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Foreword to the first edition

By Randal E. Bryant

Research in decision procedures started several decades ago, but both their
practical importance and the underlying technology have progressed rapidly
in the last five years. Back in the 1970s, there was a flurry of activity in this
area, mostly centered at Stanford and the Stanford Research Institute (SRI),
motivated by a desire to apply formal logic to problems in artificial intelligence
and software verification. This work laid foundations that are still in use today.
Activity dropped off through the 1980s and 1990s, accompanied by a general
pessimism about automated formal methods. A conventional wisdom arose
that computer systems, especially software, were far too complex to reason
about formally.

One notable exception to this conventional wisdom was the success of
applying Boolean methods to hardware verification, beginning in the early
1990s. Tools such as model checkers demonstrated that useful properties could
be proven about industrial-scale hardware systems, and that bugs that had
otherwise escaped extensive simulation could be detected. These approaches
improved on their predecessors by employing more efficient logical reasoning
methods, namely ordered binary decision diagrams and Boolean satisfiability
solvers. The importance of considering algorithmic efficiency, and even low-
level concerns such as cache performance, became widely recognized as having
a major impact on the size of problems that could be handled.

Representing systems at a detailed Boolean level limited the applicability
of early model checkers to control-intensive hardware systems. Trying to model
data operations, as well as the data and control structures found in software,
leads to far too many states, when every bit of a state is viewed as a separate
Boolean signal.

One way to raise the level of abstraction for verifying a system is to view
data in more abstract terms. Rather than viewing a computer word as a col-
lection of 32 Boolean values, it can be represented as an integer. Rather than
viewing a floating-point multiplier as a complex collection of Boolean func-
tions, many verification tasks can simply view it as an “uninterpreted func-
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tion” computing some repeatable function over its inputs. From this approach
came a renewed interest in decision procedures, automating the process of rea-
soning about different mathematical forms. Some of this work revived methods
dating back many years, but alternative approaches also arose that made use
of Boolean methods, exploiting the greatly improved performance of Boolean
satisfiability (SAT) solvers. Most recently, decision procedures have become
quite sophisticated, using the general framework of search-based SAT solvers,
integrated with methods for handling the individual mathematical theories.

With the combination of algorithmic improvements and the improved per-
formance of computer systems, modern decision procedures can readily handle
problems that far exceed the capacity of their forebearers from the 1970s. This
progress has made it possible to apply formal reasoning to both hardware and
software in ways that disprove the earlier conventional wisdom. In addition,
the many forms of malicious attacks on computer systems have created a pro-
gram execution environment where seemingly minor bugs can yield serious
vulnerabilities, and this has greatly increased the motivation to apply formal
methods to software analysis.

Until now, learning the state of the art in decision procedures required
assimilating a vast amount of literature, spread across journals and confer-
ences in a variety of different disciplines and over multiple decades. Ideas are
scattered throughout these publications, but with no standard terminology
or notation. In addition some approaches have been shown to be unsound,
and many have proven ineffective. I am therefore pleased that Daniel Kroen-
ing and Ofer Strichman have compiled the vast amount of information on
decision procedures into a single volume. Enough progress has been made in
the field that the results will be of interest to those wishing to apply deci-
sion procedures. At the same time, this is a fast-moving and active research
community, making this work essential reading for the many researchers in
the field.

FOREWORD TO THE FIRST EDITION



Foreword to the second edition

By Leonardo de Moura1, Microsoft Research

Decision procedures are already making a profound impact on a number of
application areas, and had become so efficient in practice in the last 15 years
(mostly since the introduction of a new generation of SAT solvers, and in par-
ticular the introduction of Chaff in 2001) that numerous practical problems
that were beyond our reach beforehand are now routinely solved in seconds.
Yet, they draw on a combination of some of the most fundamental areas in
computer science as well as discoveries from the past century of symbolic
logic. They combine the problem of Boolean satisfiability with domains such
as those studied in convex optimization and term-manipulating symbolic sys-
tems. They involve the decision problem, completeness and incompleteness of
logical theories, and finally complexity theory.

It is an understatement to say that we use decision procedures in Mi-
crosoft on a daily basis. Applications include security testing, static code
analysis, constraint solving and software verification, to cite a few. With more
than five hundred machine years, security testing at Microsoft is the largest
computational usage ever for decision procedures. It has been instrumental in
uncovering hundreds of subtle security critical bugs that traditional testing
methods have been unable to find.

This book is both an introduction to this fascinating topic and a refer-
ence for advanced developers. It dedicates a chapter to many of the useful
theories (and their combination), and describes some of their applications in
software engineering, including techniques that we use for static code analy-
sis at Microsoft. The new information in this second edition is important for
both the researcher and the practitioner, since it includes general quantifi-
cation (an algorithm such as E-matching), updates on efficient SAT solving
and related problems (such as incremental solving), effectively propositional
reasoning (EPR), and other topics of great value.

1 The main developer of Z3, an award-winning SMT solver
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Preface

A decision procedure is an algorithm that, given a decision problem, terminates
with a correct yes/no answer. In this book, we focus on decision procedures
for decidable first-order theories that are useful in the context of automated
software and hardware verification, theorem proving, compiler optimization,
and, since we are covering propositional logic, any problem that is in the
complexity class NP and is not polynomial. The range of modeling languages
that we cover in this book—propositional logic, linear arithmetic, bitvectors,
quantified formulas etc.—and the modeling examples that we include for each
of those, will assist the reader to translate their particular problem and solve
it with one of the publically available tools. The common term for describing
this field is Satisfiability Modulo Theories, or SMT for short, and software
that solves SMT formulas is called an SMT solver.

Since coping with the above-mentioned tasks on an industrial scale de-
pends critically on effective decision procedures, SMT is a vibrant and prosper-
ing research subject for many researchers around the world, both in academia
and in industry. Intel, AMD, ARM and IBM are some of the companies that
routinely apply decision procedures in circuit verification with ever-growing
capacity requirements. Microsoft is developing an SMT solver and applies it
routinely in over a dozen code analysis tools. Every user of Microsoft Windows
and Microsoft Office therefore indirectly enjoys the benefits of this technol-
ogy owing to the increased reliability and resilience to hacker attacks of these
software packages. There are hundreds of smaller, less famous companies that
use SMT solvers for various software engineering tasks, and for solving various
planning and optimization problems.

There are now numerous universities that teach courses dedicated to de-
cision procedures; occasionally, the topic is also addressed in courses on algo-
rithms or on logic for computer science. The primary goal of this book is to
serve as a textbook for an advanced undergraduate- or graduate-level com-
puter science course. It does not assume specific prior knowledge beyond what
is expected from a third-year undergraduate computer science student. The
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Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE
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Which Theories? Which Algorithms?

A first-order theory can be considered “interesting”, at least from a practical
perspective, if it fulfills at least these two conditions:

1. The theory is expressive enough to model a real decision problem. More-
over, it is more expressive or more natural for the purpose of expressing
some models in comparison with theories that are easier to decide.

2. The theory is either decidable or semidecidable, and more efficiently solv-
able than theories that are more expressive, at least in practice if not in
theory.2

All the theories described in this book fulfill these two conditions. Further-
more, they are all used in practice. We illustrate applications of each theory
with examples representative of real problems, whether they may be verifica-
tion of C programs, verification of hardware circuits, or optimizing compilers.
Background in any of these problem domains is not assumed, however.

Other than in one chapter, all the theories considered are quantifier-free.
The problem of deciding them is NP-complete. In this respect, they can all
be seen as alternative modeling languages that can be solved with a variety of
decision procedures. They differ from each other mainly in how naturally they
can be used for modeling various decision problems. For example, consider the
theory of equality, which we describe in Chap. 4: this theory can express any
Boolean combination of Boolean variables and expressions of the form x1 = x2,
where x1 and x2 are variables ranging over, for example, the natural numbers.
The problem of satisfying an expression in this theory can be reduced to a
satisfiability problem of a propositional logic formula (and vice versa). Hence,
there is no difference between propositional logic and the theory of equality in
terms of their ability to model decision problems. However, many problems are
more naturally modeled with the equality operator and non-Boolean variables.

For each theory that is discussed, there are many alternative decision pro-
cedures in the literature. Effort was made to select those procedures that are
known to be relatively efficient in practice, and at the same time are based on
what we believe to be an interesting idea. In this respect, we cannot claim to
have escaped the natural bias that one has towards one’s own line of research.

Every year, new decision procedures and tools are being published, and
it is impossible to write a book that reports on this moving target of “the
most efficient” decision procedures (the worst-case complexity of most of the
competing procedures is the same). Moreover, many of them have never been
thoroughly compared with one another. We refer readers who are interested
in the latest developments in this field to the SMT-LIB web page, as well as to
the results of the annual tool competition SMT-COMP (see Appendix A). The
SMT-COMP competitions are probably the best way to stay up to date as to
the relative efficiency of the various procedures and the tools that implement

2 Terms such as expressive and decidable have precise meanings, and we will define
them in the first chapter.
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them. One should not forget, however, that it takes much more than a good
algorithm to be efficient in practice.

The Structure and Nature of This Book

The first chapter is dedicated to basic concepts that should be familiar to
third- or fourth-year computer science students, such as formal proofs, the
satisfiability problem, soundness and completeness, and the trade-off between
expressiveness and decidability. It also includes the theoretical basis for the
rest of the book. From Sect. 1.5 onwards, the chapter is dedicated to more
advanced issues that are necessary as a general introduction to the book,
and are therefore recommended even for advanced readers. Chapters 2 and 3
describe how propositional formulas are checked for satisfiability, and then
how this capability can be extended to more sophisticated theories. These
chapters are necessary for understanding the rest of the book. Chapters 4–11
are mostly self-contained, and generally do not rely on references to material
other than that in the first three chapters. The last chapter describes the
application of these methods for verifying the correctness of software, and for
solving various problems in computational biology.

The mathematical symbols and notations are mostly local to each chapter.
Each time a new symbol is introduced, it appears in a rounded box in the
margin of the page for easy reference. All chapters conclude with problems,
bibliographic notes, and a glossary of symbols.

Teaching with This Book

We are aware of 38 courses worldwide that list the first edition of this book
as the textbook of the course, in addition to our own courses in the Tech-
nion (Haifa, Israel) and Oxford University (UK). Our own courses are com-
bined undergraduate and graduate courses. The slides that were used in these
courses, as well as links to other resources and ideas for projects, appear on
the book’s web page (www.decision-procedures.org). Source code of a
C++ library for rapid development of decision procedures can also be down-
loaded from this page. This library provides the necessary infrastructure for
programming many of the algorithms described in this book, as explained in
Appendix B. Implementing one of these algorithms was a requirement in the
course, and it proved successful. It even led several students to their thesis
topic.

Notes for the Second Edition

The sales of the first edition of this book crossed, apparently, the threshold
above which the publisher asks the authors to write a second one... Writing
this edition was a necessity for more fundamental reasons, however: at the time
the first edition was written (2004–2008) the field now called SMT was in its
infancy, without the standard terminology and canonic algorithms that it has

PREFACE
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now. What constituted the majority of Chap. 11 in the first edition (propo-
sitional encodings and the DPLL(T ) framework) became so dominant in the
years that have passed that we expanded it and brought it forward to Chap. 3.
In turn, most of the so-called eager-encoding algorithms have been moved to
Chap. 11. In addition, we updated Chap. 2 with further modern SAT heuris-
tics, added a section about incremental satisfiability, and added a section on
the related constraint satisfaction problem (CSP). To the quantifiers chapter
(Chap. 9) we added a section about general quantification using E-matching
and a section about the Bernays–Schönfinkel–Ramsey fragment of first-order
logic (also called EPR). Finally, we added a new chapter (Chap. 12) on the
application of SMT for software engineering in industry, partially based on
writings of Nikolaj Bjørner and Leonardo de Moura from Microsoft Research,
and for solving problems in computational biology based on writings of Hillel
Kugler, also from Microsoft Research.
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