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Abstract. Many modern program verifiers are based on automated the-
orem provers, which enable full hiding of proof details and allow users to
focus all their effort on the program text. This has the advantage that
the additional expertise of theorem provers is not required, but has the
drawback that when the prover fails to verify a valid program, the user
has to annotate the program text with guidance for the verifier. This can
be tedious, low-level and repetitive, and may impact on the annotation
overhead, readability of the program text and overall development time.
Inspired by proof tactics for interactive theorem provers [19], a notion
of ‘tactics’ for the state-of-the-art Dafny program verifier, called Tacny,
is developed. With only minor extensions to the Dafny syntax, a user
can encode high-level proof patterns as Dafny tactics, liberating herself
from low-level and repetitive search tasks, whilst still working with famil-
iar Dafny programming constructs. Manual search and guidance can be
replaced with calls to such tactics, which will automate this task. We
provide syntax and semantics for Tacny, and show feasibility through a
prototype implementation, applied to several examples.

1 Introduction

Properties that programs should satisfy are commonly expressed by contracts:
given a precondition the program guarantees that a given postcondition holds.
Many modern program verifiers can then be used to verify that a program satis-
fies its contract by automatically generating verification conditions (VCs), which
are sent to an automated theorem prover. Failure to prove VCs will then be
highlighted in the program text, and the user must then update the code with
auziliary annotations to guide the proof. A feature of this approach is that all
interaction, including proof guidance, is conducted in the program text using a
single programming language. Spec# [6], VCC [9], Verifast [24], Dafny [27], and
SPARK 2014 [34] are program verifiers that follow this approach.

The ability of users to guide the prover for the cases where the underlying
theorem prover fails to verify a correct program is crucial. Such guidance involves
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changing, and in most cases adding, auxiliary annotations, and, in many cases,
manipulation of a ghost state: a state that can be updated and used as normal,
but is only used for verification purposes and will not be compiled.

With the exception of generic lemmas that can be reused in e.g. Dafny, the
support for reuse of previous verification tasks in order to reduce the required
user interaction is limited. In particular, there is no support for users to encode
knowledge of common “proof” steps used for verification tasks. Some trial-and-
error is involved as several known “verification patterns” may be attempted, and
there could be multiple options for each of them. For these cases, the verification
guidance process can be unnecessarily tedious and cost-ineffective.

This paper presents a novel extension to program verifiers, by extending the
Dafny program verifier with a tactic language where users can encode more
abstract and reusable verification patterns. Our hypothesis is that

it is possible to abstract over low-level manual proof guidance by encoding
high-level and reusable verification patterns in the program text of Dafny.

The work is inspired by proof tactics for interactive theorem provers (ITPs),
which allow users to encode re-usable proof patterns [19], and our main contri-
bution is the introduction of such a tactic language on top of Dafny. A high-level
introduction is given in Sect. 2 before giving the details of the syntactic exten-
sion and semantics in Sect. 3, and the implementation as the Tacny system in
Sect. 4. We believe that Dafny tactics can be used to (i) reduce the annotation
overhead'; (ii) reduce development time; and (iii) increase readability of the
program text by abstracting low-level proof details. Based upon experiments in
Tacny, Sect. 5 provides some evidence for (i), Sect. 6 contains related work; while
we conclude and discuss future work, including how we plan to address (i¢) and
(4i7), in Sect. 7.

2 Dafny Tactics by Example

Dafny [27] is a programming language and program verifier for the .NET plat-
form, developed by Microsoft Research. The language is an imperative object-
oriented language, containing both methods and proper functions (i.e. without
side-effects). It also supports advanced features such as inductive [28] and co-
inductive [29] datatypes and higher-order types [26]. It uses familiar notations
for assignment (x := e), declarations (var x := e;), conditionals (if and if-else)
and loops (e.g. while). It also supports pattern matching (match) and a ‘such
as’ operator, where x :| p means that x is assigned a value such that p holds?.

Dafny has been designed for verification. Properties are specified by contracts
for methods/functions in terms of preconditions (requires) and postconditions
(ensures). To verify a program, Dafny translates it into an intermediate verifi-
cation language (IVL)? called Boogie [5]. From Boogie a set of VCs is generated

! To illustrate, [37] reported on 4.8 Lines of Annotation for each Line of Code.
2 Full details of all examples and results in the paper available from [2].
3 An IVL can be seen as a layer to ease the process of generating new program verifiers.
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and sent to the Z3 SMT solver [35]. If it fails, then the failure is translated back
to the Dafny code, via Boogie.

In the case of failure, a user must provide guidance in the program text*. The
simplest form is to add assertions (assert) of true properties in the program text.
In the case of loops, we might also provide loop invariants (invariant). Loops and
recursion have to be shown to terminate and for advanced cases a user needs to
provide a variant (decreases) to help Dafny prove this.

For more advanced verification tasks, one can make use of the ghost state.
A ghost variable (ghost var) or ghost method can be introduced and used by
the verifier. A lemma (lemma) is a type of ghost method that can be used to
express richer properties, where assumptions are preconditions, and the conclu-
sion becomes the postcondition. The proof is a method body that satisfies the
postcondition, given the precondition. We will see examples of this below, but
note that standard programming language elements are used in the body of the
lemma, which illustrates the close correspondence between proofs and programs.

To illustrate Dafny, consider a simple compiler for arithmetic expressions®.
Here, an inductive data type is used to capture arithmetic expressions as num-
bers, variables or addition:

datatype aexp = N(n:int) | V(x:vname) | Plus(0: aexp,1l: aexp)

A state s is a Dafny map from vnames to integers; Total(s) states that the state
s is total; aval(a,s) is the evaluation of the arithmetic expression a over the
state s; while asimp_const(a) performs constant folding of arithmetic expression
a: constants added together are recursively replaced by their sum. The following
lemma proves that constant folding preserves the behaviour for a total state:

lemma AsimpConst(a: aexp, s:state)
requires Total(s);
ensures aval(asimp_const(a),s) = aval(a,s);
{ match a
case N(n) =
case V(x) =
case Plus(a0,al) = AsimpConst(a0,s); AsimpConst(al,s); }

The proof follows by structural induction: using pattern matching, a case is
introduced for each constructor and for the recursive case the lemma is applied
recursively for each argument. Next, consider another example® where a list of
expressions is defined as:

datatype List = Nil | Cons(Expr, List)

SubstL(l,v,val) is a function that replaces variable v with value val for each expres-
sion in list |. The following lemma proves that SubstL is idempotent:

4 We assume correct programs: verification may also fail because the program is incor-
rect and in this case the program (or specification) needs to change.

5 This example is taken from NipkowKlein-chapter3.dfy on the Dafny webpage.

6 Substitution.dfy, also taken from the Dafny webpage; both examples available at [2].


https://sites.google.com/site/tacnyproject/tacas-2016/NipkowKlein-chapter3.dfy
https://sites.google.com/site/tacnyproject/tacas-2016/Substitution.dfy
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lemma Lemma(|: List ,v:int,val:int)
ensures SubstL (SubstL(Il,v,val),v,val) = SubstL(l,v,val); {

{ match |
case Nil =
case Cons(e,tail) =Theorem(e,v,val); Lemma(tail ,v,val); }

This proof follows more or less the same pattern, with the difference that a
separate lemma Theorem is applied for the first case, which shows idempotence
for substitution of a single expression. Theorem is not discussed further here.

AsimpConst and Lemma illustrate two Dafny verification tasks that exhibit
the same verification pattern: a case analysis for each constructor of an inductive
data type, with two possible lemma applications. Still, a user has to spell out all
the proof details. To abstract over such details, we introduce a tactic construct
that allows the user to encode the verification pattern. The proof details of the
lemmas can then be replaced by a single tactic application. This is achieved by
extending Dafny with a new ghost method called tactic, without any contracts.
The following tactic captures the proofs of AsimpConst and Lemma:

tactic CasePerm(v: Element)

{ solved{
var leml :| leml in lemmas();
var lem2 :| lem2 in lemmas();
cases(v){ var vars := variables ();

perm(leml,vars); perm(lem2,vars);}} }

The tactic takes an input v, expected to be a variable of an inductive data type.
It then picks two lemma names, lem1 and lem2. Here, all possible combinations
of lemma names will be generated as separate branches of the search space. Then
for each branch, cases(v) will generate a match statement with a case for each
constructor ofv. Within each case the “body” of cases is evaluated. Here, all
variables in scope are found (vars). The invocation of perm(lem1,vars) generates
all possible permutations of applying lemma lem1 with arguments found in any
sub-set of vars in separate branches of the search space. The second application
of perm does the same for lem2. The keyword solved{ body } states that the
program has to verify when body has been evaluated. This is required here as a
tactic may be used to progress a proof without completing it, which is desirable
in certain cases. Note that the tactic will stop evaluating when a proof is found,
thus the body will not be applied for cases such as Nil above. For that reason,
CasePerm(b) will also work for the following lemma found in the first example:

lemma BsimpCorrect(b: bexp, s:state)
requires Total(s);
ensures bval(bsimp(b),s) = bval(b,s);{
{ match b
case Bc(v) =
case Not(b0) = BsimpCorrect(b0,s);
case And(b0, bl) = BsimpCorrect(b0,s); BsimpCorrect(bl,s);
case Less(a0, al) = AsimpCorrect(a0,s); AsimpCorrect(al,s);}
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This lemma states a similar property to AsimpConst, with the difference that it
is applied to boolean expressions. It works for the Not(b0) case as it will stop
evaluating when the case verifies. Thus, in the Not(b0) case the second call to
perm will not be applied as BsimpCorrect(b0,s) is sufficient. To apply a tactic the
body is replaced by a call to it, illustrated for Lemma:

lemma Lemma2(|: List ,v:int,val:int)
ensures SubstL(SubstL(l,v,val),v,val) = SubstL(Il,v,val);
{ CasePerm(1); }

The tactic language is metalanguage for Dafny, where tactic evaluation works at
the Dafny level: it takes a Dafny program with tactics and tactic applications,
evaluates the tactics and produces a new valid Dafny program, where tactic
calls are replaced by Dafny constructs generated by the tactics. The advantages
of working on the Dafny level are: (i) iterative development and debugging is
supported as a user can partly develop a tactic, inspect the result and then
extend or modify it; (i4) soundness as users can inspect and validate the result
and the tool is independent of its encoding into Boogie; (iii) modularity as it
becomes easier to adapt to new versions of Dafny.

While we can rely on the soundness of Dafny for the actual verification, a
program transformation could in principle make changes to both the program
and its specification. A tactic should not make such changes to Dafny programs
as this is changing what we are attempting to prove:

Definition 1 (Contract Preserving Transformation). A contract preserv-
ing transformation s a program transformation that preserves the behaviour and
the contract of a method (or lemma or function).

The evaluation of a tactic call will transform the code by replacing the call with
the code the tactic generates. To illustrate, the evaluation of Lemma2 should
generate the same body as Lemma (or similar verifiable code that fits the pattern
encoded by the tactic). As a lemma is a ghost construct, and the contract is
unchanged, the transformation is contract preserving.

By reusing Dafny constructs, users can develop schematic and intuitive tac-
tics, comparable to declarative or schematic tactics found in some modern ITP
tactic languages, e.g. [4]. To illustrate, a proof by ‘mathematical induction’ over
a variable n, where we assume existence of tactic base_tac(), which handles the
base case (when n is 0), and tactic step_tac(), which is used for the step case,
can be written as follows:

tactic InductTac(n: Element)
{ if n =0 { base_tac(); }
else { var curr := current(); curr(n—1); step_tac(); } }

Variable curr will point to the “current” method or lemma in which the tactic
was called from (and the generated code will be added). curr(n-1) is therefore an
application of the induction hypothesis before the step case is handled.

The if statement of InductTac is at the object level, i.e. it will be part of the
generated Dafny code after applying the tactic. Statements such as if (and while)
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are also used at the meta-level, i.e. used by Tacny and will not be generated.
These levels are distinguished by whether the tactic evaluator can evaluate the
condition. If it cannot be evaluated then it is an object-level feature. In this case,
we do not know the value of n hence we cannot resolve whether n = 0 is true or
false.

Such schematic tactics provide a very elegant way of composing tactics, a well
known problem for ITP tactics [3]. cases(v){ body } illustrated another example
of composition where { body } is used to separate tactics applied within each
case, from tactics that should follow the match statement.

Both CasePerm and InductTac have a parameter of type Element. This is a
Tacny-specific type denoting the name of an element of the Dafny program text,
such as a variable, method name or lemma name. For CasePerm this is assumed
to be a variable of an inductively defined datatype while for InductTac it should
be a variable that is a natural number. To simplify, we are using a single type
to refer to this; type safety is handled by Dafny which will fail when we try to
verify a wrongly typed program. This is another example of modularity, albeit
at the expense of efficiency in this case. Note that for InductTac we cannot use
nat as this refers to a number and not a variable of nat type.

3 The Tacny Language

The Tacny language is designed to be as familiar for Dafny users as possible.
A tactic definition is a type of Dafny ghost method, with the following syntax:

tactic Id(Params){ TStmts }

where a parameter Param has the syntax I'd : Type. A type here is any Dafny
type [26], with two additional types: Element, already discussed; and Term, the
term representation of a Dafny expression. A Tacny statement T'Stmi is:

TStmt := Atom | Id(TExprs); | war Id := TExpr; | Id := TExpr;
| wvarlId:| TExpr; | Id:| TExpr; | { TStmts}
| if TEzpr{ TStmts} | if TExpr{ TStmts } else{ TStmts }
| while TExpr Invs { TStmts } | TStmt || TStmt;

With the exception of || and Atom, these constructs are part of the Dafny lan-
guage. However, within a tactic they have different semantics: e.g. a declared
variable in a tactic will not appear in the Dafny program resulting from tac-
tic evaluation. Atom refers to the atomic tactics of the Tacny language. These
are the hard-coded building blocks of Tacny, and all tactics are compositions of
them. The set of atomic tactics is expected to change and develop, but hopefully
converge. So far, we have identified the following atomic tactics:

Atom :=id(); | fail (); | invariant TExpr; | decreases TEzpr;
| assert TEzpr; | fresh var Id := TExpr; | fresh var Id:| TEzpr;
| try{ TStmts }catch{ TStmts } | cases(Element){ TStmits }
|  solved{ TStmts } | perm(Element,seq<FElement>);
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Dafny’s contract and loop (in)variant Inv is extended with tactic calls
Id(TFEzxprs), with the syntax definition omitted for space reasons. A TExpr is an
extension of Dafny’s expression Ezpr:

TExpr := Expr | current() | variables () | lemmas() | params() |

Note that to understand the evaluation of Tacny expressions, the full details
of Dafny expressions are not required and thus omitted. To evaluate a Tacny
expression, a context C, containing relevant details of the program at the point
a tactic call was made, and a state s, which holds a map from Tacny-specific
variables to values, are given. These may be updated during evaluation. The
evaluation of an expression is given by [—](c ), with the following semantics:

[e1 op €2H<C7s> = when op € {4, —, %, /}
leilic,sy op [e2](c,s) and [er]c,sy and [e2](c,s) are numbers.
lel(c.s) = ~lelc,s) when [e] (o5 # L

[[|€|]]<cs> length([e] (c,s)) when [e](c s # L
lelic,sy = true when tautology(e)
lel(c,sy = false when tautology(le)
[n](c, 9) 1= s(n) when n € dom(s)
[v]ic,s) := v when v is a value

[[f()]](c s) =C.f when f € {current, variables, lemmas, params}
lelio,s) == L otherwise

tautology is a simple tautology checker for proposition logic with (in)-equality;
length returns the length of a sequence, and a dot-notation is used to project val-
ues from the context. If an expression cannot be evaluated, then L is returned.
In that case, the expression is treated as object level. E.g. if we cannot eval-
uate the condition of an if-statement, then an if-statement will be generated,
which enables us to write declarative/schematic tactics in Tacny. In such cases,
Tacny-level variables need to be instantiated (using the state s) and Tacny-level
expressions (current, variables, lemmas, params) unfolded (using the context C).
This is achieved by [~](c,s), which we do not provide further details of. In the
semantics we often try [e](c,s) first, applying [](c s if it fails (i.e. returns L):

e = {Iico vhen e 71

le](c,sy otherwise

We give Plotkin-style big-step operational semantics [38], using a nonde-
terministic relation —. (C, s, ¢, stmt) — (C’,s’, ') should be read as: given
context C, state s, generated Dafny code ¢ and Tacny statement stmt, evalua-
tion will produce a new context C’, state s’ and Dafny code ¢’. The inference
rules are given in Figs. 1 and 2. For space reasons we do not provide a full set of
rules”. We focus on the interesting cases, omitting rules for generating context
and evaluating methods and lemmas, where tactics are called from, which is only
briefly discussed.

" For full details we refer to the “Tacny system working document’ [21].
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(C, s, ¢, stmty) — (C', 5", ) (C, s, ¢, stmtz) — (C',s",c)
(C,s,c, stmty || stmtz) — (C', s, ¢) (C,s,c, stmty || stmtz) — (C', s, ¢)

(C,s,c,stmt) — (C",s", ") C" wes #{} (c”,s", ", stmts) — (C', s, ')
(C, s, ¢, stmt stmts) — (C',s', )

(C, s,c,stmt) — (C',s', ) C'wes = {}
(C, s, ¢, stmt stmts) — (C',s', )

<C7 5, Cy B> — <C7 8’7 C/>
(C,s,c,{B}) — (C[ves := C".vcs], dom(s) < s, )

x & dom(s)UC.wUC.p [[e]]zcw = x € dom(s) [[CHZC,S> =
(C,s,c,var z:=e;) — (C, s[z :=v],¢c) (Cys,c,x:=e;) — (C,slz :=1v],¢)
x & dom(s)UCwUC.p [P(n)](c,s) = true C" = Clves := verify(C.M]|c])]
(C,s,c,var z: | P(z);) — (C,s[x :=nl,c) (C, 5,¢,id();) — (C', s,¢)
x € dom(s) [P(n)](c,s) = true [bl(c,sy = false
(C,s,c,x 2| P(z);) — (C,slx :=nl,c) (C,s,c,while b I{B}) — (C, s, ¢)

[bl(c,sy = true (C,s,c,id();B) — (C', s, ) C'ves = {}
(C, s,c,while b I{B}) — (C', dom(s) a5, c)

[[b]](c,s> = true <C7s,c, id();B) N <C”7 5//70/,>
C" wes #* {} (C”, S//7 C//,While b [{B}> N <C/, 5/7 c/>

(C,s,c,while b I{B}) — (C’', dom(s) < s’,c)

(C[mode := annot], s, ¢, I) — (C"',s", I') M = hz. C.M|while [b] ¢, 5 I'{z}]
[blic,sy = L (C[M := M],s,e,B) — (C',s', B)
(C, s, c,while b I{B}) — (C[ves := C".ves], s, c - while [b] ¢, I'{B'})

Fig. 1. Operational semantics for Tacny statements [1/2]

To evaluate ||, as shown in Fig.1, either the statement on the left or on
the right is evaluated. Sequential composition depends on whether the program
verifies after the first statement is completed. If the set of verification conditions
ves is empty, the evaluation stops; if not, it continues to the next statement.
When a block is evaluated then only changes to the given state s are kept and the
context is only updated with the VCs®. A declaration or assignment will update
s, and the expression e is evaluated by [e] ZQS)’ meaning it may not evaluate fully.
The projections C.v and C.p are the set of declared variables and parameters,
respectively, of the method the tactic was called from. To evaluate the : | operator

8 S < R restricts the domain of relation/map R to the set S.
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C.tac[t] = t(a1, -+, an){B}
<07 [a‘l: cr,Qn = [[61]]{0,3)7 ) [[en]]{C,s)]v ¢, B> — <C/7 3/7 C/>
<Cy S, C,t(€1, Tty e")> — <Cy S, C/>

(C,s,¢,B) — (C', 5", ) C'wes = {}
(C, s, c,solved{ B}) — (C[vcs := C".vcs], dom(s) <s', ')

mode = annot

(C, s,c,decreases ;) — (C, s, ¢ - decreases [e](c,s);)

mode = code C' = Clves := verify(C.M[c - assert [e]c.s):])]
(C,s,c,assert e;) — (C',s,c- assert [e](c,s);)

aL €as -+ ap € xS m(ai, - ,an){-} €CmUCIUC.f
ghost(m) C' = Clves := verify(C.M[c-m(a1, - -, an);])] C.mode = code
<Cv $, ¢, perm(m7 (lS),) — <Cl7 §,C m(alv e 7an);>
xz:T T:C1(1‘107~~~,I1i) | |On(l'no7~~-7l‘nj) l‘ij¢C.UUC.p
M, = A\y. C.M[match z case C1(z10, - +,%15) = y case - = assume false;] ---
M, = A\y. C.M[match z case Cp(Zno,-*+,%n;) = y case _ = assume false;]

(Clv:=CwU{zi0, -+, 211}, M = M], s,¢,id(); B) — (C1, s1,¢1) -+~
(Clv = CwU{xno, - 2n;j}, M = My, s,¢,id();B) — (Ch, 5n,cn)
mq = case C1(z10, -+, %15) = 1 -+ My = case Cn(Tno, "+, Tnj) = Cn
C" = Clves := verify(C.M[c - match z m1 --- my])] C.mode = code

(C,s,c,cases(x){ B }) — (C’,s,c-match x my - my)

Fig. 2. Operational semantics for Tacny statements [2/2]

we find a value where the property holds. This has to be enumerable, and P has
to have the syntactic form x in X, possibly followed by further constraints on x.
X must be a collection that can be derived from s and/or C.

The identity atomic tactic id() only changes the context, by attempting to
verify the program using Dafny. In order to apply Dafny to verify it, the code
surrounding a tactic call (or other construct as seen below) must be given. This
is provided by C.M in the context, with a “hole” [—] where the code generated
by the tactic can be “plugged in”, as illustrated by C.M|c] in the identity tactic.
verify is used to represent a call to Dafny, returning a set of open VCs. If Dafny
fails to execute, e.g. due to type errors, then the rule will fail. fail() always fails
and is therefore not given an inference rule following a closed world assumption.

We will only discuss the while control structure as this is the most interesting
and complicated; conditionals (if and if-else) have comparable semantics but are
omitted for space reasons. while is captured by 4 inference rules. The first is the
trivial case where the condition is false and nothing is changed. The second
case is when the condition is ¢rue and the resulting program verifies, in which
case the loop is terminated. Note that the body is prefixed by a call to the
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identity tactic to enforce a call to the verifier before a tactic is applied. The
third case is the “step case” where the program does not verify and the loop is
recursively applied. The final case is the most interesting one. This is an example
of a schematic tactic, where the while loop will be generated in the Dafny code.
Here, it is not possible to evaluate the condition, meaning [—]c,s) is applied to
the generated condition. As the loop annotations (loop invariants and decrease
clauses) may have tactic calls, this is first evaluated in an annot mode we will
return to below. We then evaluate the body. Note that C.M is updated with the
loop (using A notation for the hole) as the verifier has to know about the loop
when applied within the body; this change is local to the loop and is discarded
afterwards. € denotes empty code, and - concatenates code.

The rule to make a call to another tactic is shown in Fig. 2. The input state
of the method only contains the parameters, meaning there is no shared state
between tactics. These are evaluated as far as possible. A tactic call within a
lemma or method has the same semantics, with ¢ set to e. C.tac maps tactic
names to their definition. The solved tactic is similar to a block, but requires
that the program verifies on termination of the block; decreases statements are
only valid in the annot mode, i.e. contract or loop annotations. Note that the
expression is simplified by [~](c ) which e.g. allows us to write more generic
tactics by including Tacny level variables. Note that the verifier is not applied in
the annotations, however it is after an assertion is added. This requires a code
mode, i.e. generation of Dafny statements.

The perm(m, as) tactic generates all possible ways of applying m with argu-
ments taken from as. Here, m is first found in the context among the methods,
lemmas and functions, and checked that it is a ghost construct. The rule allows
all possible combinations, while Dafny is used to ensure type checking as part
of the verification. The cases tactic has the most involved semantics. The given
variable has to of an inductively-defined type and the constructors (with fresh
argument names) are created. Each case is evaluated separately, and to control
the verifier the other cases are assumed to be false”.

Most state-of-the-art ITP systems follow the LCF-approach [19] which
reduces soundness to a small “trusted kernel” of axioms and inference rules.
The following proposition states a similar feature for Tacny without proof:

Proposition 1. — is a contract preserving transformation if the atomics are
contract preserving.

To increase soundness, our aim is to converge to a small “trusted kernel” of
atomic tactics we can show are contract preserving. This is straightforward to
show for the atomic tactics discussed here:

Proposition 2. id(), fail(), perm, cases, decreases, assert, solved are contract
Preserving.

9 The underscore ‘_’ is not valid Dafny syntax in pattern matching but used for brevity.
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4 The Tacny System

The Tacny tool provides a proof-of-concept implementation of the semantics. The
architecture of this tool is shown in Fig. 3, where the shaded boxes represent
Dafny components. The tool accepts a Dafny program extended with tactics
(.tacny) and the Dafny PARSER has therefore been updated with the grammar
discussed in the previous section.

The parsed program is then sent to the INTERPRETER, which is discussed in
detail below. It uses the GENERATOR, which removes all tactics and tactic calls
from the source program, thus making it a valid Dafny (.dfy) program. This
is used at the end, to generate “a proof”, in terms of a valid Dafny program,
and during interpretation. In the latter case, the DAFNY RESOLVER performs
type checking and prepares the program for translation to BOOGIE, which is
conducted by the VERIFIER. As with the PARSER, this is a minor update of
the existing Dafny code, with some additional book-keeping. The result from
BOOGIE is then sent back to the INTERPRETER.

{.tacny}
—» PARSER INTERPRETER (GENERATOR
T (At
DAFNY RESOLVER — VERIFIER > B0OOGIE

Fig. 3. Tacny tool architecture

procedure TAC(t : Task)
res « [t]
repeat

procedure INTERPRETER(prog : Tacny)
r < INITTASK(prog)
reT [pc = NEXTTAC(T)]
if ENDOFFILE(r.pc) then
return [r]

res, solutions «— [r], ]
repeat
for each r € MAPS(TAC, res) do
re—r [pc = NEXTTAC(T)]
if r.ves = {} VENDOFFILE(7.pc) then
solutions < solutions + r

else res «— res+r
until res = ||
return solutions

for each r € MAPS(STEP, res) do
if r.ves = {} then return [r]
res «— res+r’
until ENDOFTAC(t.pc)
return res
procedure STEP(¢ : Task)
res < [|
for each r € TACSTEP(¢) do
dfy < GENERATE(T)
if dfy = NULL then return ]
bgy «— BOOGIE(dfy)
if PROVEN(bgy) then
return [rfvcs := {}]]
if SuBGoALS(bgy) then
res «— res + [rvcs 1= bgy|]

return res

Fig. 4. Tacny interpreter
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The main work of Tacny happens in the INTERPRETER, and the algorithm is
given in Fig. 4. It first generates an initial task by INITTASK. A task is a record
containing a state, context and Tacny program similar to the input of — from
Sect. 3. In addition, it contains a program counter. INITTASK will generate the
context, and initialise the state to empty. NEXTTAC will then find the next tactic
call, or reach the end of the file (ENDOFFILE) if there are no more calls.

In the main loop, the INTERPRETER keeps track of intermediate results res
and completed solutions. It then applies a breadth-first search strategy by apply-
ing a single tactic application, represented by the undefined TACSTEP procedure,
for each element of the result list. This continues until either there are no “open”
VCs or there are no more tactic calls. Each tactic evaluation involves a step by
step evaluation where after each step a Dafny program is generated. Tacny works
on a method-by-method basis, and to focus verification on the current method,
the body of all other methods is removed, and all tactics and tactic calls are
removed to make it a valid Dafny program. The DAFNY RESOLVER may fail,
e.g. if the program does not type check, returning NULL; in that case that par-
ticular task is aborted. If not, BOOGIE is applied and the result is returned. If
BOOGIE can prove that the program is correct, then the task is completed. This
modularity has the advantage that extensions to Dafny and Boogie can be easily
integrated: Tacny is a layer on top of Dafny. Currently, some features of Sect. 3
are not supported, such as object level (schematic) loops.

5 Experiments

In Sect. 2 we introduced the CasePerm tactic and showed that it was applicable
for multiple examples. Table1 shows the results from our experiments'®, with
results from running CasePerm above the double line (1). Calls refers to the
number of tactic calls for each file; TLoC and DLoC are the LoC for the
respective Tacny and (analysed) Dafny programs; Vars is the highest number
of variables in a branch; #B is the number of branches; DB is the number of
discarded branches before a solution was found; T is the running time for Tacny
in seconds.

A user must often provide a variant in form of a decreases clause to prove
that a loop or recursive method terminates. This can often be a trial-and-error
process, where the user may have some ideas in hand. Here, we give a generic
tactic to generate either a single variable or a subtraction of two variables:

tactic VariantGen (){

solved{ var x :| x in params() + variables ();
decreases x ||
{ var y :| x in params() + variables() A x # y;

decreases x—y }; }

19" All examples are taken from the Dafny repo [1], with code used available from [2].
Experiments conducted running Windows 8.1 on Intel i7 2.4 GHz with 4GB RAM.
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Table 1. Results from executing: CasePerm (1) and VariantGen (2).

Tac | Program Calls| TLoC |DLoC | Vars|#B | #DB | T(sec)

(1) |NipkowKlein-chapter3.dfy |2 186 192 |4 1473| 506 |113
Substitution.dfy 2 52 84 |5 217394758 |190
InductionVsCoinduction.dfy |1 74 70 |5 1137 544 | 30
Streams.dfy 7 221 228 |3 62 0| 37
CogArt-InsertionSort.dfy |2 201 198 |2 58 0] 15

(2) |Dijkstra.dfy 1 126|117 19 4] 8
SchorrWaite.dfy 1 204|195 34 7] 11
Prime.dfy 1 232|224 54 9] 20
SetIterator.dfy 1 82 63 48 6| 20
SimpleInduction.dfy 1 66 65 11 0 5

The results from applying this to a set of examples can be seen below the double
line (2) in Table 1. The number of variables are omitted as they are not relevant.
The fact that a single tactic can be applied to several examples (14 and
5) and, for CasePerm several lemmas within each example, provides evidence
for our hypothesis that tactics for Dafny are feasible. In most cases, CasePerm
reduces the annotation overhead. For the other cases, the size has not reduced
for 2 reasons: (i) the proofs replaced where short; and (ii) although the tactic is
the same for all examples, it had to be copied into each example for technical
reasons. This is the reason why VariantGen increased the LoC: each variant is
a single line, thus replacing it with a tactic call will have the same LoC. For
this tactic, we cannot argue reduced annotation overhead, however the manual
search task is replaced by a tactic, thus development time should decrease.

For some examples CasePerm has a very high branching factor, in particular
when there are 4 or more variables. This is due to the naivety of the perm tactic,
and we are working on improvements to this. We believe that this has potential
for a very generic tactic if we can extend it and, at the same time, improve on
the branching factor. VariantGen is discussed further in Sect. 7.

6 Related Work

An alternative approach to Dafny tactics is the more traditional approach of
proving the generated VCs in an interactive prover and developing tactics at
this level. This has the following drawbacks: users have to (additionally) learn
how to use and develop tactics in the interactive prover'!; and certain tactics,
such as adding an invariant, precede VC generation. Thus, a richer set of tactics

can be developed in the program text. Most tactic languages for ITP systems,

1 Tt commonly takes at least six months just to become a proficient user of an ITP
system (see e.g. [30]), and even longer to have sufficient expertise to develop tactics.
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dating back to the seminal LCF system [19], contain a combinator language to
compose tactics into larger and more powerful ones. For example, the solved tac-
tic is common. As far as possible, we have attempted to use Dafny’s constructs to
compose tactics to keep them as familiar as possible. Within ITP, there is also a
trend towards building tactic languages at the proof script level, compared with
the implementation language of the system. LTac for Coq [14] and EisBach for
Isabelle [33] are examples of such languages. Non-trivial tactic compositions are
hard to get right for tactic languages due to their procedural nature; see e.g.
[18] for a discussion. Inspired by declarative proof scripts, with Mizar [36] and
Isabelle/Isar [40] probably the most well-known, [4] develops a declarative tactic
language, where a tactic is given a more schematic description. Such schematics
are also supported in Tacny, and provide a more intuitive mechanism for tactic
composition. Most of the popular ITPs follow the so-called LCF approach [19],
where soundness is ensured by a small “trusted kernel” of axioms and inference
rules. The type system ensures that all proof steps go through this kernel. We
are following this approach by reducing our correctness property (contract pre-
serving transformation) to the atomic tactics, where all the code is generated.
We hope the set of atomics will converge into a small kernel. These resemblences
to ITP tactics are the reason that we have adopted the ‘tactic’ name for our
language. It is also considered good practice that each refactoring should only
make small changes to the code as this is easier to analyse [17]. [41] applies
refactoring to proof scripts to improve existing proofs; however, it is not used to
support the proof process of open conjectures, as is the case for Tacny.

We are not familiar with any other work attempting to develop a tactic lan-
guage at the program text level for program verifiers'?. Chen [7] describes a
simple imperative language that includes verification constructs. This may pro-
vide the foundations to encode a tactic language, similar to ours, but it is not
clear how this can be done. Moreover, our goal is to work with existing program
verifiers. The Aris project [32] uses case-based reasoning to re-use specifications
from a large corpus of existing proofs in Spec# [6], and it would be interesting
to see if the Tacny language could be used as a target language for the general-
isation of such specifications. There has also been work at “lower-levels”: Leino
[28] has developed an “induction tactic” for Dafny. This is an optimisation of the
encoding into Boogie, and requires deep understanding of the underlying Dafny
implementation. Moreover, working at this level one has to be very careful not
to introduce inconsistencies in the logic. At an even lower-level, a tactic lan-
guage has been developed for the underlying Z3 prover [13] — again, this requires
expertise in SMT solving and Z3.

To improve readability of the program text, Dafny supports Dijkstra-style
calculational proofs (calc) [30], comparable to declaritive proofs in e.g. Mizar or
Isabelle/Isar. A considerable amount of work has been done using static analy-
sis techniques on the program text in order to reduce the number of required
annotations by automatically generating these (in particular loop invariants)
[16,22,23,39]. Techniques include abstract interpretation [12], constraint-based

'2 Unpublished early ideas for tactics by the first author is available on ArXiV [20].
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techniques [10], inductive logic programming [16], and declarative machine learn-
ing [31]. Stretching our “ITP analogy”, comparing this work to Tacny, is like
comparing tactic languages to decision procedures: we are not proposing a new
technique to improve automation, but a language in which users can encode
patterns so they can improve automation. Note that Dafny uses abstract inter-
pretation at the Boogie level [5].

The perm tactic can seen as a limited form of term synthesis at the Dafny
level. This technique is used in theory exploration tools, such as IsaCosy [25] and
HipSpec [8]. The perm tactic can also be seen as a form of a brute-force tactic
that essentially tries various combinations without an overall proof pattern. The
cases tactic introduces ‘proof by cases’ for inductive data types. This can eas-
ily be extended to support structural induction, by adding recursive calls. The
CasePerm tactic is a generalisation of this and similar to how one would prove
simple inductive lemmas in ITPs: apply induction followed by a powerful tactic.
The VariantGen tactic is used to guide the search for a termination measure.
There is a considerable amount of work on proving termination (see e.g. [11]),
which is beyond the discussion here.

7 Conclusion and Future Work

We have extended the Dafny program verifier by adding support for users to
encode reusable verification patterns using a novel tactic language in the pro-
gram text. We have provided formal syntax and semantics for this extension,
implemented as the Tacny tool. Our experiments have shown that it is possible
to encode Dajfny tactics and reuse them accross verification tasks. This has been
illustrated by two tactics, used to automate 19 lemmas that required interaction.
10 different Dafny programs were used in order to illustrate generality.

We are continously developing, re-engineering and analysing Dafny programs,
in order to extract common verification patterns, and use this to develop new
(atomic) tactics, which we hope will converge as a result of this work. Based
upon ITP kernels we hope that around 15 — 20 will be sufficient. We are cur-
rently investigating better integration of the proof failure information into the
language, e.g. the solved condition of VariantGen could be weakened to ‘no termi-
ation VCs’. We are also starting to incorporate (dynamic) contracts to rule out
invalid branches earlier. We also plan to extend the language to: allow function
definitions at the Tacny level for more readable tactics; allow “a tactic body” as
an“argument” for user defined tactics (as is used for the cases atomic tactic); and
use of the recently added higher order features in Dafny [26] to allow tactics as
arguments, e.g. allow us to write tactic Maybe(t : Tactic){id() || t(); }. Through
user evaluations, we would like to validate if/when users find the program text
more readable when low-level proofs are replaced by tactics.

The perm tactic is a starting point for a generic brute force tactic, and we
are working on extending it to support richer parameters (e.g. constructors and
operators which themselves have parameters), and support for assignments, con-
trol structures and use within calculations [30]. We would also like to create a
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more generic VariantGen tactic, with better control of the execution: e.g. only use
variables that change, and determine in which cases one variant is more likely
to work, thus replacing non-deterministic choice with a conditional.

The Tacny tool is only a proof-of-concept and not particularly fast and we
have identified multiple improvements. Firstly, some of the tactics have an ad-hoc
implementation and we plan to refactor the code into a more generic framework,
where it is easy to extend it with new atomic tactics and expressions and the
ability to explore different search strategies. Ideally, tactics should be able to
tailor their search strategy. We also plan to explore the use of lazy lists and lazy
evaluation to improve memory consumption, and data parallelisation to improve
speed. We would also like to see how calls to Dafny/Boogie can be reduced,
possibly adding such control to the user via e.g. a form of atomic statement.

Longer term we would like to have a closer integration with Dafny and added
support for Tacny in the Visual Studio Dafny IDE. We would also like to investi-
gate how general the approach is by exploring tactics for other program verifiers.
“Dafny style proof” has been shown to be feasible in Spark 2014 [15], and we
would like to try to develop tactics for Spark 2014 and other program verifiers.
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