receives a DFA as input and returns
a Boolean value indicating whether this DFA satisfies
property p.

(We shortly introduce implementations of these functions that
allows us to compute a DFA that is consistent with a given
finite sample.)

Algorithm 3 runs in two consecutive phases. In the first
phase (Lines 1 and 2), it calls the function init with parameter
κ to construct an initial DFA Ainit that satisfies p (recall
that we assume that this is possible). Then, it fixes an order

4The description here closely follows the more general description by Garg
et al. [6].

q0, . . . , qn of the states of Ainit by calling the function order
with parameter Q.

The actual merging takes place in the second phase (Lines 3
to 15), according to the order determined in the first phase.
For i = 1, . . . , n and j = 0, . . . , i − 1, the algorithm tries to
merge state qi with state qj if state qi has not already been
merged with a smaller state; since a merge might introduce
nondeterminism, the algorithm merges additional states until
determinism is restored. Note that we represent merging of
states abstractly as constructing a congruence relation ∼⊆
Q × Q (i.e., an equivalence relation that is compatible with
the transition function) and the result of the merging as the
quotient automaton Ainit/∼, which is defined in the usual
way. A merge is kept only if the resulting automaton passes
test (otherwise it is discarded). This preserves the invariant
that any intermediate DFA Ainit/∼k

satisfies property p (since
Ainit/∼0

= Ainit satisfies p by definition of init). Hence, the
final DFA is guaranteed to satisfy p as well.

B. Adapting the Generic State Merging Algorithm

In our setting, the collection κ corresponds to a sample
S = (Pos,Neg ,Ex ,Uni), and the property p is consistency
with S . We now describe how to implement the functions init,
order, and test such that the output of Algorithm 3 is a DFA
that is consistent with the input-sample S.

a) Creating an initial DFA: Given a sample S , we need
to construct a DFA satisfying p (i.e., a DFA consistent with
S). To this end, we follow the idea of the RPNI algorithm,
namely to construct the prefixtree acceptor of the set Pos . The
prefix tree acceptor of a finite set X ⊂ Σ∗ is a partial DFA5

that accepts exactly the set X . It is defined as follows.
Definition 7: Given an alphabet Σ and finite set X ⊆ Σ∗, the

prefix tree acceptor is the partial DFA AX = (Q,Σ, q0, δ, F )
defined by

• Q = Pref (X);
• q0 = ε;
• F = X; and

• δ(u, a) =

{
ua if ua ∈ Pref (X) and;

undefined otherwise.
A straightforward induction over the length of input-words
proves L(AX) = X .

However, just starting with the prefix tree acceptor APos is
not sufficient as APos is not necessarily consistent with S: an
implication (u,A) might require to accept a word v ∈ L(A)
(because u ∈ L(APos)) that is not an element of Pos and,
hence, is rejected by APos . In the case of universal implications,
the problem is easy to resolve by (temporarily) adding L(A) to
Pos (recall that L(A) is finite). However, the problem becomes
more involved in the presence of existential implications as it
is no longer apparent which word v ∈ L(A) one should add
to Pos in order to obtain a consistent (and preferable small)
prefix tree acceptor.

5A DFA is called partial if not all transitions are defined. Runs that cannot
be continue due to missing transition are considered to be rejecting.



We approach this problem by using a straightforward trans-
lation into a satisfiability problem of formulas in propositional
Boolean logic (the resulting satisfiability problem is much
simpler than those generated by the SAT learner as it does
not involve finding a minimal solution). Given a sample
S = (Pos,Neg ,Ex ,Uni), we introduce a Boolean variable
xw for each word w of the set

V = Pos ∪Neg ∪Ante(Ex ) ∪Ante(Uni)

∪

 ⋃
(u,A)∈Ex

L(A)

 ∪
 ⋃

(u,A)∈Uni

L(A)

 ,

which consists of all words occurring (explicitly and implicitly)
in S. Since the languages of the automata occurring in S is
finite, V is a finite set and, hence, the number of variables is
finite as well.

The desired meaning of the variables is the following: xw
is set to true if w either belongs to Pos or it is needs to be
added to Pos in order to satisfy the implications. The following
constraints enforce this meaning.

( ∧
w∈Pos

xw

)
∧

 ∧
w∈Neg

¬xw

 (23)

∧
(u,A)∈Ex

xu ⇒ ∨
v∈L(A)

xv

 (24)

∧
(u,A)∈Uni

xu ⇒ ∧
v∈L(A)

xv

 (25)

Let χ(x) be the conjunction of Formulas (23), (24), and
(25) where x is the list of all variables w ∈ V . Then, χ(x) is
satisfiable since we assume any sample to be contradiction-
free. Moreover, if M is a model of χ(x), then the prefix tree
acceptor APos′ of the set

Pos ′ = {w ∈ V |M(w) = true}

is consistent with S (i.e., satisfies p), which is formalized by
the lemma below. This automaton is what the function init
returns.

Lemma 8: Let S = (Pos,Neg ,Ex ,Uni) a contradiction-free
sample. Then, the following holds:

1) The formula χ(x) is satisfiable.
2) If M a model of χ(x) and

Pos ′ = {w ∈ V |M(w) = true},

then the prefix tree acceptor APos′ is consistent with S.
Proof of Lemma 8: Since S is contradiction-free, there

exists a DFA, let us denote it by B, that is consistent with S.
If we assign true to the variable xw if and only if w ∈ L(B),
then this assignment satisfies χ(x). This proves the first claim.

The proof of the second claim relies on the fact that the
prefix tree acceptor of a set X ⊆ Σ∗ indeed accepts exactly
the set X , which can be shown by a simple induction. Given

this fact, we first observe that APos′ accepts all words in
Pos since L(APos′) = Pos ′ and Formula (23) ensures that
Pos ⊆ Pos ′; moreover, a similar argument shows that APos′

rejects all words in Neg . Second, Formula (24) asserts for each
existential implication (u,A) ∈ Ex that u ∈ Pos ′ implies the
existence of a v ∈ L(A) with v ∈ Pos ′ = L(APos′). Hence,
APos′ respects all existential implications. Moreover, one can
establish the fact that APos′ respects all universal implications
in an analogous manner by referring to Formula (25).

b) Choosing the Merging Order: The function init returns
a DFA whose set of states consists of words over the alphabet Σ.
The order function order takes this set and orders it according
to the canonical order of words6. This order is also used by
RPNI.

c) Implementing the Test: The function test needs to
check whether a given automaton A is consistent with the
finite sample S. Since S is a finite a collection of words,
consistency can be decided easily by computing the runs of A
on those words and checking whether all four conditions (i.e.,
acceptance of all words in Pos , rejection of all words in Neg ,
and respecting both types of implications) are fulfilled.

C. Correctness of the RPNI learner

The correctness of the RPNI learner relies on the correctness
of Algorithm 3, which is stated in the next lemma.

Lemma 9: Given a contradiction-free sample S , Algorithm 3
modified as described in Appendix C-B constructs a DFA that
is consistent with S. The resulting automaton comprises at
most |V | states.

Proof of Lemma 9: Proving that Algorithm 3 constructs
a DFA that is consistent with the given sample S is straight-
forward: the function init constructs an initial DFA that is
consistent with S (see Lemma 8), and a merge is only kept if
the merged DFA passes the check test (i.e., it is still consistent);
hence, the final DFA is guaranteed to be consistent as well.
Since the initial DFA has |V | states and merging of states
reduces the number of states, the final DFA has at most |V |
states.

The correctness of the RPNI learner immediately follows
from the fact that the learning terminates only if the learner
proposes a DFA accepting a winning set. In contrast to the SAT
learner, however, the RPNI learner uses an algorithm to derive
conjectures that does not necessarily produce consistent DFAs
of minimal size. As a consequence, termination of the RPNI
learner is not guaranteed even if a DFA accepting a winning
set exists. The following theorem summarizes the main result.

Theorem 5: Given a teacher for a rational safety game over
a finitely branching arena, the RPNI learner (i.e., Algorithm 1
equipped with Algorithm 3 to construct conjectures) on
termination returns a DFA accepting a winning set.

6Given an alphabet Σ and a total order <Σ⊂ Σ× Σ, the canonical order
of words ≺⊂ Σ∗ × Σ∗ is defined by a1 . . . am ≺ b1 . . . bn if and only if
m < n or there exists an i ∈ {1, . . . ,m} such that ai <Σ bi and aj = bj
for all j ∈ {1, . . . , i− 1}.


	I Introduction
	II Rational Safety Games
	III The Learning Framework
	IV A Generic Teacher
	V A Learner for Rational Safety Games
	V-A The formula phi
	V-B Correctness of the Learner

	VI Experiments
	VI-A Examples
	VI-B Scalability Benchmarks

	VII Conclusion
	References
	Appendix A: Constructing Consistent DFAs Using Constraint Solvers
	Appendix B: Correctness of the SAT Learner
	Appendix C: RPNI learner
	C-A The RPNI Algorithm
	C-B Adapting the Generic State Merging Algorithm
	C-C Correctness of the RPNI learner


