
FACT: A Probabilistic Model Checker for
Formal Verification with Confidence Intervals

Radu Calinescu1, Kenneth Johnson2, and Colin Paterson1

1 Department of Computer Science, University of York, United Kingdom
2 School of Computer and Mathematical Sciences, Auckland University of

Technology, New Zealand

Abstract. We introduce FACT, a probabilistic model checker that com-
putes confidence intervals for the evaluated properties of Markov chains
with unknown transition probabilities when observations of these tran-
sitions are available. FACT is unaffected by the unquantified estimation
errors generated by the use of point probability estimates, a common
practice that limits the applicability of quantitative verification. As such,
FACT can prevent invalid decisions in the construction and analysis of
systems, and extends the applicability of quantitative verification to do-
mains in which unknown estimation errors are unacceptable.

1 Introduction

The development of quantitative verification [8, 11] over the past fifteen years
represents one of the most prominent recent advances in system modelling and
analysis. Given a Markov model that captures relevant states of a system and
the probabilities or rates of transition between these states, the technique can
evaluate key reliability and performance properties of the system. This capability
and the emergence of efficient probabilistic model checkers such as PRISM [10]
and MRMC [9] have led to adoption in a wide range of applications [14].

Despite the success of quantitative verification, the usefulness of its results
depends on the accuracy of the analysed models. Obtaining accurate Markov
models is difficult. Although model states and transitions are typically easy to
identify (e.g., through static code analysis for software systems), transition prob-
abilities and rates need to be estimated. The common practice is to obtain these
estimates through model fitting to log data or run-time observations [4, 15], or
from domain experts. In either case, the values used in the analysed models
contain estimation errors. These errors are then propagated and may be ampli-
fied by quantitative verification (since Markov models are nonlinear), producing
imprecise results that can lead to invalid design or verification conclusions.

The FACT3 probabilistic model checker introduced in our paper is not af-
fected by this problem. As described in Section 2, FACT can compute confi-
dence intervals for the properties of a common class of parametric (discrete-
time) Markov chains for which observations of the transitions associated with
the unknown probabilities are available. The operation of FACT (presented in

3 Formal verificAtion with Confidence inTervals

s=0

s=1

s=2 s=3

x1

x2

0.1
0.9

1.0

1.0

invoke

timeout

success

fail

(a) (b)

Fig. 1. (a) PMC model of a service whose invocations succeed with probability x1 and
time out with probability x2 = 1 − x1, where timed-out invocations are retried with
probability 0.1; (b) FACT-generated confidence intervals for the property ‘What is the
probability that the service cannot be invoked successfully? ’ for an instance of the service
that was observed completing successfully 3747 times and timing out 125 times.

Section 3) is underpinned by recent theoretical results from [2], and the tool in-
tegrates the PRISM parametric quantitative verification engine (first introduced
in version 4.2 of PRISM), the MATLAB convex optimisation toolbox YALMIP
[13] and a purpose-built hill climbing optimiser. The modular architecture of
the tool (discussed in Section 4) makes it easy to replace these components with
functionally equivalent ones and to extend the tool. FACT and the models from
the case studies summarised in Section 5 are available on our project website
http://www-users.cs.york.ac.uk/~cap/FACT.

2 Formal Verification with Confidence Intervals

FACT parametric Markov chains (PMCs) are specified in an extended version
of the PRISM high-level modelling language [10], which models a system as the
parallel composition of a set of modules. The state of a module is encoded by a set
of finite-range local variables, and its state transitions are defined by probabilistic
guarded commands that change these variables, and have the general form:

[action] guard −> e1 : update1 + e2 : update2 + . . .+ en : updaten; (1)

In this command, guard is a boolean expression over all model variables. If guard
evaluates to true, the arithmetic expression ei, 1 ≤ i ≤ n, gives the probability
with which the updatei change of the module variables occurs. When action is
present, all modules comprising commands with this action have to synchronise
(i.e., to carry out one of these commands simultaneously). In a FACT PMC, the
expressions e1, e2, . . . , en can be unknown (constant) probabilities x1, x2, . . . , xn.
These model parameters are associated with a declaration:

param double x = t1 t2 . . . tn; (2)

in which ti ∈ N, 1 ≤ i ≤ n, represents the number of transitions associated with
updatei that were observed during a period of time when all outgoing transitions
from states that satisfy guard were monitored and recorded. An example of a
simple PMC analysed using FACT is shown in Fig. 1.

FACT users

Parametric
Markov chain

PCTL property,
e.g. P=?[F“fail”]

Range of confidence
levels, e.g. 0.95-0.99

Verification
manager

1. obtain

expression
2. get parameter

confidence intervals

Parametric
quantitative

verification engine

Simultaneous
confidence

interval calculator

Convex
optimisation

engine

Confidence interval
optimisation

heuristic

algebraic 3. synthesise property
confidence interval

Confidence intervals for property

[PRISM] [Kwong & Iglewicz] [YALMIP] [hill climbing]

FACT Tool

4. seek

confidence
alternative

levels

0.95 0.96 0.97 0.98 0.99

0.006

0.016

0.025

0.035

0.044

0.054

confidence level

Fig. 2. FACT operation and architecture; the technologies used by the current version
of the tool (shown in square brackets) can be replaced with alternative technologies

FACT PMCs can have multiple sets of parameters (2). For example, the out-
going transitions from state ‘s = 2’ in Fig. 1a could be associated with unknown
probabilities pRetry1 and pRetry2. The only constraint is that the different sets
of parameters (2) are statistically independent. This constraint is satisfied by a
broad class of PMCs that includes, for instance, all the models used in the case
studies of the PROPhESY tool4 [5] for analysing parametric Markov chains.

FACT can establish confidence intervals for PMC properties expressed in
probabilistic computation tree logic (PCTL) [7] extended with rewards [1]. The
current version of FACT supports non-nested probabilistic PCTL properties of
the form P=?[Ψ], where the path formula Ψ is defined by the grammar:

Ψ ::= XΦ | Φ U Φ | Φ U≤kΦ
Φ ::= true | a | Φ ∧ Φ | ¬Φ (3)

with k ∈ N, a an atomic proposition associated with states that satisfy a (e.g.,
timeout and success in Fig. 1a), p ∈ [0, 1], ./ ∈ {≥, >,<,≤}, and Φ is a state
formula. FACT also supports all PCTL reward properties, i.e., the instantaneous,
cumulative, reachability and steady-state reward properties defined by:

Φ ::= R=?[I
=k] | R=?[C

≤k] | R=?[FΦ] | R=?[S]. (4)

Defining the semantics of PCTL is beyond the scope of this paper; details are
available from [1, 7, 10].

3 Using FACT

As shown in Fig. 2, FACT users provide a PMC, a PCTL property for analysis,
and a range of confidence levels. Given these inputs, the verification manager at
the core of our tool generates a confidence interval for each confidence level α

4 http://moves.rwth-aachen.de/research/tools/prophesy/#benchmarks

from the user-specified range in a four-step process. First, parametric quantitative
verification is used to obtain an algebraic expression for the analysed PCTL
property (step 1, executed only once for all confidence levels). This expression,
which is recorded in the FACT log, is a rational function of the PMC parameters,
e.g., 9x2

10x1+9x2
for the PCTL property analysed in Fig. 1b. In step 2, simultaneous

confidence intervals are calculated for each set of parameters (2) containing
elements that appear in the algebraic expression from step 1. If there are m such
parameter sets, then a confidence level of α1/m is used to calculate the parameter
confidence intervals, and these parameter confidence intervals have a “combined
confidence level” of (α1/m)m = α. Hence, step 3 uses them as input for a convex
optimisation problem whose solution represents an α confidence interval for the
analysed property—a formal proof of this result is available in [2].

When m> 1, using α1/m confidence intervals for each parameter set is un-
likely to yield the narrowest possible α confidence interval for the analysed prop-
erty. For two reasons, using confidence levels αi<α

1/m<αj for the confidence
intervals of parameter sets i and j may produce a narrower α confidence interval:

1. If the number of state-transition observations associated with parameter set
j is larger than that for parameter set i, this choice of confidence levels
may produce much narrower confidence intervals for parameter set i with an
insignificant widening of the confidence intervals for parameter set j;

2. If the analysed property is particularly sensitive to variations in the param-
eter set i, reducing αi narrows the confidence intervals for parameter set i
and may also narrow the α confidence interval for the analysed property.

Therefore, step 4 uses a confidence interval optimisation heuristic to seek alter-
native confidence levels α1, α2, . . . , αm such that

∏m
i=1 αi = α and using αi

confidence intervals for the i-th parameter set, 1 ≤ i ≤ m, produces a narrower
α confidence interval for the analysed property. This optimisation can reduce
the width of property confidence intervals (e.g., by up to 14% in the case studies
from [2]), but is time consuming since FACT steps 2 and 3 are repeated for each
α1, α2, . . . , αm combination suggested by the heuristic. Hence step 4 is by de-
fault switched off in FACT, and the user should switch it on explicitly if needed.
There is one typical scenario in which this need arises. This is when FACT is used
to verify whether the analysed property is above/below a threshold specified in
the system requirements (with some confidence level α), and the threshold falls
inside the α confidence interval without the heuristic search. In this scenario,
the FACT user should switch on the heuristic search by specifying a non-zero
number of search iterations, which may result in a narrower α confidence interval
that does not contain the threshold and enables a conclusion to be drawn.

4 Architecture and Implementation

FACT has a modular architecture in which each step of the verification process
is carried out by a different module (Fig. 2). We implemented these modules in
Java, using the following technologies that can each be easily substituted with
alternative technologies (e.g., to extend FACT or to improve its efficiency):

Table 1. Experimental results for the case studies from Section 5

PMC psetsa paramsb PCTL property tcexp tdCI

Web 5 13 P=?[F HttpResponse] 0.75s 3.96s
P=?[¬(Database∨FileServer)UHttpResponse] 0.84s 3.43s
Rcost

=? [F Done] 0.86s 3.31s

Rtime
=? [F Done] 0.89s 3.29s

TAS 3 6 P=?[F FailedAlarm] 0.24s 4.32s
P=?[¬Done U FailedService] 0.12s 2.82s
P=?[¬Done U FailedAlarm{MedicalAnalysis}] 0.11s 2.78s

LWB 1 2 Rpower
=? [S] 0.24s 3.03s
Renergy

=? [F StartedUp] 0.27s 2.98s

BRP 2 4 P=?[F SenderNoSuccessReport] 0.44s 31.6s

Z 2 4 RnumTests
=? [F DecisionMade] 0.15s 5.41s

anumber of parameter sets (2) in the PMC btotal number of PMC parameters
ctime to compute algebraic expression dtime to synthesise confidence interval

1. The parametric quantitative verification engine is implemented on top of
PRISM [10], which it invokes in the background. An alternative implemen-
tation based on PARAM [6] is worth exploring.

2. The simultaneous confidence interval calculator implements the (conserva-
tive) solution proposed by Kwong and Iglewicz [12], which achieves a good
trade-off between computational complexity and precision. Several alterna-
tive solutions that deserve investigating are mentioned in [2].

3. The convex optimisation engine uses the MATLAB convex optimisation tool-
box YALMIP [13], which it invokes in the background. An implementation
based on the non-commercial GNU Octave package (https://www.gnu.org/
software/octave/) is worth exploring.

4. The confidence interval optimisation heuristic currently used is hill climbing.
Numerous alternative heuristics can be substituted in this module.

5 Case Studies and Experimental Results

To evaluate FACT, we carried out case studies involving the synthesis of confi-
dence intervals for PCTL-encoded reliability, performance and cost properties of
parametric Markov chains modelling systems from different application domains.
Table 1 summarises the experimental results obtained for the PMCs of:

– a web application taken from [2] (Web);
– a tele-assistance service-based system adapted from [3, 4] (TAS);
– the low-power wireless bus communication protocol taken from [2] (LWB);
– the bounded retransmission protocol from the PROPhESY [5] site (BRP);
– the Zeroconf IP address selection protocol from the PARAM [6] website (Z).

The timing results were obtained on a standard OS X 10.8.5 MacBook computer
with 1.3GHz Intel Core i5 processor and 8GB 1600MHz DDR3 RAM. The mod-
els, PCTL property files, results and descriptions for all case studies are available
on our FACT website http://www-users.cs.york.ac.uk/~cap/FACT.

These case studies demonstrated several key benefits of our probabilistic
model checker. First, FACT supports the analysis of systems for which state
transition probabilities are unknown, but observations of these transitions are
available from logs or run-time monitoring. Second, it enables the analysis of
reliability, performance and other non-functional properties of systems at the
required confidence level. This approach is better aligned with the current in-
dustrial practice than traditional quantitative verification. Third, it can prevent
invalid design and verification decisions. In many scenarios, the quantitative
analysis of Markov models built using point estimates of the unknown transition
probabilities misleadingly suggested that requirements were met. In contrast,
FACT showed that this was only the case with low confidence levels that are
typically deemed unacceptable in practice. Last but not least, our case studies
showed that FACT can be used to analyse systems from multiple domains.

References

1. S. Andova, H. Hermanns, and J.-P. Katoen. Discrete-time rewards model-checked.
In FORMATS 2003, volume 2791 of LNCS, pages 88–104. Springer, 2004.

2. R. Calinescu, C. Ghezzi, K. Johnson, M. Pezze, Y. Rafiq, and G. Tamburrelli. For-
mal verification with confidence intervals to establish quality of service properties
of software systems. IEEE Transactions on Reliability, PP:1–16, August 2015.

3. R. Calinescu, K. Johnson, and Y. Rafiq. Developing self-verifying service-based
systems. In ASE’13, pages 734–737, 2013.

4. R. Calinescu, Y. Rafiq, K. Johnson, and M. E. Bakir. Adaptive model learning for
continual verification of non-functional properties. In ICPE’14, pages 87–98, 2014.

5. C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen,
and E. Abraham. PROPhESY: A PRObabilistic ParamEter SYnthesis Tool. In
CAV’15, volume 9206 of LNCS, pages 214–231. Springer, 2015.

6. E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A model checker
for parametric Markov models. In CAV’10, pages 660–664, 2010.

7. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing, 6(5):512–535, 1994.

8. B. R. Haverkort, J.-P. Katoen, and K. G. Larsen. Quantitative verification in
practice. In ISoLA’10, volume 6416 of LNCS, page 127. Springer, 2010.

9. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The
ins and outs of the probabilistic model checker MRMC. Performance Evaluation,
68(2):90–104, 2011.

10. M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of proba-
bilistic real-time systems. In CAV’11, volume 6806 of LNCS, pages 585–591, 2011.

11. M. Z. Kwiatkowska. Quantitative verification: Models, techniques and tools. In
ESEC-FSE’07, pages 449–458, 2007.

12. K.-S. Kwong and B. Iglewicz. On singular multivariate normal distribution and
its applications. Computational statistics & data analysis, 22(3):271–285, 1996.

13. J. Löfberg. Automatic robust convex programming. Optimization methods and
software, 27(1):115–129, 2012.

14. G. Norman and D. Parker. Quantitative verification: Formal guarantees for timeli-
ness, reliability and performance. Technical report, London Mathematical Society
and the Smith Institute for Industrial Mathematics and System Engineering, 2014.

15. G. Su and D. Rosenblum. Asymptotic bounds for quantitative verification of per-
turbed probabilistic systems. In ICFEM’13, pages 297–312. Springer, 2013.

