Texts in Theoretical Computer Science.
An EATCS Series

Series editors

Monika Henzinger, Faculty of Science, Universitit Wien, Wien, Austria

Juraj Hromkovi¢, Department of Computer Science, ETH Ziirich, Ziirich,
Switzerland

Mogens Nielsen, Department of Computer Science, Aarhus Universitet, Denmark
Grzegorz Rozenberg, Leiden Centre of Advanced Computer Science, Leiden,
The Netherlands

Arto Salomaa, Turku Centre of Computer Science, Turku, Finland

More information about this series at http://www.springer.com/series/3214

Daniel Kroening - Ofer Strichman

Decision Procedures
An Algorithmic Point of View

Second Edition

@ Springer

Daniel Kroening Ofer Strichman

Computing Laboratory Information Systems Engineering
University of Oxford The William Davidson Faculty of Industrial
Oxford Engineering and Management
UK Technion — Israel Institute of Technology
Haifa
Israel

ISSN 1862-4499

Texts in Theoretical Computer Science. An EATCS Series

ISBN 978-3-662-50496-3 ISBN 978-3-662-50497-0 (eBook)
DOI 10.1007/978-3-662-50497-0

Library of Congress Control Number: 2016957285

© Springer-Verlag Berlin Heidelberg 2008, 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer-Verlag GmbH Germany
The registered company address is: Heidelberger Platz 3, 14197 Berlin, Germany

Foreword to the first edition

By Randal E. Bryant

Research in decision procedures started several decades ago, but both their
practical importance and the underlying technology have progressed rapidly
in the last five years. Back in the 1970s, there was a flurry of activity in this
area, mostly centered at Stanford and the Stanford Research Institute (SRI),
motivated by a desire to apply formal logic to problems in artificial intelligence
and software verification. This work laid foundations that are still in use today.
Activity dropped off through the 1980s and 1990s, accompanied by a general
pessimism about automated formal methods. A conventional wisdom arose
that computer systems, especially software, were far too complex to reason
about formally.

One notable exception to this conventional wisdom was the success of
applying Boolean methods to hardware verification, beginning in the early
1990s. Tools such as model checkers demonstrated that useful properties could
be proven about industrial-scale hardware systems, and that bugs that had
otherwise escaped extensive simulation could be detected. These approaches
improved on their predecessors by employing more efficient logical reasoning
methods, namely ordered binary decision diagrams and Boolean satisfiability
solvers. The importance of considering algorithmic efficiency, and even low-
level concerns such as cache performance, became widely recognized as having
a major impact on the size of problems that could be handled.

Representing systems at a detailed Boolean level limited the applicability
of early model checkers to control-intensive hardware systems. Trying to model
data operations, as well as the data and control structures found in software,
leads to far too many states, when every bit of a state is viewed as a separate
Boolean signal.

One way to raise the level of abstraction for verifying a system is to view
data in more abstract terms. Rather than viewing a computer word as a col-
lection of 32 Boolean values, it can be represented as an integer. Rather than
viewing a floating-point multiplier as a complex collection of Boolean func-
tions, many verification tasks can simply view it as an “uninterpreted func-

v

VI FOREWORD TO THE FIRST EDITION

tion” computing some repeatable function over its inputs. From this approach
came a renewed interest in decision procedures, automating the process of rea-
soning about different mathematical forms. Some of this work revived methods
dating back many years, but alternative approaches also arose that made use
of Boolean methods, exploiting the greatly improved performance of Boolean
satisfiability (SAT) solvers. Most recently, decision procedures have become
quite sophisticated, using the general framework of search-based SAT solvers,
integrated with methods for handling the individual mathematical theories.

With the combination of algorithmic improvements and the improved per-
formance of computer systems, modern decision procedures can readily handle
problems that far exceed the capacity of their forebearers from the 1970s. This
progress has made it possible to apply formal reasoning to both hardware and
software in ways that disprove the earlier conventional wisdom. In addition,
the many forms of malicious attacks on computer systems have created a pro-
gram execution environment where seemingly minor bugs can yield serious
vulnerabilities, and this has greatly increased the motivation to apply formal
methods to software analysis.

Until now, learning the state of the art in decision procedures required
assimilating a vast amount of literature, spread across journals and confer-
ences in a variety of different disciplines and over multiple decades. Ideas are
scattered throughout these publications, but with no standard terminology
or notation. In addition some approaches have been shown to be unsound,
and many have proven ineffective. I am therefore pleased that Daniel Kroen-
ing and Ofer Strichman have compiled the vast amount of information on
decision procedures into a single volume. Enough progress has been made in
the field that the results will be of interest to those wishing to apply deci-
sion procedures. At the same time, this is a fast-moving and active research
community, making this work essential reading for the many researchers in
the field.

Foreword to the second edition

By Leonardo de Moura!, Microsoft Research

Decision procedures are already making a profound impact on a number of
application areas, and had become so efficient in practice in the last 15 years
(mostly since the introduction of a new generation of SAT solvers, and in par-
ticular the introduction of Chaff in 2001) that numerous practical problems
that were beyond our reach beforehand are now routinely solved in seconds.
Yet, they draw on a combination of some of the most fundamental areas in
computer science as well as discoveries from the past century of symbolic
logic. They combine the problem of Boolean satisfiability with domains such
as those studied in convex optimization and term-manipulating symbolic sys-
tems. They involve the decision problem, completeness and incompleteness of
logical theories, and finally complexity theory.

It is an understatement to say that we use decision procedures in Mi-
crosoft on a daily basis. Applications include security testing, static code
analysis, constraint solving and software verification, to cite a few. With more
than five hundred machine years, security testing at Microsoft is the largest
computational usage ever for decision procedures. It has been instrumental in
uncovering hundreds of subtle security critical bugs that traditional testing
methods have been unable to find.

This book is both an introduction to this fascinating topic and a refer-
ence for advanced developers. It dedicates a chapter to many of the useful
theories (and their combination), and describes some of their applications in
software engineering, including techniques that we use for static code analy-
sis at Microsoft. The new information in this second edition is important for
both the researcher and the practitioner, since it includes general quantifi-
cation (an algorithm such as E-matching), updates on efficient SAT solving
and related problems (such as incremental solving), effectively propositional
reasoning (EPR), and other topics of great value.

! The main developer of Z3, an award-winning SMT solver

VII

Preface

A decision procedure is an algorithm that, given a decision problem, terminates
with a correct yes/no answer. In this book, we focus on decision procedures
for decidable first-order theories that are useful in the context of automated
software and hardware verification, theorem proving, compiler optimization,
and, since we are covering propositional logic, any problem that is in the
complexity class NP and is not polynomial. The range of modeling languages
that we cover in this book—propositional logic, linear arithmetic, bitvectors,
quantified formulas etc.—and the modeling examples that we include for each
of those, will assist the reader to translate their particular problem and solve
it with one of the publically available tools. The common term for describing
this field is Satisfiability Modulo Theories, or SMT for short, and software
that solves SMT formulas is called an SMT solver.

Since coping with the above-mentioned tasks on an industrial scale de-
pends critically on effective decision procedures, SMT is a vibrant and prosper-
ing research subject for many researchers around the world, both in academia
and in industry. Intel, AMD, ARM and IBM are some of the companies that
routinely apply decision procedures in circuit verification with ever-growing
capacity requirements. Microsoft is developing an SMT solver and applies it
routinely in over a dozen code analysis tools. Every user of Microsoft Windows
and Microsoft Office therefore indirectly enjoys the benefits of this technol-
ogy owing to the increased reliability and resilience to hacker attacks of these
software packages. There are hundreds of smaller, less famous companies that
use SMT solvers for various software engineering tasks, and for solving various
planning and optimization problems.

There are now numerous universities that teach courses dedicated to de-
cision procedures; occasionally, the topic is also addressed in courses on algo-
rithms or on logic for computer science. The primary goal of this book is to
serve as a textbook for an advanced undergraduate- or graduate-level com-
puter science course. It does not assume specific prior knowledge beyond what
is expected from a third-year undergraduate computer science student. The

IX

X PREFACE

Fig. 1. Decision procedures can be rather complex ... those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson—-Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE XI

Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

2. The theory is either decidable or semidecidable, and more efficiently solv-
able than theories that are more expressive, at least in practice if not in
theory.?

All the theories described in this book fulfill these two conditions. Further-
more, they are all used in practice. We illustrate applications of each theory
with examples representative of real problems, whether they may be verifica-
tion of C programs, verification of hardware circuits, or optimizing compilers.
Background in any of these problem domains is not assumed, however.
Other than in one chapter, all the theories considered are quantifier-free.
The problem of deciding them is NP-complete. In this respect, they can all
be seen as alternative modeling languages that can be solved with a variety of
decision procedures. They differ from each other mainly in how naturally they
can be used for modeling various decision problems. For example, consider the
theory of equality, which we describe in Chap. 4: this theory can express any
Boolean combination of Boolean variables and expressions of the form x; = x5,
where x, and xo are variables ranging over, for example, the natural numbers.
The problem of satisfying an expression in this theory can be reduced to a
satisfiability problem of a propositional logic formula (and vice versa). Hence,
there is no difference between propositional logic and the theory of equality in
terms of their ability to model decision problems. However, many problems are
more naturally modeled with the equality operator and non-Boolean variables.
For each theory that is discussed, there are many alternative decision pro-
cedures in the literature. Effort was made to select those procedures that are
known to be relatively efficient in practice, and at the same time are based on
what we believe to be an interesting idea. In this respect, we cannot claim to
have escaped the natural bias that one has towards one’s own line of research.
Every year, new decision procedures and tools are being published, and
it is impossible to write a book that reports on this moving target of “the
most efficient” decision procedures (the worst-case complexity of most of the
competing procedures is the same). Moreover, many of them have never been
thoroughly compared with one another. We refer readers who are interested
in the latest developments in this field to the SMT-LIB web page, as well as to
the results of the annual tool competition SMT-COMP (see Appendix A). The
SMT-COMP competitions are probably the best way to stay up to date as to
the relative efficiency of the various procedures and the tools that implement

2 Terms such as ezpressive and decidable have precise meanings, and we will define
them in the first chapter.

XII PREFACE

them. One should not forget, however, that it takes much more than a good
algorithm to be efficient in practice.

The Structure and Nature of This Book

The first chapter is dedicated to basic concepts that should be familiar to
third- or fourth-year computer science students, such as formal proofs, the
satisfiability problem, soundness and completeness, and the trade-off between
expressiveness and decidability. It also includes the theoretical basis for the
rest of the book. From Sect. 1.5 onwards, the chapter is dedicated to more
advanced issues that are necessary as a general introduction to the book,
and are therefore recommended even for advanced readers. Chapters 2 and 3
describe how propositional formulas are checked for satisfiability, and then
how this capability can be extended to more sophisticated theories. These
chapters are necessary for understanding the rest of the book. Chapters 4-11
are mostly self-contained, and generally do not rely on references to material
other than that in the first three chapters. The last chapter describes the
application of these methods for verifying the correctness of software, and for
solving various problems in computational biology.

The mathematical symbols and notations are mostly local to each chapter.
Each time a new symbol is introduced, it appears in a rounded box in the
margin of the page for easy reference. All chapters conclude with problems,
bibliographic notes, and a glossary of symbols.

Teaching with This Book

We are aware of 38 courses worldwide that list the first edition of this book
as the textbook of the course, in addition to our own courses in the Tech-
nion (Haifa, Israel) and Oxford University (UK). Our own courses are com-
bined undergraduate and graduate courses. The slides that were used in these
courses, as well as links to other resources and ideas for projects, appear on
the book’s web page (www.decision-procedures.org). Source code of a
C++ library for rapid development of decision procedures can also be down-
loaded from this page. This library provides the necessary infrastructure for
programming many of the algorithms described in this book, as explained in
Appendix B. Implementing one of these algorithms was a requirement in the
course, and it proved successful. It even led several students to their thesis
topic.

Notes for the Second Edition

The sales of the first edition of this book crossed, apparently, the threshold
above which the publisher asks the authors to write a second one... Writing
this edition was a necessity for more fundamental reasons, however: at the time
the first edition was written (2004-2008) the field now called SMT was in its
infancy, without the standard terminology and canonic algorithms that it has

www.decision-procedures.org

PREFACE XIII

now. What constituted the majority of Chap. 11 in the first edition (propo-
sitional encodings and the DPLL(T') framework) became so dominant in the
years that have passed that we expanded it and brought it forward to Chap. 3.
In turn, most of the so-called eager-encoding algorithms have been moved to
Chap. 11. In addition, we updated Chap. 2 with further modern SAT heuris-
tics, added a section about incremental satisfiability, and added a section on
the related constraint satisfaction problem (CSP). To the quantifiers chapter
(Chap. 9) we added a section about general quantification using E-matching
and a section about the Bernays—Schonfinkel-Ramsey fragment of first-order
logic (also called EPR). Finally, we added a new chapter (Chap. 12) on the
application of SMT for software engineering in industry, partially based on
writings of Nikolaj Bjgrner and Leonardo de Moura from Microsoft Research,
and for solving problems in computational biology based on writings of Hillel
Kugler, also from Microsoft Research.

Acknowledgments

Many people read drafts of this manuscript and gave us useful advice. We
would like to thank, in alphabetical order, those who helped in the first edition:
Domagoj Babic, Josh Berdine, Hana Chockler, Leonardo de Moura, Benny
Godlin, Alberto Griggio, Alan Hu, Wolfgang Kunz, Shuvendu Lahiri, Albert
Oliveras Llunell, Joel Ouaknine, Hendrik Post, Sharon Shoham, Aaron Stump,
Cesare Tinelli, Ashish Tiwari, Rachel Tzoref, Helmut Veith, Georg Weis-
senbacher, and Calogero Zarba, and those who helped with the second edi-
tion: Francesco Alberti, Alberto Griggio, Marijn Heule, Zurab Khasidashvili,
Daniel Le Berre, Silvio Ranise, Philipp Ruemmer, Natarajan Shankar, and
Cesare Tinelli. We thank Ilya Yodovsky Jr. for the drawing in Fig. 1.

Sep. 2016

Daniel Kroening Ofer Strichman
University of Oxford, United Kingdom Technion, Haifa, Israel

Contents

1 Introduction and Basic Concepts
1.1 Two Approaches to Formal Reasoning

1.1.1
1.1.2
1.1.3

Proof by Deduction
Proof by Enumeration
Deduction and Enumeration

1.2 Basic Definitions
1.3 Normal Forms and Some of Their Properties.
1.4 The Theoretical Point of View

1.4.1
1.4.2

The Problem We Solve
Our Presentation of Theories

1.5 Expressiveness vs. Decidability
1.6 Boolean Structure in Decision Problems
1.7 Logic as a Modeling Language
1.8 Problems
1.9 Glossary

2 Decision Procedures for Propositional Logic
2.1 Propositional Logic

2.1.1

Motivation

2.2 SAT Solvers

2.2.1
2.2.2
2.2.3
224
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9

The Progress of SAT Solving
The CDCL Framework
BCP and the Implication Graph
Conflict Clauses and Resolution
Decision Heuristics
The Resolution Graph and the Unsatisfiable Core

Incremental Satisfiability
From SAT to the Constraint Satisfaction Problem . . .
SAT Solvers: Summary

2.3 Problems

23.1
2.3.2
2.3.3
234

Warm-up Exercises 0oL
Propositional Logic.
Modeling
Complexity o o

27
27
27
29
29
31
32
38
42
45
46
48
49
50
50
o1
51
52

XV

XVI CONTENTS

2.3.5 CDCL SAT Solving 53
2.3.6 Related Problems. 54
2.4 Bibliographic Notes 54
2.5 Glossary 58
3 From Propositional to Quantifier-Free Theories 59
3.1 Introduction Lo 59
3.2 An Overview of DPLL(T) 61
3.3 Formalization 64
3.4 Theory Propagation and the DPLL(T) Framework 66
3.4.1 Propagating Theory Implications 66
3.4.2 Performance, Performance... 69
3.4.3 Returning Implied Assignments Instead of Clauses . . . 70
3.4.4 Generating Strong Lemmas 71
3.4.5 Immediate Propagation 72
3.5 Problems 72
3.6 Bibliographic Notes 73
3.7 Glossary e 75
4 Equalities and Uninterpreted Functions s
4.1 Introduction L o 77
4.1.1 Complexity and Expressiveness 7
4.1.2 Boolean Variables, 78
4.1.3 Removing the Constants: a Simplification 78
4.2 Uninterpreted Functions 79
4.2.1 How Uninterpreted Functions Are Used 80
4.2.2 An Example: Proving Equivalence of Programs 81
4.3 Congruence Closure 85
4.4 Functional Consistency Is Not Enough 86
4.5 Two Examples of the Use of Uninterpreted Functions 87
4.5.1 Proving Equivalence of Circuits 89
4.5.2 Verifying a Compilation Process with Translation Vali-
dation 91
46 Problems 92
4.7 Bibliographic Notes 93
4.8 Glossary 95
5 Linear Arithmetic 97
5.1 Introductiono 97
5.1.1 Solvers for Linear Arithmetic 98
5.2 The Simplex Algorithm 99
52.1 A Normal Form. 99
5.2.2 Basics of the Simplex Algorithm 100
5.2.3 Simplex with Upper and Lower Bounds 102

5.2.4 Incremental Problems 105

CONTENTS XVII

5.3 The Branch and Bound Method 106
5.3.1 Cutting Planes 0. 108

5.4 Fourier—Motzkin Variable Elimination 112
5.4.1 Equality Constraints 112
5.4.2 Variable Elimination 112
54.3 Complexity oo 115

55 The Omega Test 115
5.5.1 Problem Description 115
5.5.2 Equality Constraints 116
5.5.3 Inequality Constraints 119

5.6 Preprocessingo 124
5.6.1 Preprocessing of Linear Systems 124
5.6.2 Preprocessing of Integer Linear Systems 125

5.7 Difference Logic 126
5.7.1 Imtroduction 126
5.7.2 A Decision Procedure for Difference Logic 128

5.8 Problems 129
5.8.1 Warm-up Exercises L. 129
5.8.2 The Simplex Method 129
5.8.3 Integer Linear Systems 130
584 Omega Test 130
5.8.5 Difference Logic 131

5.9 Bibliographic Notes 131
510 Glossary 133
6 Bit Vectors 135
6.1 Bit-Vector Arithmetic 135
611 SYIEAX . o o ot e e 135
6.1.2 Notation. o 137
6.1.3 Semantics 138

6.2 Deciding Bit-Vector Arithmetic with Flattening 142
6.2.1 Converting the Skeleton 142
6.2.2 Arithmetic Operators 144

6.3 Incremental Bit Flattening 146
6.3.1 Some Operators Are Hard 146
6.3.2 Abstraction with Uninterpreted Functions 148

6.4 Fixed-Point Arithmetic. 149
6.4.1 Semantics o 149
6.4.2 Flattening oL o 150

6.5 Problems 151
6.5.1 Semanticso 151
6.5.2 Bit-Level Encodings of Bit-Vector Arithmetic 152
6.5.3 Using Solvers for Linear Arithmetic 152

6.6 Bibliographic Notes 154
6.7 Glossary 156

XVIII CONTENTS
7 Arrays 157
7.1 Introductiono Lo 157
711 Syntax o 158
7.1.2 Semantics 159

7.2 Eliminating the Array Terms 159
7.3 A Reduction Algorithm for a Fragment of the Array Theory . 162
7.3.1 Array Properties L. 162
7.3.2 The Reduction Algorithm 163

7.4 A Lazy Encoding Procedure 165
7.4.1 Incremental Encoding with DPLL(T) 165
7.4.2 Lazy Instantiation of the Read-Over-Write Axiom . . . 165
7.4.3 Lazy Instantiation of the Extensionality Rule 167

7.5 Problems 169
7.6 Bibliographic Notes L. 170
77 Glossary 171
8 Pointer Logic 173
8.1 Introduction Lo 173
8.1.1 Pointers and Their Applications 173
8.1.2 Dynamic Memory Allocation 174
8.1.3 Analysis of Programs with Pointers. 176

8.2 A Simple Pointer Logic. 177
8.2.1 Synmtax 177
8.2.2 Semantics 179
8.2.3 Axiomatization of the Memory Model 180
8.2.4 Adding Structure Types 181

8.3 Modeling Heap-Allocated Data Structures 182
83.1 Lists 182
83.2 Mrees. o . . o 183

8.4 A Decision Procedure 185
8.4.1 Applying the Semantic Translation 185
8.4.2 Pure Variableso 0. 187
8.4.3 Partitioning the Memory 188

8.5 Rule-Based Decision Procedures 189
8.5.1 A Reachability Predicate for Linked Structures 190
8.5.2 Deciding Reachability Predicate Formulas 191

8.6 Problems 194
8.6.1 Pointer Formulas 194
8.6.2 Reachability Predicates 195

8.7 Bibliographic Notes 196
88 Glossary 198
9 Quantified Formulas 199
9.1 Introductiono L 199

9.1.1 Example: Quantified Boolean Formulas 201

CONTENTS XIX
9.1.2 Example: Quantified Disjunctive Linear Arithmetic . . . 203
9.2 Quantifier Elimination 203
9.2.1 Prenex Normal Form 203
9.2.2 Quantifier Elimination Algorithms 205
9.2.3 Quantifier Elimination for Quantified Boolean Formulas 206
9.2.4 Quantifier Elimination for Quantified Disjunctive Lin-
ear Arithmetic L. 209
9.3 Search-Based Algorithms for QBF 210
9.4 Effectively Propositional Logic 212
9.5 General Quantification 0L L. 215
9.6 Problems 222
9.6.1 Warm-up Exercises 222
9.6.2 QBF 223
96.3 EPR 224
9.6.4 General Quantification 224
9.7 Bibliographic Notes 225
9.8 Glossary 227
10 Deciding a Combination of Theories 229
10.1 Introduction 229
10.2 Preliminaries oo 229
10.3 The Nelson—Oppen Combination Procedure 231
10.3.1 Combining Convex Theories 231
10.3.2 Combining Nonconvex Theories 234
10.3.3 Proof of Correctness of the Nelson-Oppen Procedure . . 237
10.4 Problems 240
10.5 Bibliographic Notes 240
106 Glossary e 244
11 Propositional Encodings 245
11.1 Lazy vs. Eager Encodings 245
11.2 From Uninterpreted Functions to Equality Logic 245
11.2.1 Ackermann’s Reduction 246
11.2.2 Bryant’s Reduction 249
11.3 The Equality Graph 253
11.4 Simplifications of the Formula 255
11.5 A Graph-Based Reduction to Propositional Logic 259
11.6 Equalities and Small-Domain Instantiations 262
11.6.1 Some Simple Bounds 263
11.6.2 Graph-Based Domain Allocation 265
11.6.3 The Domain Allocation Algorithm 266
11.6.4 A Proof of Soundness 269
11.6.5 Summary e 271
11.7 Ackermann’s vs. Bryant’s Reduction: Where Does It Matter? 272
11.8 Problems 273

XX CONTENTS
11.8.1 Reductions L. 274
11.8.2 Domain Allocation 276

11.9 Bibliographic Notes 276
11,10 Glossary o oo o 279
12 Applications in Software Engineering and Computational
Biology 281
12.1 Imtroduction 281
12.2 Bounded Program Analysis 283
12.2.1 Checking Feasibility of a Single Path 283
12.2.2 Checking Feasibility of All Paths in a Bounded Program 287
12.3 Unbounded Program Analysis 289
12.3.1 Overapproximation with Nondeterministic Assignments 289
12.3.2 The Overapproximation Can Be Too Coarse 291
12.3.3 Loop Invariants 294
12.3.4 Refining the Abstraction with Loop Invariants 295
12.4 SMT-Based Methods in Biology 297
12.4.1 DNA Computingo 298
12.4.2 Uncovering Gene Regulatory Networks 300
125 Problems 302
12.5.1 Warm-up Exercises L. 302
12.5.2 Bounded Symbolic Simulation 302
12.5.3 Overapproximating Programs 303
12.6 Bibliographic Notes 304
A SMT-LIB: a Brief Tutorial 309
A1 The SMT-LIB Initiative 309
A.2 The SMT-LIB File Interface 310
A.2.1 Propositional Logic 311
A.2.2 Arithmetic 312
A.2.3 Bit-Vector Arithmetic 313
A24 Arrays 313
A.2.5 Equalities and Uninterpreted Functions 314
B A C++ Library for Developing Decision Procedures 315
B.1 Imtroduction oo 315
B.2 Graphsand Trees 316
B.2.1 Adding “Payload” 318
B.3 Parsing. 318
B.3.1 A Grammar for First-Order Logic 318
B.3.2 The Problem File Format 320
B.3.3 A Class for Storing Identifiers 321
B.34 TheParse Tree 321
B4 CNFand SAT. 322

B.4.1 Generating CNF 322

CONTENTS XXI

B.4.2 Converting the Propositional Skeleton 325

B.5 A Template for a Lazy Decision Procedure 325
References 329
Tools index 347
Algorithms index 349

Index 351

	Foreword to the first
edition
	Foreword to the second edition
	Preface
	Contents

