N

N

The Useful MAM, a Reasonable Implementation of the
Strong A-Calculus

Beniamino Accattoli

» To cite this version:

Beniamino Accattoli. The Useful MAM, a Reasonable Implementation of the Strong A-Calculus. 23rd
International Workshop on Logic, Language, Information, and Computation (WoLLIC 2016), Aug
2016, Puebla, Mexico. pp.1 - 21, 10.1007/978-3-662-52921-8 1. hal-01425534

HAL Id: hal-01425534
https://inria.hal.science/hal-01425534
Submitted on 3 Jan 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-01425534
https://hal.archives-ouvertes.fr

The Useful MAM,
a Reasonable Implementation of

the Strong A-Calculus

Beniamino Accattoli

INRIA & LIX, Ecole Polytechnique
beniamino.accattoli@inria.fr

Abstract. It has been a long-standing open problem whether the strong
A-calculus is a reasonable computational model, i.e. whether it can be
implemented within a polynomial overhead with respect to the number of
[B-steps on models like Turing machines or RAM. Recently, Accattoli and
Dal Lago solved the problem by means of a new form of sharing, called
useful sharing, and realised via a calculus with explicit substitutions.
This paper presents a new abstract machine for the strong A-calculus
based on useful sharing, the Useful Milner Abstract Machine, and proves
that it reasonably implements leftmost-outermost evaluation. It provides
both an alternative proof that the A-calculus is reasonable and an im-
provement on the technology for implementing strong evaluation.

1 Introduction

The higher-order computational model of reference is the A-calculus, that comes
in two variants, weak or strong. Introduced at the inception of computer science
as a mathematical approach to computation, it later found applications in the
theoretical modelling of programming languages and, more recently, proof as-
sistants. The weak A-calculus is the backbone of functional languages such as
LISP, Scheme, OCAML, or Haskell. It is weak because evaluation does not enter
function bodies and, usually, terms are assumed to be closed. By removing these
restrictions one obtains the strong A-calculus, that underlies proof assistants like
Coq, Isabelle, and Twelf, or higher-order logic programming languages such as
A-prolog or the Edinburgh Logical Framework. Higher-order features nowadays
are also part of mainstream programming languages like Java or Python.

The abstract, mathematical character is both the advantage and the draw-
back of the higher-order approach. The advantage is that it enhances the modu-
larity and the conciseness of the code, allowing to forget about low-level details at
the same time. The drawback is that the distance from low-level details makes its
complexity harder to analyse, in particular its main computational rule, called -
reduction, at first sight is not an atomic operation. In particular, 8 can be nasty,
and make the program grow at an exponential rate. The number of [S-steps,
then, does not even account for the time to write down the result, suggesting
that it is not a reasonable cost model. This is the size-explosion problem [6], and
affects both the weak and the strong A-calculus.

The A-Calculus is Reasonable, Indeed A cornerstone of the theory is that, nonethe-
less, in the weak A-calculus the number of S-steps is a reasonable cost model for
time complexity analyses [925]14], where reasonable formally means that it is
polynomially related to the cost model of RAM or Turing machines.

For the strong A-calculus, the techniques developed for the weak one do not
work, as wilder forms of size-explosion are possible. A natural candidate cost
model from the theory of A-calculus is the number of (Lévy) optimal parallel
steps, but it has been shown by Asperti and Mairson that such a cost model is
not reasonable [g].

It is only very recently that the strong case has been solved by Accattoli and
Dal Lago [6], who showed that the number of leftmost-outermost S-steps to full
normal form is a reasonable cost model. The proof of this result relies on two
theoretical tools. First, the Linear Substitution Calculus (LSC), an expressive
and simple decomposition of the A-calculus via linear logic and rewriting theory,
developed by Accattoli and Kesner [3] as a variation over a calculus by Robin
Milner [24]. Second, useful sharing, a new form of shared evaluation introduced
by Accattoli and Dal Lago on top of the LSC. Roughly, the LSC is a calculus
where the meta-level operation of substitution used by S-reduction is internalised
and decomposed in micro steps, i.e. it is what is usually called a calculus with
explicit substitutions. The further step is to realise that some of these micro
substitution steps are useless: they do not lead to the creation of other S-redexes,
their only aim is to unshare the result and provide the full normal form. Useful
evaluation then performs only those substitution steps that are useful, i.e. not
useless. By avoiding useless unsharing steps, it computes a shared representation
of the normal form of size linear in the number of steps, whose unsharing may
cause an exponential blow up in size. This is how the size-explosion problem is
circumvented, see [6] for more explanations.

This Paper In this paper we provide an alternative proof that the strong A-
calculus is reasonable (actually only of the hard half, that is the simulation of
A-calculus on RAM, the other half being much easier, see [5]), by replacing the
LSC with the Useful Milner Abstract Machine. The aim of the paper is threefold:

1. Getting Closer To Implementations: the LSC decomposes [-reduction in
micro-steps but omits details about the search for the next redex to reduce.
Moreover, in [6] useful sharing is used as a sort of black box on top of the LSC.
Switching to abstract machines provides a solution closer to implementations
and internalises useful sharing.

2. The First Reasonable Strong Abstract Machine: the literature on abstract
machines for strong evaluation is scarce (see below) and none of the machines
in the literature is reasonable. This work thus provides an improvement of
the technology for implementing strong evaluation.

3. Alternative Proof: the technical development in [6] is sophisticated, because
a second aim of that paper is to connect some of the used tools (namely useful
sharing and the subterm property) with the seemingly unrelated notion of
standardisation from rewriting theory. Here we provide a more basic, down-
to-earth approach, not relying on advanced rewriting theory.

The Useful MAM The Milner Abstract Machine (MAM) is a variant with just
one global environment of the Krivine Abstract Machine (KAM), introduced
in [1] by Accattoli, Barenbaum, and Mazza. The same authors introduce in [2]
the Strong MAM, i.e. the extension of the MAM to strong evaluation, that
is a version with just one global environment of Cregut’s Strong KAM [I3],
essentially the only other abstract machine for strong (call-by-name) evaluation
in the literature. Both are not reasonable. The problem is that these machines
do not distinguish between useful and useless steps.

The Useful MAM introduced in this paper improves the situation, by refining
the Strong MAM. The principle is quite basic, let us sketch it. Whenever a
B-redex (Az.t)u is encountered, the Strong MAM adds an entry [z<u] to the
environment E. The Useful MAM, additionally, executes an auxiliary machine on
u—the Checking Abstract Machine (Checking AM)—to establish its usefulness.
The result of this check is a label [that is attached to the entry [z«u]'. Later
on, when an occurrence of z is found, the Useful MAM replaces x with u only if
the label on [z+u]! says that it is useful. Otherwise the machine backtracks, to
search for the next redex to reduce.

The two results of the paper are:

1. Qualitative (Theorem : the Useful MAM correctly and completely imple-
ments leftmost-outermost (LO for short) S-evaluation—formally, the two are
weakly bisimilar.

2. Quantitative (Theorem : the Useful MAM is a reasonable implementa-
tion, i.e. the work done by both the Useful MAM and the Checking AM is
polynomial in the number of LO [-steps and in the size of the initial term.

Related Work Beyond Crégut’s [12/13] and Accattoli, Barenbaum, and Mazza’s
[2], we are aware of only two other works on strong abstract machines, Garcia-
Pérez, Nogueira and Moreno-Navarro’s [22] (2013), and Smith’s [27] (unpub-
lished, 2014). Two further studies, de Carvalho’s [I1] and Ehrhard and Regnier’s
[19], introduce strong versions of the KAM but for theoretical purposes; in par-
ticular, their design choices are not tuned towards implementations (e.g. rely on
a naive parallel exploration of the term). Semi-strong machines for call-by-value
(i.e. dealing with weak evaluation but on open terms) are studied by Grégoire
and Leroy [23] and in a recent work by Accattoli and Sacerdoti Coen [4] (see
[4] for a comparison with [23]). More recent work by Dénes [I8] and Boutiller
[10] appeared in the context of term evaluation in Coq. None of the machines for
strong evaluation in the literature is reasonable, in the sense of being polynomial
in the number of §-steps. The machines developed by Accattoli and Sacerdoti
Coen in [4] are reasonable, but they are developed in a semi-strong setting only.
Another difference between [4] and this work is that call-by-value simplifies the
treatment of usefulness because it allows to compute the labels for usefulness
while evaluating the term, that is not possible in call-by-name.

Global environments are explored by Ferndndez and Siafakas in [20], and
used in a minority of works, e.g. [25I17]. Here we use the terminology for abstract
machines coming from the distillation technique in [I], related to the refocusing

semantics of Danvy and Nielsen [I6] and introduced to revisit the relationship
between the KAM and weak linear head reduction pointed out by Danos and
Regnier [15]. We do not, however, employ the distillation technique itself.

Proofs All proofs have been omitted. Those of the main lemmas and theorems
concerning the Useful MAM can be found in the appendix. The other ones can
be found in the longer version on the author’s web page.

2 X-Calculus and Leftmost-Outermost Evaluation

The syntax of the A-calculus is given by the following grammar for terms:
A-TERMS t,u,w,r ==z | Azt | tu.

We use t{z+u} for the usual (meta-level) notion of substitution. An abstraction
Az.t binds x in ¢, and we silently work modulo a-equivalence of bound variables,
e.g. (A\y.(zy)){z<y} = Az.(yz). We use £v(t) for the set of free variables of ¢.

Contexts. One-hole contexts C' and the plugging C(t) of a term ¢ into a
context C' are defined by:

CONTEXTS PLUGGING

i () (M) =t (Cu)(t) == C(tyu
Cu= (A CCHIC (O = Ae.Cl) (WO E) = uCE)

As usual, plugging in a context can capture variables, e.g. (Ay.((-)y)){y) =
Ay.(yy). The plugging C{C") of a context C’ into a context C' is defined analo-
gously. A context C' is applicative if C = C'((-)u) for some C’ and u.

We define B-reduction — 4 as follows:

RULE AT Topr LEVEL CONTEXTUAL CLOSURE
(Az.t)u — g t{x—u} Ct) =g Cluy ift—gu

A term t is a normal form, or simply normal, if there is no u such that ¢t =4 u,
and it is neutral if it is normal and it is not of the form Azx.u (i.e. it is not an
abstraction). The position of a S-redex C(t) —3 C(u) is the context C in which
it takes place. To ease the language, we will identify a redex with its position.
A derivation d : t —* u is a finite, possibly empty, sequence of reduction steps.
We write [t| for the size of ¢ and |d| for the length of d.

Leftmost-Outermost Derivations The left-to-right outside-in order on redexes is
expressed as an order on positions, i.e. contexts.

Definition 1 (Left-to-Right Outside-In Order).

1. The outside-in order:

(a) Root: (-) <o C for every context C # (-);

(b) Contextual closure: If C' <o C' then C"(C) <o C"(C") for any C".
2. The left-to-right order: C <, C' is defined by:

(a) Application: If C' <, t and C' <, u then Cu <y, tC’;
(b) Contextual closure: If C' <y, C' then C"'(C) <1, C"{(C") for any C".
3. The left-to-right outside-in order: C' <o C' if C <o C" or C <y C':

The following are a few examples. For every context C, it holds that (-) £, C.
Moreover (Az.(-))t <o (Az.({-)u))t and ({-)t)u <1 (wt)(-).

Definition 2 (LO g-Reduction). Let t be a A-term and C a redex of t. C
is the leftmost-outermost S-redex (LO (B for short) of t if C <po C' for every
other B-redex C" of t. We write t —1ag u if a step reduces the LO -redex.

The next immediate lemma guarantees that we defined a total order.

Lemma 1 (Totality of <10). If C <, t and C' <, t then either C <p o C' or
C’" <po C or C = C". Therefore, —195 is deterministic.

LO Contezts For the technical development of the paper we need two character-
isations of when a context is the position of the LO g-redex. The first, following
one, is used in the proofs of Lemma and Lemma [6][4}

Definition 3 (LO Contexts). A context C is LO if

1. Right Application: whenever C' = C'(tC") then t is neutral, and
2. Left Application: whenever C = C'(C"t) then C" # \x.C"".

The second characterisation is inductive, and it used to prove Lemma [10}f3]
Definition 4 (iLO Context). Inductive LO (or iLO) contexts are defined

by induction as follows:

(az-iLO) CisilO C# A\x.C’

() is iLO il (@1-iLO)

C s iLO ¥ t is neutral C s iLO v
NeC is Lo (V0 tC is iLO (@r-iL0)

As expected,

Lemma 2 (—rgs-steps and Contexts). Let t be a A-term and C a redex in
t. Cis the LO B redex in t iff C' is LO iff C is iLO.

3 Preliminaries on Abstract Machines

We study two abstract machines, the Useful MAM (Fig. [4) and an auxiliary
machine called the Checking AM (Fig. [2)).

The Useful MAM is meant to implement LLO S-reduction strategy via a de-
coding function - mapping machine states to A-terms. Machine states s are given
by a code t, that is a A\-term ¢ not considered up to a-equivalence (which is why
it is over-lined), and some data-structures like stacks, frames, and environments.
The data-structures are used to implement the search for the next LO-redex and

a form of micro-steps substitution, and they decode to evaluation contexts for
—rog. Every state s decodes to a term s, having the shape C,(t), where ¢ is the
code currently under evaluation and Cj is the evaluation context given by the
data-structures.

The Checking AM tests the usefulness of a term (with respect to a given
environment) and outputs a label with the result of the test. It uses the same
states and data-structures of the Useful MAM.

The Data-Structures First of all, our machines are executed on well-named
terms, that are those a-representants where all variables (both bound and free)
have distinct names. Then, the data-structures used by the machines are defined
in Fig. [T, namely:

— Stack m: it contains the arguments of the current code;

— Frame F: a second stack, that together with 7 is used to walk through the
term and search for the next redex to reduce. The items ¢ of a frame are
of two kinds. A variable x is pushed on the frame F whenever the machines
starts evaluating under an abstraction Az. A head argument context tOm is
pushed every time evaluation enters in the right subterm @ of an application
tu. The entry saves the left part ¢ of the application and the current stack
7, to restore them when the evaluation of the right subterm @ is over.

— Global Environment E: it is used to implement micro-step evaluation (i.e.
the substitution on a variable occurrence at the time), storing the arguments
of S-redexes that have been encountered so far. Most of the literature on ab-
stract machines uses local environments and closures. Having just one global
environment F removes the need for closures and simplifies the machine. On
the other hand, it forces to use explicit a-renamings (the operation t“ in
~epoq a0d ~e , in Fig. [d), but this does not affect the overall complexity,
as it speeds up other operations, see [I]. The entries of E are of the form
[z+1)!, i.e. they carry a label [used to implement usefulness, to be explained
later on in this section. We write F(z) = [z+1]! when F contains [z+]' and
E(r) = 1 when in E there are no entries of the form [z+7]'.

The Decoding Every state s decodes to a term s (see Fig. , having the shape
Cy(t]y), where

— ﬂE is a A-term, roughly obtained by applying to the code the substitution
induced by the global environment E. More precisely, the operation ¢ is
called unfolding and it is properly defined at the end of this section.

— (s is a context, that will be shown to be a LO context, obtained by decoding
the stack m and the dump F and applying the unfolding. Note that, to
improve readability, 7 is decoded in postfix notation for plugging.

The Transitions According to the distillation approach of [I] we distinguish
different kinds of transitions, whose names reflect a proof-theoretical view, as
machine transitions can be seen as cut-elimination steps [7U]:

— Multiplicatives ~»y: they fire a S-redex, except that if the argument is not a
variable then it is not substituted but added to the environment;

— Ezponentials ~+,: they perform a clashing-avoiding substitution from the
environment on the single variable occurrence represented by the current
code. They implement micro-step substitution.

— Commutatives ~: they locate and expose the next redex according to the
LO evaluation strategy, by rearranging the data-structures.

Both exponential and commutative transitions are invisible on the A-calculus.
Garbage collection is here simply ignored, or, more precisely, it is encapsulated
at the meta-level, in the decoding function.

Labels for Useful Sharing A label [for a code in the environment can be of three
kinds. Roughly, they are:

— Neutral, or [= neu: it marks a neutral term, that is always useless as it
is S-normal and its substitution cannot create a redex, because it is not an
abstraction;

— Abstraction, or | = abs: it marks an abstraction, that is a term that is at
times useful to substitute. If the variable that it is meant to replace is applied,
indeed, the substitution of the abstraction creates a S-redex. But if it is not
applied, it is useless.

— Redex, or | = red: it marks a term that contains a -redex. It is always useful
to substitute these terms.

Actually, the explanation we just gave is oversimplified, but it provides a first
intuition about labels. In fact in an environment [z+f]' : E it is not really #
that has the property mentioned by its label, rather the term Z\LE obtained by
unfolding the rest of the environment on Z. The idea is that [x«£]"*? states that
it is useful to substitute ¢ to later on obtain a redex inside it (by potential
further substitutions on its variables coming from FE). The precise meaning of
the labels will be given by Definition [f] and the properties they encode will be
made explicit by Lemma

A further subtlety is that the label red for redexes is refined as a pair (red,n),
where n is the number of substitutions in E that are needed to obtain the LO
redex in ﬂE. Our machines never inspect these numbers, they are only used for
the complexity analysis of Sect. [5.2]

Grafting and Unfoldings The unfolding of the environment F on a code ¢ is
defined as the recursive capture-allowing substitution (called grafting) of the
entries of E on t.

Definition 5 (Grafting and Environment Unfolding). The operation of
grafting t{{z<u}} is defined by

(@r){zut} = w{{z<utyr{{z-u}} (yw){{zcu}} = Aywi{{z-u}t}
a{{ru}t} =1 y{{zcul} =y

Frames Fu=e|F:¢ Stacks Tu=e€|t:mw
Frame Items ¢ =:=t07 |z Phases Y=V |A
Labels l ::=abs | (red,n € N) | neu Environments FE ::=¢| [z’ : E

Fig. 1: Grammars.

Given an environment E we define the unfolding of E on a code t as follows:

tl =1 E*L[au—ﬂ]l:E = t{{z<u}}|,
or equivalently as:

(@) = WpWly Tlhyqp = Wp
(A7)], = Av.ar], Ty capp = Ty Tl o=

For instance, ()\x.y)i[yhm]”w = Az.(zx). The unfolding is extended to contexts

as expected (i.e. recursively propagating the unfolding and setting (-)|, = E).

Let us explain the need for grafting. In [2], the Strong MAM is decoded to
the LSC, that is a calculus with explicit substitutions, i.e. a calculus able to
represent the environment of the Strong MAM. Matching the representation of
the environment on the Strong MAM and on the LSC does not need grafting
but it is, however, a quite technical affair. Useful sharing adds many further
complications in establishing such a matching, because useful evaluation com-
putes a shared representation of the normal form and forces some of the explicit
substitutions to stay under abstractions. The difficulty is such, in fact, that we
found much easier to decode directly to the A-calculus rather than to the LSC.
Such an alternative solution, however, has to push the substitution induced by
the environment through abstractions, which is why we use grafting.

Lemma 3 (Properties of Grafting and Unfolding).

1. If the bound names of t do not appear free in u then t{x<u} = t{{x<u}}.
2. If moreover they do not appear free in E then t| {r<uly} = t{zeu}],.

4 The Checking Abstract Machine

The Checking Abstract Machine (Checking AM) is defined in Fig. [2| It starts
executions on states of the form (e, ¢, €, E, ¥), with the aim of checking the useful-
ness of t with respect to the environment FE, i.e. it walks through ¢ and whenever
it encounters a variable x it looks up its usefulness in F.

The Checking AM has six commutative transitions, noted —, with i =
1,..,6, used to walk through the term, and five output transitions, noted —,,
with 7 = 1,..,5, that produce the value of the test for usefulness, to be later
used by the Useful MAM. The exploration is done in two alternating phases,
evaluation ¥ and backtracking A. Evaluation explores the current code towards

ﬁrame Code | Stack | Env | Ph Frame | Code | Stack | Env PN
F tu T E | vV —y F t w:m | E |V
F Mt |u:m | E | v —4 output (red,1)
F Azt € E vV e, Fix ‘ t ‘ € ‘ E ‘ v
F x ™ E | v —, output (red,n+1)
if B(z) = [z<1]edm™
F ‘ T ‘ R ‘ E ‘ v —,, output (red,2)
if B(x) = [z
F | o | = | E|]Y = F | 2 | = | E|a
if B(x) = L or E(z) = [x<#™" or (E(z) = [z7]** and 7 = ¢)
F:z t € E A —auc, F .t € E A
F:tOrm I € E A —ac F tu T E A
F t u:mw | E A —u F 80w u € E v
€ tu € E A —,, output neu
k € .t € E | A —, output abs /

c=() C. = Fln)l,]
wom o= ((Jar s = F{BL, = Ca(il,)

F :i0m = P{(E())m))
F.z:=F(x.()) where s = (F,t, 7, F)

Fig. 3: Decoding.

the head, storing in the stack and in the frame the parts of the code that it
leaves behind. Backtracking comes back to an argument that was stored in the
frame, when the current head has already been checked. Note that the Checking
AM never modifies the environment, it only looks it up.

Let us explain the transitions. First the commutative ones:

— —y,: the code is an application tu and the machine starts exploring the left
subterm ¢, storing % on top of the stack .

—vyc,: the code is an abstraction Az.t and the machine goes under the ab-
straction, storing x on top of the frame F.

—yc,: the machine finds a variable that either has no associated entry in
the environment (if E(z) = L) or its associated entry [z«]' in the environ-
ment is useless. This can happen if either [= neu, i.e. substituting ¢ would
only lead to a neutral term, or [= abs, i.e. substituting ¢ would provide an
abstraction, but the stack is empty, and so it is useless to substitute the ab-
straction because no S-redexes will be obtained. Thus the machine switches
to the backtracking phase (A), whose aim is to undo the frame to obtain a
new subterm to explore.

—4c,: it is the inverse of —y.,, it puts back on the code an abstraction that
was previously stored in the frame.

—4c;: backtracking from the evaluation of an argument w, it restores the
application tu and the stack 7 that were previously stored in the frame.

10

— —ace: backtracking from the evaluation of the left subterm ¢ of an application
tu, the machine starts evaluating the right subterm (by switching to the
evaluation phase V) with an empty stack ¢, storing on the frame the pair
tOm of the left subterm and the previous stack .

Then the output transitions:

— —,,: the machine finds a S-redex, namely (Az.t)u and thus outputs a label
saying that it requires only one substitution step (namely substituting the
term the machine was executed on) to eventually find a S-redex.

— —,,: the machine finds a variable 2 whose associated entry [z+]("°®™) in
the environment is labeled with (red,n), and so outputs a label saying that
it takes n 4 1 substitution steps to eventually find a S-redex (n plus 1 for
the term the machine was executed on).

— —,,: the machine finds a variable = whose associated entry [z+#]%** in the
environment is labeled with abs, so t is an abstraction, and the stack is non-
empty. Since substituting the abstraction will create a S-redex, the machine
outputs a label saying that it takes two substitution steps to obtain a S-redex,
one for the term the machine was executed on and one for the abstraction ¢.

— —,,: the machine went through the whole term, that is an application, and
found no redex, nor any redex that can be obtained by substituting from
the environment. Thus that term is neutral and so the machine outputs the
corresponding label.

— —,,: as for the previous transition, except that the term is an abstraction,
and so the output is the abs label.

The fact that commutative transitions only walk through the code, without
changing anything, is formalised by the following lemma, that is crucial for the
proof of correctness of the Checking AM (forthcoming Theorem [1)).

Lemma 4 (Commutative Transparency).

»3,4,5,

1. Decoding Without Unfolding: F((u)r) = F'((@')xn’), and
2. Decoding With Unfolding: s = s’.

For the analysis of the properties of the Checking AM we need a notion
of well-labeled environment, i.e. of environment where the labels are consistent
with their intended meaning. It is a technical notion also providing enough in-
formation to perform the complexity analysis, later on. Moreover, it includes
two structural properties of environments: 1) in [z+Z]' the code 7 cannot be a
variable, and 2) there cannot be two entries associated to the same variables.

Definition 6 (Well-Labeled Environments). Well-labeled global environ-
ments F are defined by

1. Empty: € is well-labeled;
2. Inductive: [x«#])' : E' is well-labeled if E' is well-labeled, x is fresh with
respect to t and E’, and

11

(a) Abstractions: if | = abs then t and t|,, are normal abstractions;
(b) Neutral Terms: if [= neu then t is an application and t|, is neutral.
(c) Redexes: if | = (red,n) then t is not a variable, |-, contains a B-redex.
Moreover, t = C{u) with C a LO context and
— if n =1 then u is a B-redex,
—ifn>1thentu=x and E' = E" : [y«u)' : E" with
o ifn>2 thenl= (red,n—1)
o ifn=2thenl = (red,1) or (I = abs and C is applicative).

Remark 1. Note that by the definition it immediately follows that if E = E’ :
[zt)(redm) . B is well-labeled then the length of E”, and thus of E, is at least
n. This fact is used in the proof of Theorem

The study of the Checking AM requires some terminology and two invariants.
A state s is initial if it is of the form (e,,€, F,) with E well-labeled and it is
reachable if there are an initial state s’ and a Checking AM execution p : 8’ —* s.
Both invariants are used to prove the correctness of the Checking AM: the normal
form invariant to guarantee that codes labeled with neu and abs are indeed
normal or neutral, while the decoding invariant is used for the redex labels.

Lemma 5 (Checking AM Invariants). Let s = F | u | 7 | E | ¢ be a
Checking AM reachable state and E be a well-labeled environment.

1. Normal Form:
(a) Backtracking Code: if p = A, then] is normal, and if w is non-empty,
then |, is neutral;
(b) Frame: if F' = F':wOn' : F”, then W], is neutral.
2. Decoding: Cy is a LO context.

Finally, we can prove the main properties of the Checking AM, i.e. that when
executed on t and F it provides a label | to extend E with a consistent entry
for T (i.e. such that [x«f]' : E is well-labeled), and that such an execution takes
time linear in the size of t.

Theorem 1 (Checking AM Properties). Let ¢ be a code and E a global
environment.

1. Determinism and Progress: the Checking AM is deterministic and there al-
ways is a transition that applies;

2. Termination and Complexity: the execution of the Checking AM on t and E
always terminates, taking O([t]) steps, moreover

3. Correctness: if E is well-labeled, x is fresh with respect to E and t, and | is
the output then [xv+t]' : E is well-labeled.

12

ﬁame Code | Stack | Env | Ph Frame Code | Stack Env m
F tu T FE Vo g F t T E v
F Azt | y:m | E | ¥ ~op F tH{ax—y} ™ E v
F At | a:m | E | V¥ ~op, F t ™ [zem]' :E | v
if @ is not a variable and [is the output of the Checking AM on w and F
F Azt € E Vo iy, F:z t € E v
F z ™ E | v ~._, F t* ™ E v
if B(z) = [zt)red™)
F | o Juinm| E |V e, Fo| ™ Ju:r| E v
if B(x) = [x]**
F | o | 7 | E|VY -~y F | = | = | E |a
if E(x) = L or E(z) = [z<7]"*" or (E(z) = [z<7]** and © = ¢)
F:.x t € FE A ~ac, F Azt € E A
F:tOrm u € E A~ F tu s E A
K F t u:w | E A ~wa F 0w u € E y

% is any code a-equivalent to £ such that it is well-named and its bound names are fresh with
respect to those in the other machine components.

Fig.4: The Useful Milner Abstract Machine (Useful MAM).

5 The Useful Milner Abstract Machine

The Useful MAM is defined in Fig. [It is very similar to the Checking AM,
in particular it has exactly the same commutative transitions, and the same
organisation in evaluating and backtracking phases. The difference with respect
to the Useful MAM is that the output transitions are replaced by micro-step
computational rules that reduce f-redexes and implement useful substitutions.
Let us explain them:

— Multiplicative Transition ~y,: when the argument of the S-redex (Az.t)y is
a variable y then it is immediately substituted in . This happens because 1)
such substitution are not costly and 2) because in this way the environment
stays compact, see also Remark [2] at the end of the paper.

— Multiplicative Transition ~-y,: if the argument @ is not a variable then the
entry [z+]' is added to the environment. The label [is obtained by running
the Checking AM on @ and F.

— Exponential Transition ~-,, ,: the environment entry associated to x is la-
beled with (red, n) thus it is useful to substitute ¢. The idea is that in at most
n additional substitution steps (shuffled with commutative steps) a S-redex
will be obtained. To avoid variable clashes the substitution a-renames t.

— FEzponential Transition ~».,, : the environment associates an abstraction to
x and the stack is non empty, so it is useful to substitute the abstraction
(again, a-renaming to avoid variable clashes). Note that if the stack is empty
the machine rather backtracks using ~~yc,.

The Useful MAM starts executions on initial states of the form (e,t,¢€,€),
where 7 is such that any two variables (bound or free) have distinct names, and
any other component is empty. A state s is reachable if there are an initial state
s’ and a Useful MAM execution p : s’ ~* s, and it is final if no transitions apply.

13

5.1 Qualitative Analysis

The results of this subsection are the correctness and completeness of the Useful
MAM. Four invariants are required. The normal form and decoding invariants
are exactly those of the Checking AM (and the proof for the commutative transi-
tions is the same). The environment labels invariant follows from the correctness
of the Checking AM (Theorem . The name invariant is used in the proof of
Lemma

Lemma 6 (Useful MAM Qualitative Invariants). Let s=F |a |7 | E | ¢
be a state reachable from an initial term to. Then:

1. Environment Labels: F is well-labeled.
2. Normal Form:
(a) Backtracking Code: if o = A, then]y, is normal, and if 7 is non-empty,
then |, is neutral;
(b) Frame: iof F = F' : wOn’' : F”, then W]y, is neutral.
3. Name:
(a) Substitutions: if E = E’ : [x«<t] : E" then x is fresh wrt t and E";
(b) Abstractions and Evaluation: if ¢ = ¥ and \z.t is a subterm of W, 7, or
' (if F =F' :wQr' : F") then x may occur only in t;
(c) Abstractions and Backtracking: if o = A and \z.t is a subterm of 7 or
7 (if F =F' :wQr’ : F") then x may occur only in t.
4. Decoding: Cy is a LO context.

We can now show how every single transition projects on the A-calculus, and
in particular that multiplicative transitions project to LO [S-steps.

Lemma 7 (One-Step Weak Simulation, Proof at Page . Let s be a
reachable state.

1. Commutative: if s ~>c, , ., 8 then s =s';
2. Exponential: if s ~e__,e.,. S then s =s';
3. Multiplicative: if s ~on, n, 8" then s =108 s'.

We also need to show that the Useful MAM computes S-normal forms.

Lemma 8 (Progress, Proof at Page [18). Let s be a reachable final state.
Then s is f-normal.

The theorem of correctness and completeness of the machine with respect to
—108 follows. The bisimulation is weak because transitions other than ~-, are
invisible on the A-calculus. For a machine execution p we denote with |p| (resp.
|plx) the number of transitions (resp. x-transitions for x € {m, e,c,...}) in p.

Theorem 2 (Weak Bisimulation, Proof at Page . Let s be an initial
Useful MAM state of code t.

1. Simulation: for every execution p : s ~* s’ there exists a derivation d: s —lop
s’ such that |d| = |plu;

2. Reverse Simulation: for every derivation d:t —{y5 u there is an ezecution
p:s~*s such that 8 =u and |d| = |pla.

14

5.2 Quantitative Analysis

The complexity analyses of this section rely on two additional invariants of the
Useful MAM, the subterm and the environment size invariants.

The subterm invariant bounds the size of the duplicated subterms and it is
crucial. For us, @ is a subterm of ¢ if it does so up to variable names, both free
and bound. More precisely: define ¢~ as ¢ in which all variables (including those
appearing in binders) are replaced by a fixed symbol *. Then, we will consider u
to be a subterm of ¢ whenever v~ is a subterm of ¢t~ in the usual sense. The key
property ensured by this definition is that the size |u| of @ is bounded by [¢].

Lemma 9 (Useful MAM Quantitative Invariants). Let s=F |t |7 | E |
¢ be a state reachable by the execution p from the initial code to.

1. Subterm:
(a) Evaluating Code: if ¢ = V¥, then @ is a subterm of to;
(b) Stack: any code in the stack 7 is a subterm of to;
(¢) Frame: if F = F' : wQn’' : F”, then any code in ' is a subterm of to;
(d) Global Environment: if E = E’ : [x«<w]' : E”, then W is a subterm of to;
2. Environment Size: the length of the global environment E is bound by |p|a.

The proof of the polynomial bound of the overhead is in three steps. First,
we bound the number |p|. of exponential transitions of an execution p using the
number |p|, of multiplicative transitions of p, that by Theorem corresponds to
the number of LO S-steps on the A-calculus. Second, we bound the number |p|.
of commutative transitions of p by using the number of exponential transitions
and the size of the initial term. Third, we put everything together.

Multiplicative vs Exponential Analysis This step requires two auxiliary lemmas.
The first one essentially states that commutative transitions eat normal and
neutral terms, as well as LO contexts.

Lemma 10. Let s=F |t|w | E | ¥ be a state and E be well-labeled. Then

1. If t]y is a normal term and ™ =€ then s ~% F' |t |7 | E'| A.

2. If t|,, is a neutral term then s ~¢ F |t |7 | E | A.

3. If t = C(u) with Cly a LO context then there exist F' and 7' such that
swiF |lu|n' |E|V;

The second lemma uses Lemma [I0] and the environment labels invariant
(Lemma to show that the exponential transitions of the Useful MAM are
indeed useful, as they head towards a multiplicative transition, that is towards
[S-redexes.

Lemma 11 (Useful Exponentials Lead to Multiplicatives). Let s be a

reachable state such that s ~~ s,

€(red,n)

1. If n =1 then s~~~y 8"

15

2. If n =2 then s’ ~i~se,, ~on 8 or 8~k s
3. If n > 1 then s ~>%~ s

€(red,n—1)

€(red,1)

Finally, using the environment size invariant (Lemma [9}i2)) we obtain the local
boundedness property, that is used to infer a quadratic bound via a standard
reasoning (already employed in [0]).

Theorem 3 (Exponentials vs Multiplicatives, Proof at Page . Let s
be an initial Useful MAM state and p : s ~* s,

1. Local Boundedness: if 0 : 8’ ~* s" and o]y = 0 then |o|e < |pla;
2. Exponentials are Quadratic in the Multiplicatives: |p|e € O(|p|2).

Commutative vs Exponential Analysis The second step is to bound the number
of commutative transitions. Since the commutative part of the Useful MAM is
essentially the same as the commutative part of the Strong MAM of [2], the
proof of such bound is essentially the same as in [2]. It relies on the subterm

invariant (Lemma [9[T]).

Theorem 4 (Commutatives vs Exponentials, Proof at Page . Let
p:s~*s" bea Useful MAM execution from an initial state of code t. Then:

1. Commutative Evaluation Steps are Bilinear: |p|ly. < (1 + |ple) - |t].
2. Commutative Evaluation Bounds Backtracking: |plac < 2 |p|ye-
3. Commutative Transitions are Bilinear: [p|. < 3- (1 + |ple) - |¢].

The Main Theorem Putting together the matching between LO [-steps and mul-
tiplicative transitions (Theorem [2)), the quadratic bound on the exponentials via
the multiplicatives (Theorem and the bilinear bound on the commutatives
(Theorem we obtain that the number of the Useful MAM transitions to
implement a LO B-derivation d is at most quadratic in the length of d and linear
in the size of t. Moreover, the subterm invariant (Lemma and the analysis
of the Checking AM (Theorem allow to bound the cost of implementing the
execution on RAM.

Theorem 5 (Useful MAM Overhead Bound, Proof at Page [20). Let
d 1t =g u be a leftmost-outermost derivation and p be the Useful MAM
execution simulating d given by Theorem[9[3 Then:

1. Length: [p| = O((1 + |d|?) - |t]).

2. Cost: p is implementable on RAM in O((1+ |d|?) - |t|) steps.

Remark 2. Our bound is quadratic in the number of the LO S-steps but we
believe that it is not tight. In fact, our transition ~-y, is a standard optimisation,
used for instance in Wand’s [28] (section 2), Friedman et al.’s [21] (section 4),
and Sestoft’s [26] (section 4), and motivated as an optimization about space. In
Sands, Gustavsson, and Moran’s [25], however, it is shown that it lowers the
overhead for time from quadratic to linear (with respect to the number of j-
steps) for call-by-name evaluation in a weak setting. Unfortunately, the simple
proof used in [25] does not scale up to our setting, nor we have an alternative
proof that the overhead is linear. We conjecture, however, that it does.

16

References

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

Accattoli, B., Barenbaum, P., Mazza, D.: Distilling Abstract Machines. In: ICFP
2014. pp. 363-376 (2014)

. Accattoli, B., Barenbaum, P., Mazza, D.: A Strong Distillery. In: APLAS 2015.

pp. 231-250 (2015)

Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A Nonstandard Standardiza-
tion Theorem. In: POPL. pp. 659-670 (2014)

Accattoli, B., Coen, C.S.: On the Relative Usefulness of Fireballs. In: LICS 2015.
pp. 141-155 (2015)

Accattoli, B., Dal Lago, U.: On the invariance of the unitary cost model for head
reduction. In: RTA. pp. 22-37 (2012)

Accattoli, B., Lago, U.D.: (Leftmost-Outermost) Beta Reduction is Invariant, In-
deed. Logical Methods in Computer Science 12(1) (2016)

Ariola, Z.M., Bohannon, A., Sabry, A.: Sequent calculi and abstract machines.
ACM Trans. Program. Lang. Syst. 31(4) (2009)

Asperti, A., Mairson, H.G.: Parallel beta reduction is not elementary recursive. In:
POPL. pp. 303-315 (1998)

. Blelloch, G.E., Greiner, J.: Parallelism in sequential functional languages. In:

FPCA. pp. 226-237 (1995)

Boutiller, P.: De nouveaus outils pour manipuler les inductif en Coq. Ph.D. thesis,
Université Paris Diderot - Paris 7 (2014)

de Carvalho, D.: Execution time of lambda-terms via denotational semantics and
intersection types. CoRR abs/0905.4251 (2009)

Crégut, P.: An abstract machine for lambda-terms normalization. In: LISP and
Functional Programming. pp. 333-340 (1990)

Crégut, P.: Strongly reducing variants of the Krivine abstract machine. Higher-
Order and Symbolic Computation 20(3), 209-230 (2007)

Dal Lago, U., Martini, S.: The weak lambda calculus as a reasonable machine.
Theor. Comput. Sci. 398(1-3), 32-50 (2008)

Danos, V., Regnier, L.: Head linear reduction. Tech. rep. (2004)

Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Tech. Rep. RS-04-26,
BRICS (2004)

Danvy, O., Zerny, I.: A synthetic operational account of call-by-need evaluation.
In: PPDP. pp. 97-108 (2013)

Dénes, M.: Etude formelle d’algorithmes efficaces en algebre linéaire. Ph.D. thesis,
Université de Nice - Sophia Antipolis (2013)

Ehrhard, T., Regnier, L.: Bchm trees, Krivine’s machine and the Taylor expansion
of lambda-terms. In: CiE. pp. 186-197 (2006)

Fernandez, M., Siafakas, N.: New developments in environment machines. Electr.
Notes Theor. Comput. Sci. 237, 57-73 (2009)

Friedman, D.P., Ghuloum, A., Siek, J.G., Winebarger, O.L.: Improving the lazy
krivine machine. Higher-Order and Symbolic Computation 20(3), 271-293 (2007)
Garcia-Pérez, AA, Nogueira, P., Moreno-Navarro, J.J.: Deriving the full-reducing
krivine machine from the small-step operational semantics of normal order. In:
PPDP. pp. 85-96 (2013)

Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: (ICFP
’02). pp. 235-246 (2002)

Milner, R.: Local bigraphs and confluence: Two conjectures. Electr. Notes Theor.
Comput. Sci. 175(3), 65-73 (2007)

25.

26.

27.
28.

17

Sands, D., Gustavsson, J., Moran, A.: Lambda calculi and linear speedups. In: The
Essence of Computation, Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones. pp. 60-84 (2002)

Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231-264
(1997)

Smith, C.: Abstract machines for higher-order term sharing, Presented at IFL 2014
Wand, M.: On the correctness of the krivine machine. Higher-Order and Symbolic
Computation 20(3), 231-235 (2007)

Proofs of the Main Lemmas and Theorems

Proof of One-Step Weak Bisimulation Lemma (Lemma |7, p.

1.

2.

Commutative: the proof is exactly as the one for the Checking AM (Lemmal4}f2),
that can be found in the longer version of this paper on the author’s webpage.

Ezponential:

— Case s = (F,a,m,E, V) ~,_, (F,1",7,E,¥) = s with E(z) =
[zt)(redm), Then E = E' : [x«f]"®™) : E” for some environments
E’, and E”. Remember that terms are considered up to a-equivalence.

s=Cgy <‘T~LE> =Cy <E$Eu> =Cy <ﬂ/E> =

In the chain of equalities we can replace f\LE,, with ﬂE because by well-
labeledness the variables bound by E’ are fresh with respect to ¢.

— Case s = (F,2,U: m,E, V) ~,,. (F,t",7:7,E, V) =5 with E(z) =
[£+7]?%. The proof that s = s is exactly as in the previous case.

Multiplicative:
— Case s = (F,\z.t,y : T, B, V) ~y, (F,t{z<y}, 7, E,¥) = s'. Note that

Cs = F(m)], is LO by the decoding invariant (Lemma . Note also
that by the name invariant (Lemma [63b) = can only occur in Z. Then:

(F, \et,y :m, B, V) = E((Ax.tyy : m) |y
= E((Az.t)y)m)]y
- Col(\)Ly
108 Co(tlp{rylp})

=r@EaeEE Cs (Hr-y}ly)
= (F t{ax<y},m, E, V)

— Case s = (F,\x.t,u : 7, E, V) ~, (F,{, 7 [z<7)' : B, V) = s with u
not a variable. Note that Cy = F((-)m)|, = F|5((-)7];) is LO by the
decoding invariant (Lemma . Note also that by the name invariant

18

(Lemma [6l3b)) can only occur in £. Then:

(B, et,u:m,E,¥) = F

=
Ny

= E~LE<
—L08 F$E<<¥\LE{1'<_E~LE}>7T\LE>

F
=L EEReLEm L
=1 6ER F
E>\L[xeﬂ]l:E
(F, 1,7, [z=a)' : E,v)O

Proof of the Progress Lemma (Lemma (8, p.

A simple inspection of the machine transitions shows that final states have the
form (e,Z,¢, E, A). Then by the normal form invariant (Lemma |6]2a)) s = tl, is
[-normal. a

Proof of the Weak Bisimulation Theorem (Thm |2} p.

1. By induction on the length |p| of p, using the one-step weak simulation lemma
(Lemma E[) If p is empty then the empty derivation satisfies the statement.
If p is given by o : s ~* s” followed by s” ~» s’ then by i.h. there exists

e:s =g s’ s.b. |e| = |o|n. Cases of s ~ s":
(a) Commutative or Exponential. Then s” = s’ by Lemma and Lemma
and the statement holds taking d := e because |d| = |e| =i |0|n = |p|n-

(b) Multiplicative. Then s” —10s s’ by Lemma and defining d as e fol-
lowed by such a step we obtain |d| = |e| + 1 =; 4. |0|n + 1 = |p|a-

2. We use nfe.(s) to denote the normal form of s with respect to exponential
and commutative transitions, that exists and is unique because ~». U ~¢
terminates (termination is given by forthcoming Theorem [3| and Theorem
that are postponed because they actually give precise complexity bounds,
not just termination) and the machine is deterministic (as it can be seen
by an easy inspection of the transitions). The proof is by induction on the
length of d. If d is empty then the empty execution satisfies the statement.
If d is given by e : t —1og w followed by w —pog w then by i.h. there

is an execution o : s ~* §” s.t. w = §” and |o], = |e|. Note that since

exponential and commutative transitions are mapped on equalities, o can
/. * 1 * 12 3 "y _

be extended as 0’ : s ~* " 0 a5 Dfec(s”) With nfec(s”) = w

and |o’|, = |e|]. By the progress property (Lemma [§]) nf..(s”) cannot be a
final state, otherwise w = nfe.(s”) could not reduce. Then nfec(s”) ~y 8
(the transition is necessarily multiplicative because nfe.(s”) is normal with
respect to the other transitions). By the one-step weak simulation lemma
(Lemma nfec(s") = w —rop 8’ and by determinism of —1gs (Lemma)

19

s’ = u. Then the execution p defined as ¢’ followed by nfec(s”) ~y s satisty
the statement, as |[pln = [0'ln + 1 =|ola +1=|e] +1=d|. O

Proof of the Exponentials vs Multiplicatives Theorem (Thm (3} p.

1. We prove that |o|e < |E|. The statement follows from the environment size

invariant (Lemma [9]2)), for which |E| < |ply.
If |o|e = 0 it is immediate. Then assume |o]|e > 0, so that there is a first
exponential transition in o, i.e. o has a prefix s ~¥~, s followed by an
execution 7 : s ~»* s such that |7|, = 0. Cases of the first exponential
transition ~v,:

— Case ~»,,,: the next transition is necessarily multiplicative, and so 7 is
empty. Then |o|e = 1. Since the environment is non-empty (otherwise
~e.p. could not apply), |ole < |E| holds.

— Case “e(red.ny WE Prove by induction on n that |ole < m, that gives what
we want because n < |E| by Remark (I} Cases:

e n = 1) Then 7 has the form s ~» s’ by Lemma and so
lole = 1.

e n = 2) Then 7 is a prefix of ~Z~e,, or ~Ivse o by Lemma
In both cases |o|o < 2.

e n > 2) Then by LemmaT is either shorter or equal to ~»%~-
and so |ole < 2, or it is Tonger than ~ive =,
~% followed by an execution 7’ starting with ~-
|7'| <m—1and so |o]| <n.

2. This is a standard reasoning: since by local boundedness (the previous point)
m-free sequences have a number of e-transitions that are bound by the num-
ber of preceding m-transitions, the sum of all e-transitions is bound by the
square of m-transitions. It is analogous to the proof of Theorem 7.2.3 in [0].

O

i.e. it writes as
By i.h.

€(red,n—1)"

Proof of Commutatives vs Exponentials Theorem (Thm 4} p.
1. We prove a slightly stronger statement, namely |p|yc + |pln < (14 |ple) - |E]

by means of the following notion of size for stacks/frames/states:

_ lef=0 |z F| = |F
o Emle=fE |EOm Pl = || + | F|
(Ft,m, B, V)| o= |F[4+ [x +[t] |[(F 6w E,)= [F| + ||

By direct inspection of the rules of the machine it can be checked that:

— FEzxponentials Increase the Size: if s ~, s’ is an exponential transition,
then |s’| < |s| + [t| where |¢] is the size of the initial term; this is a con-
sequence of the fact that exponential steps retrieve a piece of code from
the environment, which is a subterm of the initial term by Lemma

— Non-FEzponential Evaluation Transitions Decrease the Size: if s ~, s’
with @ € {m,ma, V1, Veo, Ves} then |s'| < |s| (for ¥Ye3 because the
transition switches to backtracking, and thus the size of the code is no
longer taken into account);

€(red,n—1)"?

20

3.

— Backtracking Transitions do not Change the Size: if s ~, s’ with a €
{Acy, Acs, Acg} then |§'| = [s].
Then a straightforward induction on |p| shows that

|s'| < Is| + |ple - [t] = |plve = [Pln
i.e. that [plyc + [pla < [s[+ |ple - [t] — |5

Now note that | - | is always non-negative and that since s is initial we have
|s| = |t|. We can then conclude with

[Plve + [pln < |s| +[ple - [¢] = |5']
< sl +lple - [¢] = [tl+lple - [tl = (1 +[ple) - [2]

. We have to estimate |p|ac = |plac, + |Placs + |Placs- Note that

(@) |placy < |plvey, @S ~>ac, POPs variables from F', pushed only by ~>ye,;
(b) |placs < |place, a8 ~acs pops pairs tOm from F', pushed only by ~,c,;
(©) [place < |plvess as ~>ac, ends backtracking phases, started only by ~>yc,.
Then |plac < |plve, + 2[p|ves < 2lplye-

e have |p|c = |plve + [Plac <p2 |plve + 2|plve <p13-(1+|ple) - |t]- o

Proof of the Useful MAM Overhead Bound Theorem (Thm [5] p.

1.

By definition, the length of the execution p simulating d is given by |p| =
|pla + |ple + |ple. Now, by Theorem [3|2] we have |ple = O(|p|2) and by The-
orem we have |pl. = O((1 + |ple) - [t]) = O((1 + |p|2) - |t|). Therefore,
1ol = O((1 +[ple) - [t]) = O((1 + |p}2) - [¢]). By Theorem [2[2]|pla = |d], and so
ol = O((1 + |df?) - [¢]).

The cost of implementing p is the sum of the costs of implementing the
multiplicative, exponential, and commutative transitions. Remember that
the idea is that variables are implemented as references, so that environ-
ment can be accessed in constant time (i.e. they do not need to be accessed

sequentially):
(a) Commutative: every commutative transition evidently takes constant

time. At the previous point we bounded their number with O((1+ |d|?) -
|t]), which is then also the cost of all the commutative transitions to-
gether.

(b) Multiplicative: a ~»y, transition costs O(|t|) because it requires to rename
the current code, whose size is bound by the size of the initial term by
the subterm invariant (Lemma [J][Ta]). A ~+,, transition also costs O(|¢])
because executing the Checking AM on @ takes O(|u|) commutative steps
(Theorem , commutative steps take constant time, and the size of w
is bound by |¢| by the subterm invariant (Lemma [9][Ib]). Therefore, all
together the multiplicative transitions cost O(|d]| - [t]).

(c) Ezponential: At the previous point we bounded their number with |p|e =
O(|d|?). Each exponential step copies a term from the environment, that
by the subterm invariant (Lemma costs at most O(|t]), and so
their full cost is O((1 + |d|) - |¢|*) (note that this is exactly the cost of
the commutative transitions, but it is obtained in a different way).

Then implementing p on RAM takes O((1 + |d|) - [t|*) steps. O

	The Useful MAM, a Reasonable Implementation of the Strong -Calculus

