DIVINE: Explicit-State LTL Model Checker
(Competition Contribution)

Vladimir Still®™), Petr Ro¢kai, and Jif{ Barnat

Faculty of Informatics, Masaryk Universit, Brno, Czech Republic
xstill@mail.muni.cz, divine@fi.muni.cz

Abstract. DIVINE is an LLVM-based LTL model checker that follows
the standard automata-based approach to explicit-state model checking.
It aims at verification of unmodified parallel C & C++ programs with-
out inputs. To achieve this DIVINE employs several reduction techniques
combined with high-performance parallel and distributed computing.

1 Verification Approach and Software Architecture

As an explicit-state model checker, DIVINE is meant primarily to help detect
bugs in multithreaded code [1]. As a matter of fact, the development of multi-
threaded code suffers from the lack of deterministic testing procedure. Therefore,
concurrency related bugs, such as data races, often tend to survive in the code
even beyond the release date. DIVINE provides the user with the tool to check
all possible relevant executions of multithreaded code. In this way DIVINE may
be used to prove the presence or absence of a bug. With this approach DIVINE
requires that programs to be verified are closed, i.e. perform no input/output
actions.

DIVINE is written in C+—+. It uses LLVM bitcode as the input formalism.
Therefore, it employs Clang to translate input multithreaded C and C++ pro-
grams to LLVM bitcode prior verification. See Fig.1. Thus the core part of
DIVINE is a purpose specific LLVM bitcode interpreter. The interpreter allows
to completely store and load a state of the program, and is capable of execution
of LLVM instructions in order to generate new states. The program is analyzed
including all the code that is executed within software libraries which has to be
compiled together with the program for verification. In the standard distribution
DIVINE provides bitcode with implementations of C and C++ standard libraries
and pthread threading library.

2 Strengths and Weaknesses

The main strength of DIVINE is its ability to perform a full deterministic verifi-
cation of closed piece of code. DIVINE can detect a number of issues in the code

This work has been partially supported by the Czech Science Foundation grant No.
15-087728S.
© Springer-Verlag Berlin Heidelberg 2016

M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 920-922, 2016.
DOI: 10.1007/978-3-662-49674-9_60

DIVINE: Explicit-State LTL Model Checker 921

LTL or safety property \v

C++ —>[Clang]—> LLVM IR —>[LART]—> LLVM IR —>[DIVINE]

A /

———————————————————— Counterexample Valid

Fig. 1. Verification work-flow. Boxes with rounded corners represent executables.

such as invalid memory access, assertion violation, unhandled exceptions, etc. In
addition, DIVINE can verify properties expressed as LTL formulas. Moreover, all
the issues discovered can be witnessed with a counterexample.

The LLVM interpreter in DIVINE supports complete instruction set of LLVM
bitcode including instructions for exception handling. DIVINE runtime provides
almost complete implementation of C and C++ standard libraries and pthread
threading library. The LLVM approach has the advantage that the behaviors
that are analyzed by DIVINE are quite close to the behaviors that are actually
exhibited by the program binary, for example they include most of compiler
optimizations. Futhermore, with a proper runtime, DIVINE can handle other
languages with LLVM-based compiler.

The ease with which LLVM-bitcode can be transformed allowed us to adapt
to specifics of SV-COMP (such as atomic sections) without the need to modify
DIVINE at all. For LLVM-to-LLVM transformations DIVINE employs LART— an
LLVM transformation platform distributed with DIVINE.

To address the state space explosion problem in terms of both the time
and memory, DIVINE offers strong 7-reduction [2], efficient state-compression
techniques [3] and also the ability of parallel and distributed-memory processing.

DIVINE requires the program to have finitely many states, however the pro-
gram need not terminate — there is no need for loop, recursion, or context switch
bounding. On the other hand, there are numerous limits of the approach. First
of all, DIVINE is purely explicit-state tool, which means that simulating even a
single unrestricted 32bit-wide input leads to the 232 wide branching in the state
space, making verification of open programs nearly impossible. However, since
the nondeterminism in the concurrency category of SV-COMP is fairly limited,
DIVINE can tackle most of the benchmarks of this category.

When preparing for SV-COMP, we also run into problems with under-
specification of benchmarks — in many benchmarks there is undefined behavior
with respect to reads and writes to global variables, which leads to an optimized
LLVM bitcode with unexpected behavior. This is, however, not a limitation of
DIVINE’s approach — it is rather a bug in the benchmarks. To tackle this prob-
lem and get expected results we employ LLVM-to-LLVM transformation which
adds volatile qualifier to any global variable defined in the benchmark.

922 V. Still et al.

3 Tool Setup and Configuration

The web presentation of DIVINE can be found at divine.fi.muni.cz, however, for
the purpose of this competition we use not yet released version of DIVINE which
can be downloaded from www.fi.muni.cz/~xstill/divine-next, the version used
is DIVINE 3.4.1pre. DIVINE can be built on Linux, but it requires the following
packages: gcc and g++ at least version 4.9, LLVM and Clang 3.7, and perl 5.

The complete prebuild package can be downloaded from www.fi.muni.cz/
~xstill/divine-next /bin/divine-3.4-svcomp.tar.gz. The archive contains DIVINE
and LART binaries together with all the necessary dependencies as well as Clang
and LLVM otp for convenience, therefore, there is no need to install LLVM 3.7 to
run DIVINE on Ubuntu 14.04.

Since the build process of C/C++ program for DIVINE has multiple steps,
there is a helper script rundivine which handles compilation and verifica-
tion automatically. The usage for SV-COMP is rundivine <divine-bin-dir>
--svcomp --csdr --opt=-0z <benchmark>. The meaning of used options is the
following: —-svcomp to run all required LART passes and setup compiler to han-
dle input properly and DIVINE to verify assertions, use only one thread, and
use compression; ——csdr to use the Context-Switch-Directed Reachability algo-
rithm [4]; and --opt=-0z to enable optimizations using LLVM opt.

DIVINE will participate in concurrency category, with aforementioned options
to the rundivine wrapper. The wrapper script for BenchExec is divine.py!.

4 Software Project and Contributors

DIVINE project resides at http://divine.fvi.muni.cz. The project was contributed
primarily by Petr Rockai and Vladimir Still, with a number of other people as
contributors. DIVINE is licenced under the 2-clause BSD license.

References

1. Barnat, J., et al.: DiVinE 3.0 — an explicit-state model checker for multithreaded C
& C++. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, pp. 863-868. Springer,
Heidelberg (2013)

2. Rockai, P., Barnat, J., Brim, L.: Improved state space reductions for LTL model
checking of C and C++ programs. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM
2013. LNCS, vol. 7871, pp. 1-15. Springer, Heidelberg (2013)

3. Rockai, P., Still, V., Barnat, J.: Techniques for memory-efficient model checking of
C and C++ code. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276,
pp. 268-282. Springer, Heidelberg (2015)

4. Still, V., Rockai, P., Barnat, J.: Context-switch-directed verification in DIVINE.
In: Hlinény, P., Dvoték, Z., Jaro§, J., Kofron, J., Kotenek, J., Matula, P., Pala, K.
(eds.) MEMICS 2014. LNCS, vol. 8934, pp. 135-146. Springer, Heidelberg (2014)

-

github.com/dbeyer /benchexec/blob/master/benchexec/tools/divine.py.

http://divine.fi.muni.cz
www.fi.muni.cz/~xstill/divine-next
www.fi.muni.cz/~xstill/divine-next/bin/divine-3.4-svcomp.tar.gz
www.fi.muni.cz/~xstill/divine-next/bin/divine-3.4-svcomp.tar.gz
http://divine.fi.muni.cz
http://github.com/dbeyer/benchexec/blob/master/benchexec/tools/divine.py

	DIVINE: Explicit-State LTL Model Checker
	1 Verification Approach and Software Architecture
	2 Strengths and Weaknesses
	3 Tool Setup and Configuration
	4 Software Project and Contributors
	References

