
A Web Services Infrastructure for the
Management of Mashup Interfaces

J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

Applied Computing Group, University of Almeria (Spain)
{jesus.vallecillos,javi.criado,ajfernandez,npadilla,luis.iribarne}@ual.es

http://acg.ual.es

Abstract. In the technological world of today, user interfaces (as an
essential part of many software applications) are constantly changing in
order to meet the needs of different users and adapt to their environment.
Accordingly, there is a need for mechanisms to carry out these change
processes. This article describes a structure of web services which support
the adaptation which constructs mashup type web user interfaces. These
interfaces are constructed using third party component architectures,
called COTSgets.

Keywords: CBSE, MDE, web service, component, architecture, mashup

1 Introduction

In today’s world it is uncommon for software applications to be static and un-
changing. Rather, as is increasingly necessary, applications are adapted, modified
and updated over time in response to the demands of users. With user interfaces
being an essential part of some software applications, it is necessary that they
can also adapt as users change their preferences or modes of use. This has led to
new projects and proposals in recent years which allow the construction of cus-
tom user interfaces through configuration of their interface. In these proposals,
the user typically has a Graphical User Interface (GUI) which can be configured
to create a bespoke desktop or workspace. The interfaces are made from coarse-
grained components (i.e. components with fairly complicated functionalities) in
order to create widget-based mashup applications [20]. Examples of these types
of interfaces can be found in MyYahoo, Ducksboard or Netvibes [17].

When considering this idea it is often useful to have a software system to
manage these user interfaces. Examples of functionalities which can make use
of this type of management are: initialising the interface according to either
the user’s profile or last interaction with the components; saving all the events
and actions performed on the interface, or serving as an intermediary in the
communication process between components. With these in mind, this article
describes a web service infrastructure which allows the dynamic management of
component based user interfaces.



2 J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

The proposed work uses four principal concepts as foundations. Firstly, the
research is applied to the domain of mashup user interfaces described by compo-
nent architectures [11]. Secondly, Component-Based Software Engineering (CBSE)
[8] techniques are used to construct the user interfaces which allow the applica-
tions to be custom built for each user and to change over time. User interfaces are
based on third-party components, named as COTSgets (from the combination of
COTS and widgets). Thirdly, Model Driven Engineering (MDE) [9] techniques
are used to produce abstraction mechanisms on the mashup interfaces and allow
their formal representation. Finally, cloud computing concepts [13] [19] are used
enabling the component architectures to be managed by web services.

The proposed service infrastructure is based on an architecture with three
layers: (a) the client layer, (b) the server side layer which is platform dependent,
and (c) the server side layer which is platform independent. The client layer is
made up of a user interface constructed from a set of components as described
in a component architecture. The platform dependent layer provides the client
layer with the services it needs to operate (e.g. services related to component
communication). It also interacts with the platform independent layer, providing
it with some services (e.g. services relating to component instantiation) and re-
ceiving others (e.g. services relating to creating sessions for each user to interact
with the interface). The platform independent layer provides a set of services
and operations that are common to all possible platforms and can therefore be
extended to interfaces other than web mashup types. This article will look at
the infrastructure which defines the independent layer’s set of services. The de-
velopment of this service infrastructure is focused on the dynamic and flexible
management of the component architectures that make up the system. Addition-
ally, the service infrastructure establishes persistence mechanisms for storing and
handling these architectures.

As an application domain, this service infrastructure has been used to manage
a mashup user interface of a Geographic Information System (GIS) in the ENIA
research project [10], an intelligent Environmental Information Agent. One of

Fig. 1. Web application for ENIA



A Web Services Infrastructure for the Management of Mashup Interfaces 3

the most commonly used data types in these interfaces is obtained from OGC
web services developed by the Andalusian Environmental Information Network
(REDIAM) [16]. Figure 1 shows an example mashup user interface of this GIS
[10]. There are a range of services and components on the left side of the interface
that can be added to the right side, where the user interacts.

The rest of this article is structured as follows. Section 2 defines the pro-
posed service infrastructure for managing architectures of mashup interface com-
ponents. It then details the three infrastructure levels (databases, drivers and
modules) and the public/private services implemented. Section 3 details the im-
plementation of public web services. Section 4 discusses related work, and Section
5 presents the conclusions and future work.

2 Multi-service infrastructure in mashup interfaces

A series of web services, located in the platform independent layer of the Cloud
infrastructure, have been created in order to support the component-based archi-
tectures of mashup interfaces. These services have been organised into two levels
according to privacy, see Figure 2. Public Services are found on the first (highest)
level. These include: Session Web Service, Interaction Web Service, Communi-
cation Web Service y Component Web Service. The Public Services are used to
provide functionality, persistence and support to applications which have been
built from a component-based architecture. Private Services are found on the
second level. These include: Architectural Model Web Service, User Web Service
y Register Web Service. These are used to perform certain management tasks
such as those related to architectural models, users and the system’s available
components. Both levels are described in Section 2.2.

The Modules, Controllers and Databases levels are found below the two web
services levels. The Modules level is used by web services and implements all of
their functionality. The Controllers level manages the different databases which
control the environment. Finally, there is the Databases level which contains
the different databases used to store architecture models, components for user
applications, etc. Next, the final three levels are described in more detail.

2.1 Basic Web services Support

As stated in the previous section, and as can be seen in Figure 2, there are
several levels which support web services. The Modules level is the centre of the
environment and is responsible for implementing the offered functionality to the
user applications by means of web services.

The following modules make up this level: (a) Lifecycle and Relationships
Management Module (LRMM). This module is responsible for handling the ab-
stract representation of the interface by managing the components and the rela-
tionships between them. It is also responsible for handling the component states;
(b) Display Management Module (DMM). This module is responsible for han-
dling the component visualisation by adapting the device it is working on; (c)



4 J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

Transaction Management Module (TMM). This module allows the exchange of
messages and the coordination between components to be controlled. This com-
munication between components is synchronised, i.e. all the messages sent by
one component are instantly received by the others; (d) Interaction Management
Module (IMM). This module provides an environment where the user interaction
on the interface can be managed. Although the IMM module cannot access user
events within the components, the events occurring in the environment (e.g.
move the component) are saved to learn about user behaviour and adapt the
interface; (e) User Management Module (UMM). Used for administering users
in the environment, processing their registration and modifications in the core of
our infrastructure (named as COScore). It can also check to see if a user can log
in; (f) COScore Session Management Module (COSSessionMM). For each user
application running in the environment, the COScore creates the LRMM, IMM,
TMM y DMM modules. These modules continue their execution as long as the
user session is open.

The modules make use of a series of controllers (Controllers level) from the
following databases which manage the environment all of them implemented
in PostgreSQL: (a) Architectural Models and Users. This database stores both
the applications’ architecture models and the environment’s users. It is handled
by the ManageArchitecture controller by means of the mapping framework Hi-
bernate (http://hibernate.org/) which manages the interface’s architecture
models as objects; (b) Interaction. This database saves the interactions which
occur in the environment, such as; adding and removing components, changes
in size or position as well as communication processes; (c) Widget components.
Stores all the Widget components which may be needed by the Web applications.

COSSessionMM UMM IMMLRMM TMMDMM

ManageArchitectures ManageRegisterManageWookieManageInteractionManageUsers

User Web
Service

Architectural Model
Web Service

Register Web
Service

Session Web
Service

Component
Web Service

Communication
Web Service

Interaction
Web Service

Fig. 2. Web services infrastructure (COScore)



A Web Services Infrastructure for the Management of Mashup Interfaces 5

These components then generate the instances which are embedded in the user
interface. This repository is supported by a server of widget components called
Wookie (http://wookie.apache.org/), which follows the W3C standard [15];
(d) Widget instances. This repository stores the instances of Widgets that are
associated with each user’s Web application; (e) Concrete component specifica-
tions; (f) Abstract component specifications. Registers the abstract component
specifications, independent of the platform.

2.2 Private and Public Services

As previously stated, the services provided by COScore are organised in two
levels. The first level contains the public services, which can be directly used
by the user applications; the second level contains the private services, which
perform certain management tasks within the COScore, but cannot be accessed
by applications.

The private services are: Architectural Model Web Service, Register Web
Service and User Web Service (Figure 2). The purpose of the Architectural
Model Web Service is to handle the component architectures used to describe
the mashup user interfaces. The system uses two different architecture models
to manage these architectures, the abstract architecture model and the concrete
architecture model. Using Model Driven Architecture (MDA) as a basis, the ar-
chitecture models are used to define of the user interface at different levels of
abstraction. The abstract architecture models allow a platform independent user
interface to be defined in terms of the existing types of interface components and
the relationships that exist between these components. These models correspond
to the Platform Independent Model (PIM) in MDA. Furthermore, concrete ar-
chitectural models allow a user interface to be defined based on the concrete
components used in a given platform. Likewise, these architecture models cor-
respond to the Platform Specification Model (PSM) in MDA. The web service
allows us to add or remove an abstract or concrete model in order to manage
these models. Another private web service is the Register Web Service, which
allows abstract and concrete components to be registered and removed in the
system. Finally, there is the User Web Service. This service manages the users
and carries out basic functions such as adding and removing users, and checking
and modifying users’ information.

The public services (Session Web Service, Component Web Service, Com-
munication Web Service and Interaction Web Service) support the mashup user
interfaces. Session Web Service manages user sessions in the environment. One
of its tasks is to check whether a user belongs to the system (Login operation),
initializing the modules for that user. Another of the tasks carried out by this
service is the initialization of the user interface. This task reads the component
model, generates routing tables, creates component instances and returns the
user interface code which has been generated. Finally, by means of the Logout
operation, this service allows the session to be closed and eliminates the compo-
nents pertaining to the user. The Component Web Service manages the handling
of the components in the user interface, i.e., adding and removing components.



6 J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

The Communication Web Service manages the communication between compo-
nents. It receives a message from a component and gets which other components
the information should be sent on to. The Interaction Web Service is responsible
for storing information on how the user interacts with the application. This inter-
action relates to changes in component position and component size, adding and
removing components to the user interface and registering the communication
processes between components.

3 Implementation of Public Web Services

This section will explain some operations connected with the public services
found in the proposed structure. To describe these services, Business Process
Model Notation (BPMN) diagrams will be used to show their operation and the
flow of information which takes place. Figure 3 shows the Login and Init User
Architecture operations of the Session Web Service.

As described below, both operations are related. The Login operation also
involves executing the initialization operation. When the Web application loca-
tion is accessed from the browser, the first action is obtaining the HTML code of
that application (by using Request web application). Next, the user is logged in.
This requires the application to communicate with the JavaScript Server by us-
ing Process Login request. Subsequently, the JavaScript server invokes the Login
operation of Session Web Service. This operation makes use of tasks involving
the UMM and COSSessionMM modules. Once it has been checked that the user
is registered in the system, the user ID is sent to the application. During this
process the Login response function (in the JavaScript Server) invokes the web
service’s Init User Architecture operation. As this initialization interface is exe-
cuted, the model associated with the user is read (by Read concrete architectural
model), and the structure for communication between the architecture compo-
nents is generated (by Generate routing structure). The component instances
are then created (by Generate web concrete components instances) and the nec-
essary code to generate the user interface is returned (by Generate code for user
instances). The modules involved in this initialization process are TMM, LRMM
and DMM. Once the code has been sent to the Web application, the widget in-
stances that have been created (and located in the Wookie server) are embedded
in the web page.

Figure 4 shows another example operation (Add component). This belongs
to the Component Web Service. The BPMN diagram shows that the request to
add a component to the user interface comes from the Web application. The re-
quests are first processed by the JavaScript Server. This invokes the operations
which correspond to Component Web Service. Subsequently, the DMM module
executes the task responsible for adding components to the architecture (Process
to add component). For this, the module communicates with the ManageArchi-
tectures controller, which accesses the Architectural model database to modify
the corresponding Architectural model. The operation of adding components
involves storing the interaction with the interface requiring the use of the In-



A Web Services Infrastructure for the Management of Mashup Interfaces 7

C
lie

nt
S

er
ve

r

P
la

tfo
rm

 D
ep

en
de

nt
P

la
tfo

rm
 In

de
pe

nd
en

t

Architectural models

User Data Base

Request web
application

Receive
user id

Build web application
user interface

Get part of web
application code

Send to load
widgets

Receive to
load widgets

Widget components

Send to get widget
instances code

Widget instances

Get or Create
widget instances

Receive to get widget
instances code

Generate Web concrete
components instances

Generate routing
structure

Initialize kernel
modules

Generate code for
user interface

Read concrete
architectural model

Query User
in Data Base

Receive Web
concrete instances

Components specifications

Apache processes
request

Send response login
Web application

Process Login
request

Send response init
Web applciation

Manage
Register

Manage
Wookie

Manage
users

Manage
Architectures

Login
response

Init User Architecture
responseLogin

Init User
Architecture

Web applicationOpen browser

Application server

Wookie server

Modules (task view)

Rounting structure

Application web Server

JavaScript Server

Controllers

Session Web Service

Fig. 3. Login and Init User Architecture operations of Session Web Service

teraction Management Module. By way of Store Interaction, this module stores
this interaction using the controller ManageInteraction. Once these operations
have been done, the task Process to add component responds by sending the
component to be added to the user interface.

In order to demonstrate how the functionality of the web services has been
developed, the following example shows the implementation details. The op-
eration Add component of the Component Web Service is described. Figure 4
shows that for this operation Add component is executed first (task 1). Since the
user interface is a Web application, this task is implemented using the JavaScript
language. Task 1 of Table 1, lines 3–5 show the code which corresponds to the be-
ginning of this operation. Subsequently, the information is sent to the JavaScript
server, which acts as a mediator between the client and the platform indepen-
dent layer. The JavaScript server invokes the corresponding web service using



8 J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

C
lie

nt
S

er
ve

r

P
la

tfo
rm

 D
ep

en
de

nt
P

la
tfo

rm
 In

de
pe

nd
en

t

Architectural model

Interaction Data Base

Add component in
the Web page

Add Web
component

Components specifications

Send response add
Web component

Send add
component request

Process to add
component

Store
interaction

Manage
interaction

Manage
Architectures

Add
component

Add component
response

Application server

Web application

Start to add
Web

component

JavaScript Server

Modules (task view)

ControllersComponent Web Service

Fig. 4. Add Component operation of Component Web Service

Send add component request (task 2 of Figure 4) by means of the code shown in
task 2 of Table 1.

The response to the client application containing the code of the component
is also included in task 9 of Table 1, line 4. This is carried out by the task
Send response add web component (task 9). The information is then received by
the web service. The web service and its modules are implemented with Java.
The code of the Add component task (task 3) is shown in Table 1, “tasks #3
#8”. Once the task information has been received, Process to add component
(task 4) and Store interaction (task 5) are invoked. These tasks belong to the
IMM y DMM modules. The method shown in the task 8 is returned by the Add
component operation.

The implementation of the task which stores the interaction (Store inter-
action) is detailed in task 5. It invokes the registerInteraction method of the
IMM module, which then executes tasks to save the interaction. Subsequently
the interaction is stored in the Interaction Data Base repository by means of
the Manage Interaction task. We can see the implementation of the Process to
add component task 4, which is used to add components. Later, the state of the
user architecture is saved in the ArchitecturalModel database using the Manage
Architectures task (task 6). Finally the component to be embedded in the user
interface is returned by the Process to add component task using the return
method shown in task 4.

4 Related Work

By using mashup user interfaces it is possible to carry out modifications to user
interfaces, adapting them to the user’s needs. The project OMELETTE [4] is an
example based on the use of mashup application technologies to allow users to



A Web Services Infrastructure for the Management of Mashup Interfaces 9

tasks code

1, 10

1 <html> <head>
2 <script> ...
3 function addComponent(componentId) {
4 websocket.emit(’addComponent’, {userID: uid, componentId: componentId}); }
5 websocket.on(’addComponent’, function(data) { $(’\#main’).append(data);});
6 ...
7 </script> </head> ...
8 </html>

2, 9

1 socket.on(’addComponent’, function(data) {
2 var argsAddComponent = {userID : data.userID, componentId : data.componentId};
3 callWS(’http://...’, ’addComponent’, argsAddComponent, function(wsResponse) {
4 wsResponse.forEach(function(value, index) {
5 io.sockets.in(data.userID).emit(’addComponent’, value.codeHTML); }); });
6 });

3, 8

1 public class COSWSImpl implements COSWS { ...
2 public List<ComponentData> addComponent(String userID, String componentId,
3 String componentName) {
4 List<ComponentData> result = null;
5 Context initialContext = new InitialContext();
6 COSSessionMM cossmng = (COSSessionMM)initialContext.lookup("...");
7 DMM dmm = (cossmng.getUserEJB(userID)).getDMMS().get(0);
8 IMM imm = (cossmng.getUserEJB(userID)).getIMM();
9 result = dmm.addComponent(componentId);
10 imm.setCAM(dmm.getCAM());
11 imm.loadInteraction(dmm.getCAM().getCamID(), userID, componentId,
12 componentName, ‘addComponent’);
13 return result;
14 } ...
15 }

4

1 public class DMM { ...
2 public ConcreteComponent addComponent(String componentId) {
3 ComponentComponent result = null;
4 ManageArchitectures ma = new ManageArchitectures();
5 result = ma.addComponent(componentId);
6 return result;
7 } ...
8 }

5

1 public class IMM { ...
2 public boolean registerInteraction(String modelId, String componentId,String userId,
3 String interactionMoment, String action, String property, String value) {
4 ManageInteraction mi = new ManageInteraction();
5 boolean insert = true;
6 insert = mi.store(modelId,componentId,userId,interactionMoment,action,property,value);
7 return insert;
8 } ...
9 }

Table 1. A piece of the code of the Add component operation

create their own collaboration platforms. This is achieved by providing a set of
tools and components (based on W3C widgets) that support the development
of telco mashup. They also make use of models to manage the user workspaces.
The project differs with regard to this article in that in our environment the
focus is on the development of individual applications and desktops are not
shared for collaborative tasks. Furthermore, in OMELETTE components use
Apache Rave to communicate, which restricts the possibility of communication
processes between components other than widgets. In our case, we have used
a JavaScript server to interconnect different types of components using Web
Sockets. DashMash [3] and ServFace [14] are other examples of similar projects.

A framework is proposed in [5] which allows users to build component based
mashup interfaces (widget type) to suit their needs. As in our case, they make
use of MDE to represent the environment although they are more focussed on
supporting web platforms. Our proposal supports multiple platforms.

In [1] an environment called NaturalMash is created which allows the con-
struction of mashup user interfaces by means of widget type components chosen



10 J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

from a pallet. These components can be dragged and dropped in the workspace
allowing users to design their own manipulation environment. The system in-
cludes a way to select implemented components using natural language. Never-
theless, the proposal has some limitations such as the possibility for the compo-
nents forming the environment to communicate. This limits the interoperability
between the components.

With respect to using web services to handle mashup user interfaces, there
are works such as [2] where they are used to provide applications with the oppor-
tunity to share workspaces built with mashup user interfaces on different devices.
Different model types are used to carry out this process of sharing workspaces.
In the process, one model is used to compose the user interface patterns, defining
the components that form the workspace. Another model describes the current
state of the user interface and another visual template model integrates the
representative data with graphic elements. These models are provided by web
services using mashup applications. In contrast to the work in this paper, a hier-
archy of services to control the environment is not performed nor are the services
intended to handle any elements other than the models i.e. interaction processes
or user management.

Other works such as [12] exist where the focus is on the use of components
and mashup user interfaces to construct applications appropriate to the user’s
needs. This is done by users creating their own environments from a collection of
components. Service Oriented Architectures (SOA) are used for processing the
user environment adaption and communicating between the widgets. As such,
they use services to control the user interface management processes and the
communication between components in a similar way as in this paper although
the proposal is not focussed on handling anything other than web type environ-
ments. As such, the ability to apply them to other applications is limited.

5 Conclusions and future work

This work describes a web services structure, which has been implemented to
offer consistency and functionality to architectures, based on COTSgets compo-
nents, of mashup interfaces. This has been achieved using Component-based Soft-
ware Engineering (CBSE), Model-Driven Engineering (MDE) and Cloud com-
puting. This structure has been organised into two levels of services (public and
private) which use a combination of models and controllers to implement all the
functionalities and access the database.

As future work, the environment could be extended to support more client
applications based on other types of components (e.g. built with Java). This
would require the creation of new types of component repositories and a differ-
ent approach to creating the user interface during the login process. Furthermore,
dedicated services could be added to the transformation [7] and regeneration [6]
processes. The transformation process could be used to allow the architectures
to change at an abstract level. By combining these changes with a regeneration
process, real components stored in the component repositories, could be associ-



A Web Services Infrastructure for the Management of Mashup Interfaces 11

ated with abstract components of the abstract model produced as a result of the
transformation process.

Acknowledgments

This work was funded by the EU ERDF and the Spanish Ministry of Econ-
omy and Competitiveness (MINECO) under Project TIN2013-41576-R, and the
Spanish Ministry of Education, Culture and Sport (MECD) under a FPU grant
(AP2010-3259), and the Andalusian Regional Government (Spain) under Project
P10-TIC-6114. This work was also supported by the CEiA3 and CEIMAR.

References

1. Aghaee, S., Pautasso, C., De Angeli, A.: Natural end-user development of web
mashups. In: Proceedings of the 2013 IEEE Symposium on Visual Languages and
Human Centric Computing, pp. 111–118. IEEE (2013)

2. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Picozzi, M.:
Creation and use of service-based Distributed Interactive Workspaces. J. of Visual
Languages & Computing 25(6) 717–726 (2014)

3. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Francalanci,
C.: DashMash: a mashup environment for end user development. In: Proceedings
of 11th International Conference on Web Engineering pp. 152–166. Springer (2011)

4. Chudnovskyy, O., Nestler, T., Gaedke, M., Daniel, F., Fernández-Villamor, J.I.,
Chepegin, V., Fornas, J.A., Wilson, S., Kögler, C., Chang, H.: End-user-oriented
telco mashups: the omelette approach. In: Proceedings of the 21st international
conference companion on world wide web, pp. 235–238. ACM (2012)

5. Cinzia, C., Maristella, M., Matteo P.: A UI-Centric Approach for the End-User
Development of Multidevice Mashups. ACM Trans. on the Web 9(3), 11–40 (2015)

6. Criado, J., Iribarne, L., Padilla, N.: Resolving Platform Specific Models at Runtime
Using an MDE-Based Trading Approach. Fifth Int. Workshop on Information Sys-
tems in Distributed Environment (ISDE/OTM2013), pp. 274–283. LNCS (2013)

7. Criado, J., Rodŕıguez-Gracia, D., Iribarne, L., Padilla, N.: Toward the adaptation
of component-based architectures by model transformation: behind smart user in-
terfaces. Software: Practice and Experience. Wiley Online Library (2014)

8. Crnkovic, I., Larsson, M.: Challenges of component-based development. Journal of
Systems and Software 61(3), 201–2012 (2002)

9. Crnković, I., Sentilles, S., Vulgarakis, A., Chaudron, M.: A classification framework
for software component models. IEEE T. on Software Engineering 37(5), 593–615
(2011)

10. ENIA Project: Environmental Information Agent. Applied Computing Group, Ref.
P10-TIC-6114, Junta Andalucia. http://acg.ual.es/enia (2015)

11. Florian, D., Maristella, M.: Mashups: Concepts, Models and Architectures.
Springer (2014)

12. Hoyer, V., Gilles, F., Janner, T., Stanoevska-Slabeva, K.: Sap research rooftop
marketplace: Putting a face on service-oriented architectures. In: IEEE World Con-
ference on Services-I, pp. 107–114. IEEE (2009)



12 J. Vallecillos, J. Criado, A.J. Fernández, N. Padilla, and L. Iribarne

13. Lee, C.A.: A perspective on scientific cloud computing. In: Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing, pp.
451–459. ACM (2010)

14. Nestler, T., Feldmann, M., Hübsch, G., Preußner, A., Jugel, U.: The ServFace
builder-A WYSIWYG approach for building service-based applications, pp. 498-
501. Springer (2010)

15. W3C: Widgets family of specications. Web Application Working Group, Technical
Report, W3C. http://www.w3.org/2008/webapps/wiki/WidgetSpecs (2012)

16. REDIAM: Andalusian Environmental Information Network. http://www.

juntadeandalucia.es/medioambiente/site/rediam (2015)
17. Sire, S., Bogdanov, E., Palmér, M., Gillet, D.: Towards collaborative portable web

spaces. In: 4th European Conference on Technology Enhanced Learning (EC-TEL).
Workshop on Mash-Up Personal Learning Environments (MUPPLE’09) (2009)

18. Vallecillos, J., Criado, J., Padilla, N., Iribarne, L.: A Component-based User In-
terface Approach for Smart TV. In: 9th International Conference on Software En-
gineering and Applications, pp. 455–463. LNCS (2014)

19. Whaiduzzaman, Md, Haque, M.N., Rejaul K.C., and Gani, A.: A study on strategic
provisioning of Cloud Computing Services. The Scientific World Journal 2014, pp.
16 (2014)

20. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development.
IEEE Internet Computing 12(5), 44–52 (2008)


