Skip to main content

The Seamless Integration Achievement of the Actual Situation of the Scene

  • Chapter
  • First Online:
Book cover Transactions on Edutainment XII

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 9292))

  • 745 Accesses

Abstract

In the augmented reality systems, in order to give users results of visual consistency, the key is to achieve a virtual object and the real scene seamless overlay, combined with complex scenes direction of the light source to achieve a true desktop environment based on augmented reality systems, and in the system implements the seamless integration of the actual situation, including static and dynamic two parts. You first need to get the real scene of three-dimensional computer data in conjunction with the relevant algorithm to achieve, then the virtual object should be consistent with the real scene of human action, that is, action by the user to control the virtual object moves, mainly using Kinect tracking and bones action recognition, combined with interactive 3D engine to achieve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ju, R.: Joint scaled depth and color camera and in augmented reality application. Zhejiang University (2014)

    Google Scholar 

  2. Zhang, C.: Kinect depth camera indoor three-dimensional scene reconstruction. Dalian University of Technology (2013)

    Google Scholar 

  3. Peng, G., Xiangning, C., Bin, L.: Kinect sensor calibration color and depth camera. China Image Graph. 11, 1584–1590 (2014)

    Google Scholar 

  4. Li, X., Guo, W., Li, S., Chen, C., Sun,. L.: A closed algorithm pose accuracy of the depth camera. Estimate Robot, February 2014

    Google Scholar 

  5. Rong, Z.: Get technology research depth information based on light field camera. North University (2014)

    Google Scholar 

  6. Ho, P., Gui, J., Lin, X.: Combining fast video matting kinect depth map algorithm. Tsinghua University (Natural Science), April 2012

    Google Scholar 

  7. Luo, Y., Hsieh, Y.: Chang Design and realization of the system kinect sensor-based intelligent wheelchair gesture controlled robot, January 2012

    Google Scholar 

  8. Quan, H., Chen, W.G., Zheng, B., Xu, Z.: Kinect application in a video conference system. Guangxi University (Natural Science) (S1) (2011)

    Google Scholar 

  9. Yu, X., Yang, X., Likai, Y., He, H., Zheng, X., Li, M.J., Yuan, J.J., Huhong, Y., Wu, T., Shi, K., Wang, R., Zhang, Y.-G.: Research and Implementation of B/S mode of the PACS Based on. J. Biomed. Eng. (3) (2004)

    Google Scholar 

  10. Dong, S.: Progress in human-computer interaction and challenges. Comput. Aided Des. Comput. Graph. (1) (2004)

    Google Scholar 

  11. Tong, J., To, X., Tian, H., Pan, Z., Cheung, M.: Use flight time three-dimensional shape of the camera’s non-rigid three-dimensional reconstruction. Comput. Aided Des. Comput. Graph. (3) (2011)

    Google Scholar 

  12. Application of the depth camera on Computer Vision and Graphics (English). Comput. Sci. Explor. (6) (2011) to Xueqin, Pan Zhigeng, child crystals

    Google Scholar 

  13. Yang, C., Qi, Y., Shen, X.-K., Zhao, Q.-P.: A fast 3D scan data automatic registration method. J. Softw. 21(6), 1438–1450 (2010)

    Article  Google Scholar 

  14. Pan, H., Wang, Q., Xie, B., Xu, S.: ACTUATORS. TOF method data processing method for three-dimensional imaging camera. Zhejiang Univ. (Eng. Sci.) (6) (2010)

    Google Scholar 

  15. Zhuyan, J., Zhou, R., Zhang, L.: Scattered Data matching algorithm. Comput. Aided Des. Comput. Graph. (4) (2006)

    Google Scholar 

  16. Giles, J.: Inside the race to hack the kinect. New Sci. 208, 22–23 (2010)

    Google Scholar 

  17. Chang, Y.J., Chen, S.F., Huang, J.D.: A kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. Res. Dev. Disabil. 32, 2566–2570 (2011)

    Article  Google Scholar 

  18. Zöllner, M., Huber, S., Jetter, H.-C., Reiterer, H.: NAVI – a proof-of-concept of a mobile navigational aid for visually impaired based on the Microsoft Kinect. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011, Part IV. LNCS, vol. 6949, pp. 584–587. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial robots. Auton. Robots 30, 73–86 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Huang, J., Shi, H. (2016). The Seamless Integration Achievement of the Actual Situation of the Scene. In: Pan, Z., Cheok, A., Müller, W., Zhang, M. (eds) Transactions on Edutainment XII. Lecture Notes in Computer Science(), vol 9292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50544-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50544-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50543-4

  • Online ISBN: 978-3-662-50544-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics