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Abstract. This article presents an explicit freestart colliding pair for SHA-1, i.e. a colli-
sion for its internal compression function. This is the first practical break of the full SHA-1,
reaching all 80 out of 80 steps. Only 10 days of computation on a 64-GPU cluster were
necessary to perform this attack, for a cost of approximately 2°7-> calls to the compression
function of SHA-1. This work builds on a continuous series of cryptanalytic advancements
on SHA-1 since the theoretical collision attack breakthrough of 2005. In particular, we reuse
the recent work on 76-step SHA-1 of Karpman et al. from CRYPTO 2015 that introduced
an efficient framework to implement (freestart) collisions on GPUs; we extend it by incorpo-
rating more sophisticated accelerating techniques such as boomerangs. We also rely on the
results of Stevens from EUROCRYPT 2013 to obtain optimal attack conditions; using these
techniques required further refinements for this work.

Freestart collisions do not directly imply a collision for the full hash function. However,
this work is an important milestone towards an actual SHA-1 collision and it further shows
how GPUs can be used very efficiently for this kind of attack. Based on the state-of-the-art
collision attack on SHA-1 by Stevens from EUROCRYPT 2013, we are able to present new
projections on the computational and financial cost required for a SHA-1 collision computa-
tion. These projections are significantly lower than what was previously anticipated by the
industry, due to the use of the more cost efficient GPUs compared to regular CPUs.

We therefore recommend the industry, in particular Internet browser vendors and Certifica-
tion Authorities, to retract SHA-1 quickly. We hope the industry has learned from the events
surrounding the cryptanalytic breaks of MD5 and will retract SHA-1 before concrete attacks
such as signature forgeries appear in the near future.
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1 Introduction

A cryptographic hash function H is a function that takes an arbitrarily long message M as
input and outputs a fixed-length hash value of size n bits. It is a versatile primitive useful
in many applications, such as building digital signature schemes, message authentication
codes or password hashing functions. One key security feature expected from a crypto-
graphic hash function is collision resistance: it should not be feasible for an adversary to
find two distinct messages M, M that hash to the same value H(M) = H(M) faster than
with a generic algorithm, i.e. with significantly less than 23 calls to the hash function.
A widely used hash function construction is the Merkle-Damgard paradigm [Mer89,
Dam89]: H is built by iterating a compression function h that updates a fixed-size internal
state (also called chaining value) with fixed-size message blocks; the initial chaining value
(IV) is a fixed constant of the hash function. This construction is useful in particular for
the simple security reduction it allows to make: if the compression function is collision-
resistant, then so is the corresponding hash function. This leads to defining variants of
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collision attacks which allow the attacker to choose the IV: a freestart collision is a pair
of different message and IV (C, M), (C', M) such that Ho(M) = Hp(M); semi-freestart

collisions are similar but impose C' = C. It is noteworthy that the Merkle-Damgard se-
curity reduction assumes that any type of collision (freestart or semi-freestart) must be
intractable by the adversary. Thus, a collision attack on the compression function should
be taken very seriously as it invalidates the security reduction coming from the operating
mode of the hash function.

The most famous hash function family, basis for most hash function industry standards,
is undoubtedly the MD-SHA family, which includes notable functions such as MD4, MD5, SHA-1
and SHA-2. This family first originated with MD4 [Riv90] and continued with MD5 [Riv92]
(due to serious security weaknesses [dB91, Dob96] found on MD4 soon after its publication).
Even though collision attacks on the compression function were quickly identified [dB93],
the industry widely deployed MD5 in applications where hash functions were required.
Yet, in 2005, a team of researchers led by Wang [WYO05] completely broke the collision
resistance of MD5, which allowed to efficiently compute colliding messages for the full
hash function. This groundbreaking work inspired much further research on the topic;
in a major development, Stevens et al. [SLAWO07] showed that a more powerful type of
attack (the so-called chosen-prefiz collision attack) could be performed against MD5. This
eventually led to the forgery of a Rogue Certification Authority that in principle completely
undermined HTTPS security [SSAT09]. This past history of cryptanalysis on MD5 is yet
another argument for a very careful treatment of collision cryptanalysis progress: the
industry should move away from weak cryptographic hash functions or hash functions
built on weak inner components (compression functions that are not collision resistant)
before the seemingly theoretic attacks prove to be a direct threat to security (counter-
cryptanalysis [Stel3a] could be used to mitigate some of the risks during the migration).

While lessons should be learned from the case of MD5, it is interesting to observe that
the industry is again facing a similar challenge. SHA-1 [NIS95], designed by the NSA and
a NIST standard, is one of the main hash functions of today, and it is facing important at-
tacks since 2005. Based on previous successful cryptanalysis works [CJ98, BC04, BCJT05]
on SHA-0 [NIS93] (SHA-1’s predecessor, that only differs by a single rotation in the mes-
sage expansion function), a team led again by Wang et al. [WYYO05a] showed in 2005
the very first theoretical collision attack on SHA-1. Unlike the case of MD5, this attack,
while groundbreaking, remains mostly theoretical as its expected cost was evaluated to be
equivalent to 269 calls to the SHA-1 compression function.

Therefore, as a proof of concept, many teams considered generating real collisions for re-
duced versions of SHA-1: 64 steps [DR06] (with a cost of 23% SHA-1 calls), 70 steps [DMRO7]
(cost 2** SHA-1), 73 steps [Grel0] (cost 2°07 SHA-1) and the latest advances for the hash
function reached 75 steps [GA11] (cost 2°77 SHA-1) using extensive GPU computation
power.

In 2013, building on these advances and a novel rigorous framework for analyzing
SHA-1, the current best collision attack on full SHA-1 was presented by Stevens [Stel3b]
with an estimated cost of 26! calls to the SHA-1 compression function. Nevertheless, a
publicly known collision still remains out of reach.

Very recently, collisions on the compression function of SHA-1 reduced to 76 steps (out
of 80) were obtained by using a start-from-the-middle approach and a highly efficient
GPU framework [KPS15]. This required only a reasonable amount of GPU computation
power (less than a week on a single card, equivalent to about 2°0-3 calls to SHA-1 on GPU,
whereas the runtime cost equivalent on regular CPUs is about 249! SHA-1).

Because of these worrisome cryptanalysis advances on SHA-1, one is advised to use
e.g. SHA-2 [NIS02] or the new hash functions standard SHA-3 [NIS15] when secure hashing
is needed. While NIST recommended that SHA-1-based certificates should not be trusted



beyond 2014 [NIS12] (by 2010 for governmental use), the industry actors only recently
started to move away from SHA-1, about a decade after the first theoretical collision
attacks. For example, Microsoft, Google and Mozilla have all announced that their respec-
tive browsers will stop accepting SHA-1 SSL certificates by 2017 (and that SHA-1-based
certificates should not be issued after 2015). These deadlines are motivated by a simple
evaluation of the computational and financial cost required to generate a collision for
SHA-1: in 2012, Bruce Schneier (using calculations by Jesse Walker based on a 20! attack
cost [Stel3b], Amazon EC2 spot prices and Moore’s Law) estimated the cost of running
one SHA-1 collision attack to be around 700,000 US$ in 2015, down to about 173,000 US$
in 2018, which he deemed to be within the resources of criminals [Sch12]. We observe
that while a majority of industry actors already chose to migrate to more secure hashing
algorithms, surveys show that in September 2015 SHA-1 remained the hashing primitive
for about 28.2% of certificate signatures [SSL15].

1.1 Owur contributions

In this article, we give the first colliding pair for the full SHA-1 compression function (see
Table 1-1), which amounts to a freestart collision for the full hash function. This was
obtained at a GPU runtime cost approximately equivalent to 2°7® evaluations of SHA-1.!

The starting point for this attack is the start-from-the-middle approach and the GPU
framework of CRYPTO 2015, which was used to compute freestart collisions on the 76-
step reduced SHA-1 [KPS15]. We improve this by incorporating the auxiliary paths (or
boomerangs) speed-up technique from Joux and Peyrin [JP07]. We also rely on the crypt-
analytic techniques by Stevens [Stel3b] to obtain optimal attack conditions, which required
further refinements for this work.

Table 1-1. A freestart collision for SHA-1. A test program for this colliding pair is available at https:
//sites.google.com/site/itstheshappening/tester.cpp

Message 1
IVi 50 6b 01 78 ff 6d 18 22 91 £d 3a de 38 71 b2 c6 65 ea
M 44 38 [28 a5] ea 3d [£0 86] ea a0 [fa 77] 83 a7 [36

33 24 48 [4d af | 70 2a |aa a3| da b6 |79 d8| a6 9e |2d|

ﬁsszo ed a7| £f fb |52 d3| £f 49 [3f c3]| £f 55 [le]

b| ££f d9 |7f 55| fe ee |2 08| ba £3 |12 08| 86 88 |a9]

Compr(IVi,M;) £0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 Of 4b

Message 2
IV, 50 6b 01 78 ff 6d 18 22 91 fd 3a de 38 71 b2 c6 65 ea
Mo 44 38 [38 81] ea 3d [ec a0| ea a0 [ee 51

33 24 48 |5d ab| 70 2a |b6 6f | da b6 |6d d4

38 20 [£d 13| ff fb |4de ef | £f 49 |3b 7f

ff d9 |[6f 71| fe ee |ee e4 | ba £3 |06 04

Compr(IV2,Ms) £0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 Of 4b

As was mentioned above, previous recommendations on retracting SHA-1 were based
on estimations of the resources needed to find SHA-1 collisions. These consist both in the

! Which from previous experience is about a factor 2 higher than the runtime cost in equivalent number
of SHA-1 evaluations on regular CPUs.
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time necessary to mount an attack, for a given computational power, as well as the cost of
building and maintaining this capability, or of renting the equipment directly on a platform
such as Amazon EC2 [Ser16]. In that respect, our freestart collision attack can be run in
about 9 to 10 days on average on a cluster with 64 GeForce GTX970 GPUs, or by renting
GPU time on Amazon EC2 for about 2K US$.? Based on this experimental data and the
2013 state-of-the-art collision attack, we can project that a complete SHA-1 collision would
take between 49 and 78 days on a 512 GPU cluster, and renting the equivalent GPU time
on EC2 would cost between 75K US$ and 120K US$ and would plausibly take at most a
few months.

Although freestart collisions do not directly translate to collisions for the hash function,
they directly invalidate the security reduction of the hash function to the one of the
compression function. Hence, obtaining a concrete example of such a collision further
highlights the weaknesses of SHA-1 and existing users should quickly stop using this hash
function. In particular, we believe that our work shows that the industry’s plan to move
away from SHA-1 in 2017 might not be soon enough.

Outline. In Section 2, we provide our analysis and recommendations regarding the time-
line of migration from SHA-1 to a secure hash function. In Section 3 we give a short
description of the SHA-1 hash function and our notations. In Section 4, we explain the
structure of our cryptanalysis and the various techniques used from a high level point
of view, and we later provide in Section 5 all the details of our attack for the interested
readers.

2 Recommendations for the swift removal of SHA-1

Our work allowed to generate a freestart collision for the full SHA-1, but a collision for the
entire hash algorithm is still unknown. There is no known generic and efficient algorithm
that can turn a freestart collision into a plain collision for the hash function. However, the
advances we have made do allow us to precisely estimate and update the computational and
financial cost to generate such a collision with latest cryptanalysis advances [Stel3b] (the
computational cost required to generate such a collision was actually a recurrent debate in
the academic community since the first theoretical attack from Wang et al. [WYYO05al).

Schneier’s projections [Sch12] on the cost of SHA-1 collisions in 2012 (on EC2: ~700K
US$ by 2015, ~173K US$ by 2018 and ~43K US$ by 2021) were based on (an early
announcement of) [Stel3b]. As mentioned earlier, these projections have been used to
establish the timeline of migrating away from SHA-1-based signatures for secure Internet
websites, resulting in a migration by January 2017 —one year before Schneier estimated
that a SHA-1 collision would be within the resources of criminal syndicates.

However, as remarked in [KPS15] and now further improved in this article thanks to
the use of boomerang speed-up techniques [JP07], GPUs are much faster for this type of
attacks (compared to CPUs) and we now precisely estimate that a full SHA-1 collision
should not cost more than between 75K and 120K US$ by renting Amazon EC2 cloud
over a few months at the time of writing, in early autumn 2015. Our new GPU-based
projections are now more accurate and they are significantly below Schneier’s estimations.
More worrying, they are theoretically already within Schneier’s estimated resources of
criminal syndicates as of today, almost two years earlier than previously expected, and
one year before SHA-1 being marked as unsafe in modern Internet browsers. Therefore, we

2 This is based on the spot price for Amazon EC2 GPU Instance Type ‘g2.8xlarge’, featuring 4 GPUs,
which is about 0.50 US$ per hour as of October 2015. These four GPU cards are comparable to NVidia
Tesla cards and actually contain 2 physical GPU chips each. But due to their lower clock speed and
slightly lower performance we estimate that each card is comparable to about one GTX970s.



believe that migration from SHA-1 to the secure SHA-2 or SHA-3 hash algorithms should
be done sooner than previously planned.

Note that it has previously been shown that a more advanced so-called chosen-prefix
collision attack on MD5 allowed the creation of a rogue Certification Authority undermin-
ing the security of all secure websites [SSAT09]. Collisions on SHA-1 can result in e.g.
signature forgeries, but do not directly undermine the security of the Internet at large.
More advanced so-called chosen-prefix collisions [SSAT09] are significantly more threat-
ening, but currently much costlier to mount. Yet, given the lessons learned with the MD5
full collision break, it is not advisable to wait until these become practically possible.

At the time of the submission of this article in October 2015, we learned that in an
ironic turn of events the CA/Browser Forum?® was planning to hold a ballot to decide
whether to extend issuance of SHA-1 certificates through the year 2016 [Forl5a]. With our
new cost projections in mind, we strongly recommended against this extension and the
ballot was subsequently withdrawn [Forl5b]. Further action is also being considered by
major browser providers such as Microsoft [Micl5] and Mozilla [Moz15] in speeding up
the removal of SHA-1 certificates.

3 Preliminaries

3.1 Description of SHA-1

We start this section with a brief description of the SHA-1 hash function. We refer to the
NIST specification document [NIS95] for a more thorough presentation. SHA-1 is a hash
function from the MD-SHA family which produces digests of 160 bits. It is based on the
popular Merkle-Damgard paradigm [Dam89, Mer89], where the (padded) message input
to the function is divided into k blocks of a fixed size (512 bits in the case of SHA-1). Each
block is fed to a compression function A which then updates a 160-bit chaining value cv;
using the message block m;1, i.e. cviy1 = h(cv;, mi+1). The initial value cvg = IV is a
predefined constant and cvy is the output of the hash function.

Similarly to other members of the MD-SHA family, the compression function h is built
around an ad hoc block cipher F used in a Davies-Meyer construction: cv; 11 = E(m;11, cv;)+
cv;, where E(x,y) is the encryption of the plaintext y with the key x and “+” denotes
word-wise addition in Z /232 Z. The block cipher itself is an 80-step (4 rounds of 20 steps
each) five-branch generalized Feistel network using an Add-Rotate-Xor “ARX” step func-
tion. The internal state consists in five 32-bit registers (A;, B;, C;, D;, F;); at each step, a
32-bit extended message word W; is used to update the five registers:

Az’+1 = (AZ < 5) + fz(Bz, Cz,Dz) + B+ K, +W,;

Biy1 = A;
Cit1 =B;>>2
Diy1 =G
Eit1 =D

where K; are predetermined constants and f; are Boolean functions (see Table 3-1 for
their specifications). As all updated registers but A;;1 are just rotated copies of another,
it is possible to equivalently express the step function in a recursive way using only the
register A:

Aip1 = (A K 5) + fi(Aic1, Aia > 2, A 3> 2) + (Aima > 2) + K + W,

3 The CA/Browser Forum is the main association of industries regulating the use of digital certificates
on the Internet.



Table 3-1. Boolean functions and constants of SHA-1

round step 1 fi(B,C,D) K;
1 0<i<20 fir = (BAC)® (BA D) 0x5a827999
2 20 <1 <40 fxorR=B&C®D Ox6ed6ebal
3 40<i<60 fuas=(BAC)S(BAD)&(CAD) 0x8fabbcdc
4 60 <i< 80 fxorR=B&C&D Oxca62c1d6

Finally, the extended message words W; are computed from the 512-bit message block,
which is split into sixteen 32-bit words My, ..., Mi5. These sixteen words are then ex-
panded linearly into the eighty 32-bit words W; as follows:

. _ | M. for 0 <i <15
| Witz @ Wiig @ Wim1a @ Wi_i6) <€ 1, for 16 <i < 79

The step function and the message expansion can both easily be inverted.

3.2 Differential collision attacks on SHA-1

We now introduce the main notions used in a collision attack on SHA-1 (and more generally
on members of the MD-SHA family).

Background. In a differential collision attack on a (Merkle-Damgard) hash function, the
goal of the attacker is to find a high-probability differential path (the differences being
on the message, and also on the IV in the case of a freestart attack) which entails a zero
difference on the final state of the function (i.e. the hash value). A pair of messages (and
optionally IVs) following such a path indeed leads to a collision.

In the case of SHA-1 (and more generally ARX primitives), the way of expressing
differences between messages is less obvious than for e.g. bit or byte-oriented primitives. It
is indeed natural to consider both “XOR differences” (over F4) and “modular differences”
(over Z/2"Z) as both operations are used in the function. In practice, the literature on
SHA-1 uses several hybrid representations of differences based on signed XOR differences.
In its most basic form, such a difference is similar to an XOR difference with the additional
information of the value of the differing bits for each message (and also of some bits equal
in the two messages), which is a “sign” for the difference. This is an important information
when one works with modular addition as the sign impacts the (absence of) propagation
of carries in the addition of two differences. Let us for instance consider the two pairs of
words a = 11011000001, & = 11011000000, and b = 10100111000, b = 10100111001;
the XOR differences (a @ a) and (b @ b) are both 00000000001, (which may be written
.......... x), meaning that (a @ b) = (a @ b). On the other hand, the signed XOR
difference between a and @ may be written .......... - to convey the fact that they are
different on their lowest bit and that the value of this bit is 1 for a (and thence 0 for
a); similarly, the signed difference between b and b may be written .......... +, which
is a difference in the same position but of a different sign. From these differences, we can
deduce that (a + b) = (a + b) because differences of different signs cancel; if we were to
swap the values b and b, both differences on a and b would have the same sign and indeed
we would have (a + b) # (a + b) (though (a & b) and (@ & b) would still be equal). It is
possible to extend signed differences to account for more generic combinations of possible
values for each message bit; this was for instance done by De Canniere and Rechberger to
aid in the automatic search of differential paths [DR06]. Another possible extension is to



consider relations between various bits of the (possibly rotated) state words; this allows
to efficiently keep track of the propagation of differences through the step function. Such
differences are for instance used by Stevens [Stel3b], and also in this work (see Figure 5-2).

The structure of differential attacks on SHA-1 evolved to become quite specific. At a
high level, they consist of: 1. a non-linear differential path of low probability; 2. a linear
differential path of high probability; 3. accelerating techniques.

The terms non-linear and linear refer to how the paths were obtained: the latter is
derived from a linear (over F32) modelling of the step function. This kind of path is used
in the probabilistic phase of the attack, where one simply tries many message pairs in
order to find one that indeed “behaves” linearly. Computing the exact probability of this
event is however not easy, although it is not too hard to find reasonable estimates. This
probability is the main factor determining the final complexity of the attack.

The role of a non-linear path is to bootstrap the attack by bridging a state with no
differences (the IV) with the start of the linear differential path?. In a nutshell, this is
necessary because these paths do not typically lie in the kernel of the linearized SHA-1;
hence it is impossible to obtain a collision between two messages following a fully linear
path. This remains true in the present case of a freestart attack, even if the non-linear
path now connects the start of the linear path with an IV containing some differences.
Unlike the linear path, the non-linear one has a very low probability of being followed by
random messages. However, the attacker can fully choose the messages to guarantee that
they do follow the path, as he is free to set the 512 bits of the message. Hence finding
conforming message pairs for this path effectively costs nothing in the attack.

Finally, the role of accelerating techniques is to find efficient ways of using the freedom
degrees remaining after a pair following the non-linear path has been found, in order to
delay the effective moment where the probabilistic phase of the attack starts.

We conclude this section with a short discussion of how to construct these three main
parts of a (freestart) collision attack on SHA-1.

Linear path; local collisions. The linear differential paths used in collision attacks are
built around the concept of local collision, introduced by Chabaud and Joux in 1998 to
attack SHA-0. The idea underlying a local collision is first to introduce a difference in
one of the intermediate state words of the function, say A;, through a difference in the
message word W;_;. For an internal state made of j words (j = 5 in the case of SHA-O
or SHA-1), the attacker then uses subsequent differences in (possibly only some of) the
message words W _; ;1) in order to cancel any contribution of the difference in A4; in
the computation of a new internal state A;41. 4, which will therefore have no differences.
The positions of these “correcting” differences are dictated by the step function, and there
may be different options depending on the used Boolean function, though originally (and
in most subsequent cases) these were chosen according to a linearized model (over F32) of
the step functions.

Local collisions are a fit basis to generate differential paths of good probability. The
main obstacle to do this is that the attacker does not control all of the message words,
as some are generated by the message expansion. Chabaud and Joux showed how this
could be solved by chaining local collisions along a disturbance vector (DV) in such a way
that the final state of the function contains no difference and that the pattern of the local

4 For the sake of simplicity, we ignore here the fact that a collision attack on SHA-1 usually uses two
blocks, with the second one having differences in its chaining value. The general picture is actually the
following: once a pair of messages following the linear path PT is found, the first block ends with a
signed difference +A4; the sign of the linear path is then switched for the second block to become P~
and following this path results in a difference —A; the feedforward then cancels both differences and
yields a collision.



collisions is compatible with the message expansion. The disturbance vector just consists
of a sparse message (of sixteen 32-bit words) that has been expanded with the linear
message expansion of SHA-1. Every “one” bit of this expanded message then marks the
start of a local collision (and expanding all the local collisions thus produces a complete
linear path).

Each local collision in the probabilistic phase of the attack (roughly corresponding to
the last three rounds) increases the overall complexity of the attack, hence one should use
disturbance vectors that are sparse over these rounds. Initially, the evaluation of the prob-
ability of disturbance vector candidates was done mostly heuristically, using e.g. the Ham-
ming weight of the vector ([BC04, PRR05, RO05, MP05, JP05]), the sum of bit conditions
for each local collision independently (not allowing carries) ([WYY05b, YIN'08]), and the
product of independent local collision probabilities (allowing carries) ([MPRR06, Man11}).
Manuel [Man08, Man11] noticed that all disturbance vectors used in the literature belong
to two classes I(K,b) and II(K,b). Within each class all disturbance vectors are forward
or backward shifts in the step index (controlled by K) and/or bitwise cyclic rotations
(controlled by b) of the same expanded message. We will use this notation through the
remainder of this article.

Manuel also showed that success probabilities of local collisions are not always indepen-
dent, causing biases in the above mentioned heuristic cost functions. This was later resolved
by Stevens using a technique called joint local-collision analysis (JLCA)[Stel3b, Stel2],
which allows to analyze entire sets of differential paths over the last three rounds that
conform to the (linear path entailed by the) disturbance vector. This is essentially an
exhaustive analysis taking into account all local collisions together, using which one can
determine the highest possible success probability. This analysis also produces a minimal
set of sufficient conditions which, when all fulfilled, ensure that a pair of messages follows
the linear path; the conditions are minimal in the sense that meeting all of them hap-
pens with this highest probability that was computed by the analysis. Although a direct
approach is clearly unfeasible (as it would require dealing with an exponentially growing
amount of possible differential paths), JLCA can be done practically by exploiting the
large amount of redundancy between all the differential paths to a very large extent.

Non-linear differential path. The construction of non-linear differential paths was
initially done by hand by Wang, Yin and Yu in their first attack on the full SHA-1
[WYYO05a]. Efficient algorithmic construction of such differential paths was later proposed
in 2006 by De Canniere and Rechberger, who introduced a guess-and-determine approach
[DRO6]. A different approach based on a meet-in-the-middle method was also proposed by
Stevens et al. [Stel2, HC].

Accelerating techniques. For a given differential path, one can derive explicit conditions
on state and message bits which are sufficient to ensure that a pair of messages follows
the path. This lets the collision search to be entirely defined over a single compression
function computation. Furthermore, they also allow detection of “bad” message pairs a
few steps earlier compared to computing the state and verifying differences, allowing to
abort computations earlier in this case.

An important contribution of Wang, Yin and Yu was the introduction of powerful
message modification techniques, which followed an earlier work of Biham and Chen who
introduced neutral bits to produce better attacks on SHA-0 [BCO04]. The goal of both
techniques is for the attacker to make a better use of the available freedom in the message
words in order to decrease the complexity of the attack. Message modifications try to
correct bad message pairs that only slightly deviate from the differential path, and neutral
bits try to generate several good message pairs out of a single one (by changing the value



of a bit which does not invalidate nearby sufficient conditions with good probability). In
essence, both techniques allow to amortize part of the computations, which effectively
delays the beginning of the purely probabilistic phase of the attack.

Finally, Joux and Peyrin showed how to construct powerful neutral bits and message
modifications by using auxiliary differential paths akin to boomerangs [JP07], which allow
more efficient attacks. In a nutshell, a boomerang (in collision attacks) is a small set of
bits that together form a local collision. Hence flipping these bits together ensures that
the difference introduced by the first bit of the local collision does not propagate to the
rest of the state; if the initial difference does not invalidate a sufficient condition, this local
collision is indeed a neutral bit. Yet, because the boomerang uses a single (or sometimes a
few) local collision, more differences will actually be introduced when it goes through the
message expansion. The essence of boomerangs is thus to properly choose where to locate
the local collisions so that no differences are introduced for the most steps possible.

4 Attack overview

In this section we provide an overview of how our attack was constructed. At a high level,
it consists of the following steps:

1. Disturbance vector selection: We need to select the best disturbance vector for our
attack. This choice is based on results provided by joint local collision analysis (JLCA),
taking into account constraints on the number and position of sufficient conditions on
the IV implied by the disturbance vector. We explain this in Section 4.1.

2. Finding optimal attack conditions: Having selected a disturbance vector, we need to
determine a set of attack conditions over all steps consisting of sufficient conditions
for state bits up to some step, augmented by message bit relations. We use non-linear
differential path construction methods to determine conditions within the first round.
Using JLCA we derive an optimal complete set of attack conditions that given the
first round path leads to the highest possible success probability over all steps, yet
minimizes the number of conditions within this model. We detail this in Section 4.2.

3. Finding and analyzing boomerangs and neutral bits: To speed up the freestart collision
attack, we exploit advanced message modification techniques such as (multiple) neutral
bits and boomerangs. In order to find suitable candidates, we sample partial solutions
fulfilling the above attack conditions up to an early step. The samples are used to test
many potential boomerangs and neutral bits, and only ones of good quality and that
do not introduce contradictions will be used. In particular, no boomerang or neutral
bit may invalidate the attack conditions of the so-called base solution (see below,
includes all message bit relations) with non-negligible probability. We also use sampling
to estimate the probability of interaction between boomerang and neutral bits with
particular sufficient conditions, in the forward and backward direction. Although we do
not allow significant interaction in the backward direction, we use these probabilities
to determine at which step the boomerang or neutral bit are used. This is explained
in Section 4.3.

4. Base solution generation: Before we can apply neutral bits and boomerangs, we first
need to compute a partial solution over 16 consecutive steps. Only this partial solution
can then be extended to cover more steps by using neutral bits and boomerangs. We
call such a solution a base solution; it consists of state words A_s, ..., A;7 and message
words Wy, ..., Wig. The cost for generating base solutions is relatively low compared
to the overall attack cost, therefore it is not heavily optimized and the search is run
on regular CPUs. This is further explained in Section 4.4.

5. Application of neutral bits and boomerangs on GPU: We extend each base solution
into solutions over a larger number of steps by successively applying neutral bits and



Table 4-1. Disturbance vector analysis. For each DV, under c24 50y, we list the negative log, of the success
probability over steps [24,80) assuming that all sufficient conditions up to A4 have been satisfied. The
columns cg3 and cg2 list the number of conditions on Aa4 (in step 23) and Ass (in step 22), respectively.
The final column represents an estimated runtime in days on a cluster consisting of 64 GTX970s based on
C[24,80) -

DV Cost c[24,80) Cost ca3 Cost c22 Days on 64 GPUs

1(48,0) 61.6 1 3 39.1
1(49,0) 60.5 3 2 18.3
1(50,0) 61.7 2 1 41.8
1(51,0) 62.1 1 2 55.7
1(48,2) 64.4 2 281.9
1(49,2) 62.8 2 3 90.4
11(46,0)  64.8 1 0 369.5
11(50,0)  59.6 1 2 9.9
II(51,0)  57.5 3 3 2.2
11(52,0)  58.3 3 3 4.1
11(53,0)  59.9 3 2 118
11(54,0)  61.3 2 1 31.4
11(55,0)  60.7 1 3 21.0
11(56,0)  58.9 3 2 6.3
(57,00  59.3 2 3 7.9
11(58,0)  59.7 3 2 10.5
11(59,0)  61.0 3 2 26.2
11(49,2)  61.0 2 3 26.1
11(50,2)  59.4 3 2 8.7
11(51,2)  59.4 2 8.5

boomerangs and verifying sufficient conditions. Once all neutral bits and boomerangs
have been exploited, the remainder of the steps have to be fulfilled probabilistically.
This is computationally the most intensive part, and it is therefore implemented on
GPUs that are significantly more cost-efficient than CPUs, using the highly efficient
framework introduced by Karpman, Peyrin and Stevens [KPS15]. More details are
provided in Section 4.5.

All these steps strongly build upon the continuous series of papers that have advanced
the state-of-the-art in SHA-1 cryptanalysis, yet there are still small adaptions and improve-
ments used for this work. We now describe all these points in more details.

4.1 Disturbance vector selection

It is possible to compute exactly the highest success probability over the linear part by
using joint-local collision analysis [Stel3b]. By further using the improvements described
in [KPS15], one can restrict carries for the steps where sufficient conditions are used and
obtain the sufficient conditions for those steps immediately.

The number of sufficient conditions at the beginning of round 2 and the associated
highest success probability for the remaining steps provide insight into the attack com-
plexity under different circumstances. In Table 4-1 we give our analysis results for various
DVs, listing the negative logy of the success probability over steps [24, 80) assuming that

10



all sufficient conditions up to As4 have been satisfied; we also include the number of con-
ditions on Ass and Ass. The final column represents an estimated runtime in days on
a cluster consisting of 64 GTX970s based on ¢4 80), by multiplying the runtime of the
76-step freestart GPU attack [KPS15] with the difference between the costs ¢ja4 50 for the
76-step attack and the DVs in the table.

Considering Table 4-1, the obvious choice of DV to mount a full collision attack on
SHA-1 would be II(51,0). However in the present case of a freestart attack additional
constraints need to be taken into account. In particular the, choice of the DV determines
the possible differences in the IV, as these have to cancel the differences of the final
state (Asgo, Bso, Cso, Dso, Fso). This impacts the estimated runtime as follows: if there are
sufficient conditions present on Ay then the estimated runtime in the last column should
be multiplied by 2°3. Indeed, the 76-step freestart attack did not have any sufficient
conditions on Ay and could thus ignore step 0, leading to an offset of one in the probabilistic
phase. Moreover, if the IV differences are denser or ill-located (compared to the 76-step
attack), then more neutral bits and boomerangs are likely to interact badly with the
sufficient conditions on the IV, when propagated backwards. If only few neutral bits and
boomerangs can be used for a given DV, the cost of the attack would rise significantly. The
number of conditions co3 and cag for each DV allow to estimate how much more expensive
a vector will be in the case where the probabilistic phase effectively starts sooner than in
step Aos as for the 76-step attack.

Taking the freestart setting into account, and with a preliminary analysis of available
neutral bits and boomerangs, the best option eventually seemed to be I1(59,0). This DV
is actually a downward shift by four of I1(55,0), which was used in the 76-step attack.
Consequently, this choice leads to the same IV sufficient conditions as in the latter.

4.2 Finding optimal attack conditions

Using joint local collision analysis, we could obtain sufficient conditions for the beginning
of the second round and IV differences that are optimal (i.e., with the highest probability
of cancelling differences in the final state). What remains to do is to construct a non-linear
differential path for the first round. For this, we used the meet-in-the-middle method using
the public HashClash implementation [HC]. Although we tried both non-linear differen-
tial path construction methods, i.e. guess-and-determine, using our own implementation,
and the meet-in-the-middle method, we have found that the meet-in-the-middle approach
generally resulted in fewer conditions. Furthermore, the control on the position of these
conditions was greater with the meet-in-the-middle approach.

This differential path for the first round was then used as input for another run of
joint local collision analysis. In this case the run was over all 80 steps, also replacing the
differences assumed from the disturbance vector with the differences in the state words
coming from the non-linear path of the first round; switching the sign of a difference was
also allowed when it resulted in a sparser overall difference. In this manner joint local
collision analysis is able to provide a complete set of attack conditions (i.e., sufficient
conditions for the state words and linear relations on message bits) that is optimized for
the highest success probability over the last three rounds, all the while minimizing the
amount of conditions needed.

In fact, JLCA outputs many complete sets that only vary slightly in the signing of
the differences. For our selected disturbance vector I1(59,0) it turned out that this direct
approach is far too costly and far too memory-consuming, as the amount of complete sets
grows exponentially with the number of steps for which we desired sufficient conditions
sets. We were able to improve this by introducing attack condition classes, where two sets
of sufficient conditions belong to the same class if their sufficient conditions over the last
five state words are identical. By expressing the attack condition classes over steps |0, i
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as extensions of attack conditions classes over steps [0,7 — 1], we only have to work with
a very small number of class representatives at each step, making it very practical.

Note that we do not exploit this to obtain additional freedom for the attack yet,
However, it allows us to automatically circumvent random unpredictable contradictions
between the attack conditions in the densest part, by randomly sampling complete sets
until a usable one is found. We previously used the guess-and-determine approach to
resolve such contradictions by changing signs, however this still required some manual
interaction.

The resulting sufficient conditions on the state are given in the form of the differential
path in Figure 5-1 (using the symbols of Figure 5-2) and the message bit relations are
given in Figure 5-5 through Figure 5-7.

4.3 Finding and analyzing neutral bits and boomerangs

Generating and analyzing the boomerangs and neutral bits used in the attack was done
entirely automatically as described below. This process depends on a parameter called the
main block offset (specific to a freestart attack) that determines the offset of the message
freedom window used during the attack. We have selected a main block offset of 5 as this
led to the best distribution of usable neutral bits and boomerangs. This means that all
the neutral bits and boomerangs directly lead to changes in the state from steps 5 up to
20, and that these changes propagate to steps 4 down to 0 backwards and steps 21 up to
79 forwards.

Because the dense area of the attack conditions may implicitly force certain other
bits to specific values (resulting in hidden conditions), we use more than 4000 sampled
solutions for the given attack conditions (over steps 1 up to 16) in the analysis. The 16
steps fully determine the message block, and also verify the sufficient conditions in the IV
and in the dense non-linear differential path of the first round. It should be noted that
for this step it is important to generate every sample independently. Indeed using e.g.
message modification techniques to generate many samples from a single one would result
in a biased distribution where many samples would only differ in the last few steps.

Boomerang analysis. We analyze potential boomerangs that flip a single state bit
together with 3 or more message bits. Each boomerang should be orthogonal to the attack
conditions, i.e., the state bit should be free of sufficient conditions, while flipping the
message bits should not break any of the message bit relations (either directly or through
the message propagation). Let ¢ € [6,16],b € [0, 31] be such that the state bit A;[b] has no
sufficient condition.

First, we determine the best usable boomerang on A;[b] as follows. For every sampled
solution, we flip that state bit and compute the signed bit differences between the resulting
and the unaltered message words Wi, ..., Way. We verify that the boomerang is usable by
checking that flipping its constituting bits breaks none of the message bit relations. We
normalize these signed bit differences by negating them all when the state bit is flipped
from 1 to 0. In this manner we obtain a set of usable boomerangs for A;[b]. We determine
the auxiliary conditions on message bits and state bits and only keep the best usable
boomerang that has the fewest auxiliary conditions.

Secondly, we analyze the behaviour of the boomerang over the backwards steps. For
every sampled solution, we simulate the application of the boomerang by flipping the bits
of the boomerang. We then recompute steps 4 to 0 backwards and verify if any sufficient
condition on these steps is broken. Any boomerang that breaks any sufficient conditions
on the early steps with probability higher than 0.1 is dismissed.

Thirdly, we analyze the behaviour of the boomerang over the forward steps. For every
sampled solution, we simulate the application of the boomerang by flipping its constituting
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bits. We then recompute steps 21 up to 79 forwards and keep track of any sufficient
condition for the differential path that becomes violated. A boomerang will be used at
step ¢ in our attack if it does not break any sufficient condition up to step ¢ — 1 with
probability more than 0.1.

Neutral bits analysis. The neutral bit analysis uses the same overall approach as the
boomerangs, with the following changes. After boomerangs are determined, their con-
ditions are added to the previous attack conditions and used to generate a new set of
solution samples. Usable neutral bits consist of a set of one or more message bits that
are flipped simultaneously. However, unlike for boomerangs, the reason for flipping more
than one bit is to preserve message bit relations, and not to control the propagation of a
state difference. Let t € [5,20],b € [0,31] be a candidate neutral bit; flipping W;[b] may
possibly break certain message bit relations. We express each message bit relation over
Ws, ..., Wog using linear algebra, and use Gaussian elimination to ensure that each of them
has a unique last message bit W;[j] (i.e. where i x 32 4 j is maximal). For each relation
involving Wi[b], let W;[j] be its last message bit. If (i, j) equals (¢,b) then this neutral bit
is not usable (indeed, it would mean that its value is fully determined by earlier message
bits). Otherwise we add bit Wj;[j] to be flipped together with W;[b] as part of the neutral
bit. Similarly to boomerangs, we dismiss any neutral bit that breaks sufficient conditions
backwards with probability higher than 0.1. The step ¢ in which the neutral bit is used is
determined in the same way as for the boomerangs.

The boomerangs we have selected are given in Figure 5-4 and the neutral bits are
listed in Figure 5-3. In the case of the latter, only the first neutral bit is given and not the
potential corrections for the message bit relations.

4.4 Base solution generation on CPU

We are now equipped with a set of attack conditions, including some that were added by the
selected boomerangs and neutral bits. However, before these can be applied, we first need
to compute partial solutions over 16 consecutive steps. Since the selected neutral bits and
boomerangs cannot be used to correct the sufficient conditions on the IV, these have to be
pre-satisfied as well. Therefore, we compute what we call base solutions over steps 1,...,16
that fulfill all state conditions on A_4, ..., A;7 and all message bit relations. A base solution
itself consists of state words A_s, ..., A17 and message words W1, ..., Wi (although the
implementation of the GPU step implies that the message words are translated to the
equivalent message words Wi, ..., Wao with the main block offset of 5).

The C++ code generating base solutions is directly compiled from the attack and aux-
iliary conditions. In this manner, all intermediate steps and condition tables can be hard-
coded, and we can apply some static local optimizations eliminating unnecessary compu-
tations where possible. However, we do not exploit more advanced message modification
techniques within these first 16 steps yet.

Generating the base solutions only represents a small part of the cost of the overall
attack, and it is run entirely on CPU. Although theoretically we need only a few thousand
base solutions to be successful given the total success probability over the remaining steps
and the remaining freedom degrees yet to be used, in practice we need to generate a small
factor more to ensure that all GPUs have enough work.

4.5 Applying neutral bits and boomerangs on GPU

We now describe the final phase of the attack, which is also the most computationally
intensive; as such, it was entirely implemented on GPUs. In particular, we used 65 recent
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Nvidia GTX970 [NVI] GPUs that feature 1664 small cores operating at a clock speed of
about 1.2GHz; each card cost about 350 US$ in 2015. 5 In [KPS15], the authors evaluate
a single GTX970 to be worth 322 CPU cores® for raw SHA-1 operations, and about 140
cores for their SHA-1 attack.

We make use of the same efficient framework for Nvidia GPUs [KPS15]. This makes use
of the CUDA toolkit that provides programming extensions to C and C++ for convenient
programming. For each step of SHA-1 wherein we use neutral bits and boomerangs, there
will be a separate GPU-specific C++ function. Each function will load solutions up to that
step from a global cyclic buffer; extend those solutions using the freedom for that step
by triggering the available neutral bits or boomerangs; verify the sufficient conditions;
and finally save the resulting partial solution extended by one step in the next global
cyclic buffer. The smallest unit that can act independently on Nvidia GPUs is the warp,
which consists of 32 threads that can operate on different data, but should execute the
same instruction for best performance. When threads within a warp diverge onto differ-
ent execution paths, these paths are executed serially, not in parallel. In the framework,
the threads within each warp will agree on which function (thus which step) to execute
together, resulting in reads, computations, and conditional writes that are coherent be-
tween all threads of the warp. We refer the reader to the original paper introducing this
framework for a more detailed description [KPS15].

The exact details of which neutral bits and which boomerangs are used for each step
are given in Section 5.

In the probabilistic phase, after all freedom degrees have been exhausted, we can verify
internal state collisions that should happen after steps 39 and 59 (for a message pair that
follows the differential path), as these are steps with no active differences in the disturbance
vector. These checks are still done on the GPU. Solutions up to Aggp are passed back to the
CPU for further verification to determine if a complete freestart collision has been found.

We would like to note that in comparison with the attack on 76 steps, this work
introduces boomerangs and has a slightly bigger count of neutral bits (60 v. 51). As a
result, this required to use more intermediate buffers, and consequently a slightly more
careful management of the memory. Additionally, in this work there is a relatively high
proportion of the neutral bits that need additional message bits to be flipped to ensure
no message bit relation is broken, whereas this only happens twice in the 76-step attack.
These two factors result in an attack that is slightly more complex to implement, although
neither point is a serious issue.

5 Attack details

5.1 Sufficient conditions

We give a graphical representation of the differential path used in our attack up to step 28
in Figure 5-1, consisting of sufficient conditions for the state, and the associated message
signed bit differences. The meaning of the bit condition symbols are defined in Figure 5-2.
Note that the signs of message bit differences are enforced through message bit relations.
All message bit relations used in our attack are given in Figure 5-5 through Figure 5-7.
The remainder of the path can easily be determined by linearization of the step function
given the differences in the message.

5.2 The neutral bits

We give here the list of the neutral bits used in our attack. There are 60 of them over the
7 message words Wi4 to Woq, distributed as follows:

> With the right motherboard one can place up to 4 such GPUs on a single machine.
5 Intel Haswell Core-i5 3.2GHz CPU.
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Fig. 5-1. The differential path used in the attack up to step 28. The meaning of the different symbols is
given in Figure 5-2

W4t 6 neutral bits at bit positions (starting with the least significant bit (LSB) at
zero) 5,7,8,9,10,11

Wis: 11 neutral bits at positions 4,7,8,9,10,11,12,13,14,15,16

Wie: 9 neutral bits at positions 8,9,10,11,12,13,14,15,16

Wi7: 10 neutral bits at positions 10,11,12,13,14,15,16,17,18,19

Wis: 11 neutral bits at positions 4,6,7,8,9,10,11,12,13,14,15

Wig: 8 neutral bits at positions 6,7,8,9,10,11,12,14

Wao: 5 neutral bits at positions 6,11,12,13,15

We give a graphical representation of the position of these neutral bits in Figure 5-3.

Not all of the neutral bits of the same word (say W14) are used at the same step during

the attack. Their repartition in that respect is as follows

Bits neutral up to step 18 (excluded): W14[8,9,10,11], W15[13,14,15,16]
Bits neutral up to step 19 (excluded): Wi4[5,7], W15[8,9,10,11,12], W15[12,13,14,15,16]
Bits neutral up to step 20 (excluded): Wi5[4,7,8,9], W14[8,9,10,11,12], W17[12,13,14,
15,16]
Bits neutral up to step 21 (excluded): W17[10,11,12,13], Wi5[15]

( : W1g[9,10,11,12,13,14], W1g[10,14]

( : Wis[4,6,7,8], Wi9[9,11,12], Woo[15]
( 9

[

Bits neutral up to step 22 (excluded

Bits neutral up to step 23 (excluded

NEPANEANE NG

Bits neutral up to step 24 (excluded): Wig[6,7,8], Wag[11,12,13]
Bit neutral up to step 25 (excluded): Wag[7]

One should note that this list only includes a single bit per neutral bit group. As we
mentioned in the previous section, some additional flips may be needed in order to preserve
message bit relations.
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Fig. 5-3. The 60 neutral bits. An “x” represents the presence of a
thereof. The LSB position is the rightmost one.

5.3 The boomerangs

We finally give the boomerangs used in the attack, which are regrouped in two sets of
two. The first one first introduces a difference in the message on word Wig; as it does not
significantly impact conditions up to step 27, it is used to increase the number of partial
solutions Asg that are generated. The second set first introduces a difference on word Wiy,
and is used to generate partial solutions at A3y. More precisely, the four boomerangs have
their first differences at bits 7,8 of Wig and 8,9 of Wy;. In Figure 5-4, we give a graphical
representation of the complete set of message bits to be flipped for each boomerang. One

neutral bit, and a “.” the absence

can see that these indeed follow the pattern of a local collisions.

Fig. 5-4. The local collision patterns for each of the four boomerangs. The position of the first difference to
be introduced is highlighted with a capital letter; the correcting differences must then have a sign different

.............. BA ........
........ ba....D C.......
........ ..dc.
................ - DN
................ ba......
................ .dc.....

from this one. Note that boomerang “A” uses one more difference than the others.
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Fig. 5-5. The message bit-relations used in the attack.
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Fig. 5-6. The message bit-relations used in the attack for words Wy to Wsg (graphical representation). A
“0” or “1” character represents a bit unconditionally set to 0 or 1. A pair of two letters x means that the
two bits have the same value. A pair of two letters z and X means that the two bits have different values.
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Fig. 5-7. The message bit-relations used in the attack for words Wiy to Wrg (graphical representation,
continued). Non-alphanumeric symbols are used as shorthand for bit positions with more than one relation.
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Software disclosure policy

To allow verification and improve understanding of our new results, we intend to release
our engineered freestart attack code for graphic cards at https://sites.google.com/
site/itstheshappening/.

However, this source code does not directly enable the engineering of a SHA-1 collision
attack. Any cryptanalytic tools needed for engineering a full SHA-1 collision attack will
be released independently in a responsible manner.
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