Skip to main content

A Multi-type Calculus for Inquisitive Logic

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9803))

Abstract

In this paper, we define a multi-type calculus for inquisitive logic, which is sound, complete and enjoys Belnap-style cut-elimination and subformula property. Inquisitive logic is the logic of inquisitive semantics, a semantic framework developed by Groenendijk, Roelofsen and Ciardelli which captures both assertions and questions in natural language. Inquisitive logic adopts the so-called support semantics (also known as team semantics). The Hilbert-style presentation of inquisitive logic is not closed under uniform substitution, and some axioms are sound only for a certain subclass of formulas, called flat formulas. This and other features make the quest for analytic calculi for this logic not straightforward. We develop a certain algebraic and order-theoretic analysis of the team semantics, which provides the guidelines for the design of a multi-type environment accounting for two domains of interpretation, for flat and for general formulas, as well as for their interaction. This multi-type environment in its turn provides the semantic environment for the multi-type calculus for inquisitive logic we introduce in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that \(\mathsf {L}\) is an intermediate logic if \(\mathbf {IPL} \subseteq \mathsf {L}\subseteq \mathbf {CPL} \).

  2. 2.

    A Heyting algebra is perfect if it is complete, completely distributive and completely join-generated by its completely join-prime elements. Equivalently, any perfect algebra can be characterized up to isomorphism as the complex algebra of some partially ordered set.

  3. 3.

    We follow the notational conventions introduced in [10], according to which each structural connective in the upper row of the synoptic tables is interpreted as the logical connective(s) in the two slots below it in the lower row. Specifically, each of its occurrences in antecedent (resp. succedent) position is interpreted as the logical connective in the left-hand (resp. right-hand) slot. Hence, for instance, the structural symbol \(\sqsupset \) is interpreted as classical implication when occurring in succedent position and as classical disimplication \(\mapsto \) (i.e. \(\alpha \mapsto \beta : = {\sim } \alpha \sqcap \beta \)) when occurring in antecedent position.

  4. 4.

    A sequent \(x \vdash y\) is type-uniform if x and y are of the same type.

References

  1. Abramsky, S., Väänänen, J.: From IF to BI. Synthese 167(2), 207–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belnap, N.: Display logic. J. Philos. Logic 11, 375–417 (1982)

    MathSciNet  MATH  Google Scholar 

  3. Ciardelli, I.: Questions in Logic. Ph.D. thesis, University of Amsterdam (2016)

    Google Scholar 

  4. Ciardelli, I.: Dependency as question entailment. In: Vollmer, H., Abramsky, S., Kontinen, J., Väänänen, J. (eds.) Dependence Logic: Theory and Application, Progress in Computer Science and Applied Logic. Birkhauser (2016, to appear)

    Google Scholar 

  5. Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Logic 40(1), 55–94 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frittella, S., Greco, G., Kurz, A., Palmigiano, A.: Multi-type display calculus for propositional dynamic logic. J. Logic Comput. exu064v1-exu064 (2014). Special Issue on Substructural Logic and Information Dynamics

    Google Scholar 

  7. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A multi-type display calculus for dynamic epistemic logic. J. Logic Comput. exu068v1-exu068 (2014). Special Issue on Substructural Logic and Information Dynamics

    Google Scholar 

  8. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: Multi-type sequent calculi. In: Zawidzki, M., Indrzejczak, A., Kaczmarek, J. (eds.) Trends in Logic XIII, pp. 81–93. Lodź University Press, Łódź (2014)

    Google Scholar 

  9. Frittella, S., Greco, G., Kurz, A., Palmigiano, A., Sikimić, V.: A proof-theoretic semantic analysis of dynamic epistemic logic. J. Logic Comput. exu063v2-exu063 (2015). Special Issue on Substructural Logic and Information Dynamics

    Google Scholar 

  10. Greco, G., Kurz, A., Palmigiano, A.: Dynamic epistemic logic displayed. In: Huang, H., Grossi, D., Roy, O. (eds.) LORI. LNCS, vol. 8196, pp. 135–148. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. (forthcoming)

    Google Scholar 

  12. Groenendijk, J.: Inquisitive semantics: two possibilities for disjunction. In: Bosch, P., Gabelaia, D., Lang, J. (eds.) TbiLLC 2007. LNCS, vol. 5422, pp. 80–94. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Groenendijk, J., Roelofsen, F.: Inquisitive semantics and pragmatics. In: Larrazabal, J.M., Zubeldia, L. (eds.) Meaning, Content, and Argument: Proceedings of the ILCLI International Workshop on Semantics, Pragmatics, and Rhetoric, pp. 41–72. University of the Basque Country Publication Service, May 2009

    Google Scholar 

  14. Hodges, W.: Compositional semantics for a language of imperfect information. Logic J. IGPL 5, 539–563 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hodges, W.: Some strange quantifiers. In: Mycielski, J., Rozenberg, A., Salomaa, A. (eds.) Structures in Logic and Computer Science: A Selection of Essays in Honor of A. Ehrenfeucht. LNCS, vol. 1261, pp. 51–65. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  16. Kreisel, G., Putnam, H.: Eine Unableitbarkeitsbeweismethode für den intuitionistischen Aussagenkalkül. Archiv für Mathematische Logik und Grundlagenforschung 3, 74–78 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maksimova, L.: On maximal intermediate logics with the disjunction property. Stud. Logica 45(1), 69–75 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mascarenhas, S.: Inquisitive semantics and logic. Master’s thesis, University of Amsterdam (2009)

    Google Scholar 

  19. Medvedev, J.T.: Finite problems. Sov. Math. Dokl. 3(1), 227–230 (1962)

    MATH  Google Scholar 

  20. Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive content. Synthese 190, 79–102 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sano, K.: Sound and complete tree-sequent calculus for inquisitive logic. In: The Sixteenth Workshop on Logic, Language, Information, and Computation (2009)

    Google Scholar 

  22. Väänänen, J.: Dependence Logic: A New Approach to Independence Friendly Logic. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  23. Yang, F.: On Extensions and Variants of Dependence Logic. Ph.D. thesis, University of Helsinki (2014)

    Google Scholar 

  24. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic 167(7), 557–589 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been made possible by the NWO Vidi grant 016.138.314, by the NWO Aspasia grant 015.008.054, and by a Delft Technology Fellowship awarded in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Frittella .

Editor information

Editors and Affiliations

Appendices

Appendix I

The derivation of (A3) \(({\downarrow } \alpha \rightarrow (A \vee B)) \rightarrow ({\downarrow } \alpha \rightarrow A) \vee ({\downarrow } \alpha \rightarrow B)\):

figure w

Appendix II

The derivation of (A4) \(\lnot \lnot {\downarrow } \alpha \rightarrow {\downarrow } \alpha \):

figure x

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Frittella, S., Greco, G., Palmigiano, A., Yang, F. (2016). A Multi-type Calculus for Inquisitive Logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2016. Lecture Notes in Computer Science(), vol 9803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52921-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52921-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52920-1

  • Online ISBN: 978-3-662-52921-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics