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Circuit-ABE from LWE: Unbounded Attributes and

Semi-Adaptive Security

Zvika Brakerski∗ Vinod Vaikuntanathan†

Abstract

We construct an LWE-based key-policy attribute-based encryption (ABE) scheme that sup-
ports attributes of unbounded polynomial length. Namely, the size of the public parameters is a
fixed polynomial in the security parameter and a depth bound, and with these fixed length pa-
rameters, one can encrypt attributes of arbitrary length. Similarly, any polynomial size circuit
that adheres to the depth bound can be used as the policy circuit regardless of its input length
(recall that a depth d circuit can have as many as 2d inputs). This is in contrast to previous
LWE-based schemes where the length of the public parameters has to grow linearly with the
maximal attribute length.

We prove that our scheme is semi-adaptively secure, namely, the adversary can choose the
challenge attribute after seeing the public parameters (but before any decryption keys). Previous
LWE-based constructions were only able to achieve selective security. (We stress that the
“complexity leveraging” technique is not applicable for unbounded attributes.)

We believe that our techniques are of interest at least as much as our end result. Funda-
mentally, selective security and bounded attributes are both shortcomings that arise out of the
current LWE proof techniques that program the challenge attributes into the public parameters.
The LWE toolbox we develop in this work allows us to delay this programming. In a nutshell,
the new tools include a way to generate an a-priori unbounded sequence of LWE matrices, and
have fine-grained control over which trapdoor is embedded in each and every one of them, all
with succinct representation.
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1 Introduction

Key-policy attribute-based encryption [SW05,GPSW06] is a special type of public-key encryption
scheme where (master) public keys mpk are associated to secret keys skf corresponding to (policy)
functions f : X → {0, 1}. The encryption of a message µ is labeled with a public attribute x ∈ X ,
and can be decrypted using skf if and only if f(x) = 0.1

Intuitively, the security requirement is collusion resistance: a coalition of users learns noth-
ing about the plaintext message µ if none of their individual keys are authorized to decrypt the
ciphertext.

The past few years have seen much progress in constructing secure and efficient attribute-based
encryption (ABE) schemes from different assumptions and for different settings. The first con-
structions [GPSW06, LOS+10, OT10, LW12, Wat12, Boy13, HW13] apply to predicates computable
by Boolean formulas (which are equivalent to log-depth computations). More recently, important
progress has been made on constructions for the set of all polynomial-size circuits (of a-priori
bounded polynomial depth): Gorbunov, Vaikuntanathan, and Wee [GVW13a] gave a construc-
tion from the Learning With Errors (LWE) assumption, and Garg, Gentry, Halevi, Sahai, and
Waters [GGH+13] gave a construction using multilinear maps. In both constructions the policy
functions are represented as Boolean circuits composed of fan-in 2 gates, and the secret key size is
proportional to the size of the circuit. Boneh et al. [BGG+14] constructed an “arithmetic” ABE
scheme where the secret key size is independent of the circuit-size of the function f , but rather
depends only on the circuit-depth. This in turn gave the first construction of compact reusable gar-
bled circuits [BGG+14], and led to constructions of predicate encryption [GVW15a], homomorphic
signatures [GVW15b] and constrained pseudo-random functions [BV15].

However, despite all this progress, there are several deficiencies in these constructions. The
first is that in all of them, the length of the attribute, represented as a binary string, has to
be determined during the initial setup. This is a problem not just for ABE, but also for all
downstream constructions (of succinct single-use functional encryption, homomorphic signatures,
predicate encryption, and so on) where the size of the input to be encrypted (or signed) is limited
by the initial setup.2 We know of two exceptions to this: the first is a remarkable ABE construction
of Waters [Wat11] that handles Boolean formulas, under assumptions on bilinear maps. The second
is a recent work of Ananth and Sahai [AS15] who show a functional encryption scheme for Turing
machines that can take arbitrarily long inputs. In particular, this gives rise to an ABE scheme
with the same properties, however this construction uses the huge hammer of indistinguishability
obfuscation (IO) unlike the ones in the previous paragraph.

Q1: Is there an ABE scheme for general circuits with unbounded attribute length under
standard complexity assumptions?

The second shortcoming of the circuit-ABE constructions based on lattices and LWE is that
they are only selectively secure. Selective security means that the attacker needs to decide which
challenge attribute to attack before seeing the public parameters of the scheme or any of the keys.
In adaptive security (also known as full security), the challenge attribute x∗ can be chosen at any
point, even depending on the public parameters and decryption keys obtained by the attacker.

1We follow, here and after, the convention that f(x) = 0 signifies the ability to decrypt. This is the opposite of
the standard convention, and is done purely for our convenience in the technical sections.

2One can modify the circuit-ABE constructions of [GVW15a, BGG+14] to support unbounded attributes in the
(programmable) random oracle model. Our focus in this paper is on constructions in the standard model.
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While we do know of adaptively secure ABE for formulas [LOS+10] based on bilinear maps, and
for circuits based on multilinear maps [GGHZ14] and on indistinguishability obfuscation [Wat15],
achieving adaptive security in LWE-based constructions seems to require fundamentally new ideas.
Recently, Ananth, Brakerski, Segev and Vaikuntanathan [ABSV15] came up with a generic way to
go from selective to adaptive security for (collusion-resistant) FE schemes, but their transformation
does not work for ABE schemes.

A well known “hack” for getting around the selectiveness issue is to use “complexity leveraging”.
This technique is based on the observation that an adaptive adversary can be made selective at the
cost of a factor 2` increase in the running time (or loss of 2−` in the success probability), where ` is
the maximum attribute length, just by guessing the challenge attribute ahead of time. Therefore,
if we start with a selective scheme that is secure against 2` · poly(λ) adversaries, then it is also
adaptively secure against poly(λ) time adversaries. Since usually ` = poly(λ), this method leads to
a considerable increase in security parameter. More importantly in our situation, if the attribute
space is a-priori unbounded, then complexity leveraging cannot work at all.

An intermediate milestone to adaptively secure ABE is the weaker notion of semi-adaptive
security, introduced by Chen and Wee [CW14]. Semi-adaptive security permits an adversary to
choose the challenge attributes after it sees the public parameters, but before it sees the answers
to any of its secret-key queries. Chen and Wee show a simpler construction of adaptively secure
ABE for formulas. Note that for unbounded attributes, complexity leveraging is of no use for this
notion as well.

Q2: Is there an adaptively (or even semi-adaptively) secure ABE for general circuits
under standard complexity assumptions?

We resolve the first question and (semi-)resolve the second, as follows.

Theorem 1.1 (Informal). Assuming the (polynomial) hardness of approximating worst-case lattice
problems to within sub-exponential factor, there is a semi-adaptively secure ABE scheme for circuits
of a-priori bounded (polynomial) depth which supports attributes of unbounded length.

In particular, the setup procedure of our scheme does not require an upper bound on the length
of the attributes that will be encrypted. Quite curiously, semi-adaptivity in our result seems to
come for free from our techniques to achieve unbounded attribute ABE. We elaborate more on our
techniques below.

1.1 Overview of Our Techniques

We start with an interpretation of the ABE scheme of Boneh et al. [BGG+14] (itself based on the
homomorphic encryption scheme of Gentry, Sahai and Waters [GSW13]) which will be instrumental
for our presentation.

Given matrices C1, . . . ,C` of appropriate dimension, and a function f : {0, 1}` → {0, 1}, repre-
sented as a Boolean circuit, one can compute a matrix Cf which is the “homomorphic evaluation”
of f on {Ci}. The property of Cf is that for all x ∈ {0, 1}` there exists a low-norm matrix
H = H~C,f,x

(that is, one with “fairly small” entries, the exact amplitude depends on the depth of

f and does not matter for this high level description) for which

Cf − f(x)G =

[C1‖ · · · ‖C`]︸ ︷︷ ︸
denote ~C

− [x1G‖ · · · ‖x`G]︸ ︷︷ ︸
denote x~G

 ·H .
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The matrix G is a special “gadget matrix”. This means that if Ci = ARi+xiG for some low-norm
matrix Ri, then Cf can be expressed as ARf + f(x)G for a somewhat low-norm matrix Rf .

In the ABE scheme of Boneh et al. [BGG+14], the public parameters contain a matrix A and
a set ~C = (C1, . . . ,C`) so that ` is the length of supported attributes. The parameters are chosen
so that a secret trapdoor can always find a low norm solution R to any equation of the form
C = AR + yG, for all C, y. Encrypting a message to an attribute x is done (at a high level) by
considering [A‖~C−x~G] as a public key to a dual-Regev encryption scheme [GPV08] and encrypting
relative to this key. An important feature of dual-Regev is that it is possible to modify a ciphertext
which was encrypted with respect to a certain public key into one that is encrypted with respect to
a related key, so long as the new key is obtained by multiplying the old key by a low-norm matrix.
Therefore, given some function f , the ciphertext can be converted into one that corresponds to the
public key [A‖Cf − f(x)G]. Indeed, ABE secret-keys skf are generated as dual-Regev keys for the
public key [A‖Cf ], and indeed they can decrypt whenever f(x) = 0.3

In the proof of security, A is generated without a trapdoor, but Ci are generated as ARi+x∗iG
(which is indistinguishable from their honest distribution). This means that whenever f(x∗) = 1,
the matrix [A‖Cf ] equals to [A‖ARf + G]. It had been shown by [ABB10b, MP12] that if Rf

is known, then dual-Regev keys can be generated even without a trapdoor. Finally, the challenge
ciphertext is encrypted relative to [A‖~C− x∗ ~G] = A · [I‖~R], which can be shown to be LWE-hard
to break if a trapdoor for A is not known (which indeed it isn’t).

The absolutely vital technique that makes the proof of [BGG+14] work4 is the ability to embed
the challenge attributes into the public parameters. It is apparent from this description that the
[BGG+14] scheme is inherently selectively secure and attribute length bounded. It is important
that in the security proof, the values of Ci are set ahead of time to the right values according
to the challenge attributes x∗, making the proof inherently selectively secure. In fact, the entire
paradigm of embedding the challenge ciphertext in the public parameters necessitates, for pure
information-theoretic reasons, that the public parameters grow with the length of the challenge
attribute.

The first thing that we should do if we want to stretch the [BGG+14] scheme to support
unbounded length attributes, is to find a way to generate an unbounded number of Ci matrices out
of a-priori bounded public parameters. Our first observation is that the scheme already exhibits a
similar feature in a different context. Namely, the generation of many Cf out of a bounded number

of Ci. Indeed, in our scheme, the public parameters will contain A and a sequence of matrices ~B.
We will consider a predefined and public sequence of functions φi, where i = 1, 2, . . ., and let Ci be
the output of homomorphic evaluation of φi on ~B. Thus, the scheme already allows us to generate
exponentially many matrices out of a few.

This allows us to extend the functionality of the scheme to unbounded attribute length, but only
syntactically, since the proof does not extend to this setting. In particular, if we try to program
the matrices ~B in the proof similarly to ~C from previous works, we can set Bi = ARi + σiG for
some string σ. If we do so, we will get that Ci = ARφi + φi(σ)G, where Rφi is low-norm and can
be computed out of the Ri matrices. On the one hand, this is quite encouraging since it is not too
far from what we need, if only there was a way to define φi and σ so that φi(σ) = x∗i (the ith bit

3Note that this “negated policy” formulation is obviously equivalent to the standard formulation in the literature
wherein decryption succeeds if f(x) = 1. From this point and on, purely for our convenience in the technical sections,
we will assume that a ciphertext should be decryptable if f(x) = 0 and not decryptable otherwise.

4The proofs of the other circuit-ABE schemes from standard assumptions, namely [GVW13b, GGH+13], follow
along similar lines.

3



of the challenge attribute) we would be in business. On the other hand, this is of course impossible
for mere information theoretic reasons, since the φi are public functions and σ has bounded length,
so they cannot encode an x∗ of arbitrary length.

Let us therefore take a step back and think, as an intermediate step, about a restricted security
model where x∗ is chosen randomly and not adversarially (except its length, which is still under the
adversary’s control). Indeed, a random x∗ cannot be compressed, but in the proof of security we can
swap x∗ for a pseudorandom value that can be easily expressible as the output of a pseudorandom
function. In particular, we define φi(σ) = PRFσ(i) for some pseudorandom function family. For a
random seed σ, letting x∗i = PRFσ(i) will be indistinguishable from a random value, and will allow
us to support random unbounded length attributes using the proof methods from above.

Indeed, we managed to hack the framework into producing an arbitrarily long sequence of Ci in
such a way that each Ci encodes a trapdoor that corresponds to x∗i . We view this as an interesting
contribution by itself. However, we would like to support adversarially chosen attributes, and not
just random ones. To do this, we will show how to “program” the challenge attribute into the PRF
values after the fact. In particular, consider, as a mental experiment, an infinite string ∆ which is
defined such that ∆i = x∗i ⊕PRFσ(i). This string is pseudorandom to the adversary, but combining
it with the PRF key σ, it contains the information about x∗. What we do in the proof, is generate
decryption keys for functions f∆(x) = f(x ⊕ ∆), instead of for f itself. This needs to be offset
by changing the encryption algorithm to encrypt to x ⊕ ∆ rather than to x itself (which might
seem impossible at this point, however see below). If we are able to offset our ciphertext, then the
challenge ciphertext will now be encrypted respective to x∗⊕∆ which is just our PRF value. All of
this is done without the adversary noticing anything, because ∆ just seems to him as a completely
random string that does not depend on x∗.

We are left with two problems. The first and easier one is that ∆ needs to be publicly known,
but it has unlimited size and in the proof, we need to know x∗ in order to generate it. This is easily
managed by noticing that only the `-prefix of ∆ is needed in order to use a secret key for a function
with `-bit input. We will therefore append the appropriate prefix of ∆ to any key that we release.
This means that we only need to know the value of ∆ when we answer key queries and not when we
generate the public parameters. This very fact allows us to achieve semi-adaptive security, where
x∗ can be specified after the setup phase but before key generation. We note that of course setting
∆ respective to x∗ is only done in the proof. In the real scheme ∆ is a random (or pseudorandom)
string that is maintained by the key authority and whose prefixes are released as needed (it is
important that the same ∆ is used for all keys). A savvy reader would have noticed that this
“delayed” definition of ∆ is similar to non-committing proof techniques which, looking back, is not
too surprising. It is also not hard to observe why this technique stops at semi-adaptive security:
we managed to postpone defining ∆ to the time when we generate the first secret key. Since ∆
depends on x∗ in the proof, we are restricted to the semi-adaptive world where all secret-key queries
come after the challenge attributes have been declared.

The second and harder problem is how to encrypt in this brave new scheme. The encryption
attribute needs to offset for the effect of ∆ on the key, but ∆ itself is not (and must not be) a part
of the public parameters and is thus unknown to the encryption algorithm. This problem is solved
by showing that we can encrypt for all possible values of ∆ at the same time. Recall that in the
encryption, we consider the matrices Ci − xiG, for all i. In fact, the encryption process generates
a piece of the ciphertext out of each of these matrices, and the collection of pieces constitutes the
entire ciphertext. In order to allow for any possible value of ∆, we will generate a ciphertext piece
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ci,0 for Ci−xiG (accounting for ∆i = 0) and a piece ci,1 for Ci−(xi⊕1)G (accounting for ∆i = 1).
This would allow us to take the relevant pieces and use them in the decryption process. Alas, the
security of the [BGG+14] scheme shatters completely if the adversary is allowed to see encryption
pieces relative to both Ci and Ci −G. It appears that we fixed functionality at the expense of
security.

Our last technical contribution is to solve this problem by using . . . attribute based encryption!
(in fact, even identity based encryption would suffice, but with slightly worse parameters). As a
part of our public parameters, we include parameters for a “small” ABE scheme that only needs to
support bounded short attributes and low depth circuits. We will encrypt the ciphertext piece ci,b
with respect to attribute (i, b) using the “small” scheme. Then, as a part of the functional key, we
will also produce a “small” key that will allow to decrypt only attributes (i, b) for which b = ∆i.
This means that an adversary can only see those ciphertext pieces that are needed for decryption.
Furthermore, since the offset ∆ is fixed, the adversary will only ever see ci,0 or ci,1 but not both,
thus keeping security in tact. This completes the description of our scheme.

2 Preliminaries

2.1 Bounded Distributions and Swallowing

As in many previous works based on LWE, we will rely heavily on distributions that are supported
over a bounded domain (with high probability). We will also rely on the fact that some distributions
(e.g. sufficiently wide Gaussians) remain almost unchanged under small shifts. Formal definitions
follow.

Definition 2.1. A distribution χ supported over Z is (B, ε)-bounded if Pr
x

$←χ
[|x| > B] < ε.

Definition 2.2. A distribution χ̃ supported over Z is (B, ε)-swallowing if for all y ∈ [−B,B] ∩ Z
it holds that χ̃ and y + χ̃ are within ε statistical distance.

The following is a straightforward application of the properties of rounded/discrete Gaussians.

Fact 2.1. For every B, ε, δ there exists an efficiently sampleable distribution that is both (B, ε)-
swallowing and (B ·

√
log(1/δ)/ε,O(δ))-bounded.

Finally, we will define the notion of a distribution that is swallowing with respect to another.

Definition 2.3. A distribution χ̃ supported over Z is (χ, ε)-swallowing, for a distribution χ, if it
holds that χ̃ and χ+ χ̃ are within ε statistical distance. We omit the ε when it indicates a negligible
function in a security parameter that is clear from the context.

The following corollary summarizes the swallowing properties required for our scheme.

Corollary 2.2. Let B(λ) be some function and let B̃(λ) = B(λ) · λω(1), then there exists an
efficiently sampleable ensemble {χ̃λ}λ such that χ̃ is χ-swallowing for any B(λ)-bounded {χλ}λ,
and also B̃(λ)-bounded.
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2.2 Pseudorandom Functions

A pseudorandom function family is a pair of ppt algorithms PRF = (PRF.Gen,PRF.Eval), such
that the key generation PRF.Gen(1λ) takes as input the security parameter, and outputs a seed
σ ∈ {0, 1}η (where η = ηλ is the key length). The evaluation algorithm PRF.Eval(σ, x) takes a seed
σ ∈ {0, 1}η and in input x ∈ {0, 1}∗ and returns a bit y ∈ {0, 1}.

Definition 2.4. A family PRF as above is secure if for every polynomial time adversary A it holds
that ∣∣∣Pr[APRF.Eval(σ,·)(1λ) = 1]− Pr[AO(·)(1λ) = 1]

∣∣∣ = negl(λ) ,

where σ = PRF.Gen(1λ) and O is a random oracle. The probabilities are taken over all of the
randomness of the experiment.

2.3 KP-ABE with Unbounded Attribute Length

Let F = {Fλ}λ be an ensemble of function classes such that Fλ ⊆ {0, 1}∗ → {0, 1}. We assume
that the functions are represented as boolean circuits. A key-policy attribute based encryption (KP-
ABE) scheme is defined by a tuple of ppt algorithms ABE = (ABE.Params,ABE.Enc,ABE.Keygen,ABE.Dec)
such that:

• The setup algorithm ABE.Params(1λ) takes the security parameter as input and outputs a
master secret key msk and a set of public parameters pp.

• The encryption algorithm ABE.Encpp(µ, x) uses the public parameters pp and takes as input
a message µ from a message space M = Mλ and an attribute x ∈ {0, 1}∗. It outputs a
ciphertext ct ∈ {0, 1}∗.

• The key generation algorithm ABE.Keygenmsk(f) uses the master secret key msk and takes as
input a function f ∈ Fλ. It outputs a secret key skf .

• The decryption algorithm ABE.Decpp(skf , x, ct) takes as input a function secret key skf , an
attribute x ∈ {0, 1}∗ and a ciphertext ct, and outputs a message µ′ ∈M.

Definition 2.5 (Correctness of KP-ABE). A scheme ABE is correct if the following holds. Con-
sider a sequence of functions {fλ ∈ Fλ}λ and a sequence of attributes {xλ ∈ {0, 1}∗}λ, such that
for all λ, the input size of f is exactly |xλ| and fλ(xλ) = 0.5 For all such sequences and for any
sequence {mλ ∈Mλ}λ, it holds that

Pr[ABE.Decpp(skf , x, ct) 6= µ] = negl(λ) ,

where (msk, pp) = ABE.Params(1λ), ct = ABE.Encpp(µ, x), skf = ABE.Keygenmsk(f).

Definition 2.6 (Security for KP-ABE). Let ABE be a KP-ABE encryption scheme as above, and
consider the following game between the challenger and adversary.

1. The challenger generates (msk, pp) = ABE.Params(1λ), and sends pp to the adversary.

5Recall our convention that f(x) = 0 is the event when decryption succeeds.
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2. The adversary makes arbitrarily many key queries by sending functions fi (represented as cir-
cuits) to the challenger. Upon receiving such function, the challenger creates ski = ABE.Keygenmsk(fi)
and sends ski to the adversary.

3. The adversary sends an attribute x∗ and a pair of messages m0,m1 to the challenger. The
challenger samples b ∈ {0, 1} and computes the challenge ciphertext ct∗ = ABE.Encpp(mb, x).
It sends ct∗ to the adversary.

4. The adversary makes arbitrarily many key queries as in Step 2 above.

5. The adversary outputs b̃ ∈ {0, 1}.

6. Let legal denotes the event where all key queries of the adversary are such that fi(x
∗) = 1. If

legal, the output of the game is b′ = b̃, otherwise the output b′ is a uniformly random bit.

The advantage of an adversary A is |Pr[b′ = b]− 1/2|, where b, b′ are generated in the game played
between the challenger and the adversary A(1λ). If x∗ is too short or too long compared to the
prescribed input size of fi then it is truncated or padded with zeros appropriately (see discussion
below).

The game above is called the adaptive security game for ABE, and it has relaxed variants. In
the selective security game, the adversary sends x∗ before Step 1. In the semi-adaptive security
game, the adversary sends x∗ before Step 2.

The scheme ABE is adaptively/selectively/semi-adaptively secure if any ppt adversary A only
has negligible advantage in the adaptive/selective/semi-adaptive security game (respectively).

Negated Policies. We allow decryption when f(x) = 0 and require that in the security game all
queries are such that f(x∗) = 1. In LWE-based constructions it is often much more convenient to
work with this negated version of the policy, which explains the apparent strangeness. This variant
is obviously equivalent.

Discussion. Our definition does not place any restrictions on the attribute length so the only
restriction comes from limiting the adversary to run in polynomial time (so it can only output x∗

and fi that are polynomially bounded). It is important to notice that in this regime, there are
no known generic transformations from selective to semi-adaptive to adaptive security, even if we
strengthen the hardness assumption. In particular, the complexity leveraging technique, in which
the challenger “guesses” x∗ in the beginning of the experiment, and a sub-exponential hardness
assumption is made to account for the success probability of this guess, is no longer applicable. In
this light, we view our semi-adaptive security improvement as qualitative rather than quantitative.

Lastly, we note that in the security definition (but not in the correctness requirement!) we chose
to allow f(x∗) to be well defined even if there is a mismatch between the input length of f and
the length of x∗ (by truncating x∗ or padding with zeros). A different valid approach would be to
consider an alternate, stronger, definition that if there is a mismatch then f(x∗) = 1 (and thus it is
legal for the adversary to query any function that does not have the same input length as |x∗|). We
notice that this notion of security is derived from ours by adding the length itself to the attribute.
More explicitly, when you want to encrypt with attribute x of length `, use the ABE scheme with
attribute (`, x), and in the key generation process, when you want to generate a key for function f ,
generate a key for f ′(`, x) that first checks that ` is indeed the intended input length. Therefore,
using our definition does not limit generality in this aspect.
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3 LWE, Trapdoors, Homomorphism

This section summarizes tools from previous works that are used in our construction. This includes
the definition of the LWE problem and its relation to worst case lattice problems, the notion of
trapdoors for lattices and operations on trapdoors, and homomorphic evaluation of matrices with
special properties.

Learning with Errors (LWE). The Learning with Errors (LWE) problem was introduced by
Regev [Reg05] as a generalization of “learning parity with noise” [BFKL93,Ale03]. We now define
the decisional version of LWE. (Unless otherwise stated, we will treat all vectors as column vectors
in this paper).

Definition 3.1 (Decisional LWE (DLWE) [Reg05]). Let λ be the security parameter, n = n(λ),
m = m(λ), and q = q(λ) be integers and χ = χ(λ) be a probability distribution over Z. The
DLWEn,q,χ problem states that for all m = poly(n), letting A ← Zn×mq , s ← Znq , e ← χm, and
u← Zmq , the following distributions are computationally indistinguishable:(

A, sTA + eT
) c
≈
(
A,uT

)
There are known quantum (Regev [Reg05]) and classical (Peikert [Pei09]) reductions between

DLWEn,q,χ and approximating short vector problems in lattices. Specifically, these reductions take
χ to be a discrete Gaussian distribution DZ,αq for some α < 1. We write DLWEn,q,α to indicate
this instantiation. We now state a corollary of the results of [Reg05, Pei09, MM11, MP12]. These
results also extend to additional forms of q (see [MM11,MP12]).

Corollary 3.1 ( [Reg05, Pei09, MM11, MP12]). Let q = q(n) ∈ N be either a prime power q = pr,
or a product of co-prime numbers q =

∏
qi such that for all i, qi = poly(n), and let α ≥

√
n/q. If

there is an efficient algorithm that solves the (average-case) DLWEn,q,α problem, then:

• There is an efficient quantum algorithm that solves GapSVP
Õ(n/α)

(and SIVP
Õ(n/α)

) on any

n-dimensional lattice.

• If in addition q ≥ Õ(2n/2), there is an efficient classical algorithm for GapSVPÕ(n/α) on any
n-dimensional lattice.

Recall that GapSVPγ is the (promise) problem of distinguishing, given a basis for a lattice and
a parameter d, between the case where the lattice has a vector shorter than d, and the case where
the lattice doesn’t have any vector shorter than γ · d. SIVP is the search problem of finding a set
of “short” vectors. The best known algorithms for GapSVPγ ( [Sch87]) require at least 2Ω̃(n/ log γ)

time. We refer the reader to [Reg05,Pei09] for more information.
In this work, we will only consider the case where q ≤ 2n. Furthermore, the underlying security

parameter λ is assumed to be polynomially related to the dimension n.
Lastly, we derive the following corollary which will allow us to choose the LWE parameters for

our scheme. The corollary follows immediately from the fact that the discrete Gaussian DZ,αq is

(αq · t, 2−Ω(t2))-bounded for all t.

Corollary 3.2. For all ε > 0 there exist functions q = q(n) ≤ 2n, χ = χ(n) such that χ is
B-bounded for some B = B(n), q/B ≥ 2n

ε
and such that DLWEn,q,χ is at least as hard as the

classical hardness of GapSVPγ and the quantum hardness of SIVPγ for γ = 2Ω(nε).
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The Gadget Matrix. Let N = n · dlog qe and define the “gadget matrix” G = g ⊗ In ∈
Zn×Nq where g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qe

q . We will also refer to this gadget matrix as the

“powers-of-two” matrix. We define the inverse function G−1 : Zn×mq → {0, 1}N×m which expands
each entry a ∈ Zq of the input matrix into a column of size dlog qe consisting of the bits of the
binary representation of a. We have the property that for any matrix A ∈ Zn×mq , it holds that
G ·G−1(A) = A.

Trapdoors. Let n,m, q ∈ N and consider a matrix A ∈ Zn×mq . For all V ∈ Zn×m′q , we let A−1
τ (V)

denote the random variable whose distribution is a Gaussian Dm′
Zm,τ conditioned on A ·A−1

τ (V) =

V. A τ -trapdoor for A is a procedure that can sample from the distribution A−1
τ (V) in time

poly(n,m,m′, log q), for any V. We slightly overload notation and denote a τ -trapdoor for A by
A−1
τ .

The following properties had been established in a long sequence of works.

Corollary 3.3 (Properties of Trapdoors [Ajt96,GPV08,ABB10a,CHKP12,ABB10b,MP12]). Lat-
tice trapdoors exhibit the following properties.

1. Given A−1
τ , one can obtain A−1

τ ′ for any τ ′ ≥ τ .

2. Given A−1
τ , one can obtain [A‖B]−1

τ and [B‖A]−1
τ for any B.

3. For all A ∈ Zn×mq and R ∈ Zm×N , with N = n dlog qe, one can obtain [AR + G‖A]−1
τ for

τ = O(m · ‖R‖∞).

4. There exists an efficient procedure TrapEmbed(1n, q) that outputs (A,A−1
τ0 ) where A ∈ Zn×mq

for some m = O(n log q) and is 2−n-uniform, where τ0 = O(
√
n log q log n).

Homomorphic Evaluation. Consider some n, q ∈ N. Consider C1, . . . ,C` ∈ Zn×Nq where

N = n dlog qe, and denote ~C = [C1‖ · · · ‖C`]. Let f be a boolean circuit of depth d computing a
function {0, 1}` → {0, 1}, and assume that f contains only NAND gates. We define Cf = Eval(f, ~C)
recursively: associate C1, . . . ,C` with the input wires of the circuit. For every wire w in f , letting
u, v be its predecessors and define Cw = G −Cu ·G−1(Cv). Finally Cf is the matrix associated
with the output wire.

Denoting x~G = [x1G‖ · · · ‖x`G], it holds that if Cf = Eval(f, ~C), then Cf − f(x)G = (~C −
x~G) ·H

f,x,~C
, for a matrix H

f,x,~C
with

∥∥∥Hf,x,~C

∥∥∥
∞
≤ (N + 1)d. In particular, if Ci = ARi + xiG,

i.e. ~C = A~R + x~G for ~R = [R1‖ · · · ‖R`], then Cf = ARf + f(x)G for Rf = ~R ·H
f,x,~C

(where H

is independent of ~R).

4 Our Scheme

We now present our scheme and prove its correctness and security. As in previous works on LWE-
based ABE schemes [GVW13b,BGG+14], it would be easier for us to work with “negated policies”,
so that skf can decrypt ciphertexts with attribute x if f(x) = 0. We start by defining the class of
depth bounded circuits, to which our construction is targeted.
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Definition 4.1 (Depth-bounded circuits). The class of d-bounded circuits, denoted Pd, for some
function d = d(λ) is the ensemble of functions {Pd,λ}λ such that Pd,λ is the set of boolean circuits
of depth at most d(λ).

Next, we define another class of circuits. These are very simple circuits that contain a hardcoded
string, and upon receiving an index and bit as input, they check whether the relevant location in
the string is indeed the supplied value.

Definition 4.2. Consider the family of circuits {BitCheckν,x} s.t. for all ν ∈ N and x ∈ {0, 1}∗,
|x| ≤ 2ν , we define BitCheckν,x : [2ν ]× [2ν ]×{0, 1} → {0, 1} such that BitCheckν,x(`, i, b) = 0 if and
only if |x| = ` and also xi = b. Note that BitCheckν,x can always be computed by a boolean circuit
of depth O(log |x|) = O(ν) (we assume that `, i are in standard ν-bit binary representation).

The Scheme. Let ν = ν(λ) be any super-logarithmic function (so that 2ν is super-polynomial).
Let oldABE = (oldABE.Params, oldABE.Enc, oldABE.Keygen, oldABE.Dec) be a selectively-secure
key-policy ABE scheme for the function class {{BitCheckν(λ),x : |x| ≤ 2ν}}λ where ν is as above
(i.e. oldABE only need to support bounded length attributes, and furthermore this length can be
any super-logarithmic function). Let PRF be a family of pseudorandom functions and let η = ηλ
be the seed length (for security parameter λ). Let dprf be the depth of PRF.Eval(σ, x) for |x| = ν
(by definition dprf = poly(λ)).

We now present our ABE scheme for any class of circuits of a-priori polynomial depth bound.
We note that as in previous works, we submit the depth bound as an additional parameter to
the setup procedure. In order to support the class Pd, the setup procedure is to be executed on
input (1λ, 1d(λ)). Finally, the scheme is parameterized by a constant ε ∈ (0, 1) that determines the
tradeoff between the lattice approximation factor on which security is based, and the efficiency of
the scheme.

• ABE.Params(1λ, 1d). We start by setting DLWE parameters based on Corollary 3.2. Let n be
s.t. (n2+1)2(dprf+d)·23ν ≤ 2n

ε
. The solution to the equation is of the form n ≤ (λd)O(1/ε), which

is polynomial in the security parameter for any constant ε. We choose q, χ,B accordingly
based on Corollary 3.2, and note that by definition q/B ≥ (N + 1)2(dprf+d) · 23ν (recall that
N = ndlog qe).
We further let χ̃ be a B′-swallowing and B̃-bounded distribution, for B′ = B ·mηN(N+1)dprf

and B̃ = 2ν ·B′, whose existence is guaranteed by Corollary 2.2.

Generate a matrix-trapdoor pair (A,A−1
τ0 ) = TrapEmbed(1n, q) (see Corollary 3.3), vector

v
$← Znq , and matrices B1, . . . ,Bη

$← Zn×Nq , and denote ~B = [B1‖ . . . ‖Bη]. We assume
w.l.o.g that m ≥ ndlog qe + 2λ (otherwise random padding can be applied). Generate a key
pair for oldABE: (oldabemsk, oldabepp) = oldABE.Params(1λ). Generate a seed for a PRF
σ = PRF.Gen(1λ).

We set msk = (A−1
τ , oldabemsk, σ) and pp = (A, ~B, oldabepp).

• ABE.Encpp(µ, x), where pp = (A, ~B, oldabepp), µ ∈ {0, 1} and x ∈ {0, 1}∗. We let ` = |x|
denote the length of the attribute string. For all i ∈ [`], generate Ci = Eval(PRF.Eval(·, i), ~B).
(Where PRF.Eval(·, i) is the circuit that takes a seed σ and outputs PRF.Eval(σ, i).)

10



Sample s
$← Znq , e

$← χm, e′
$← χ, let

cT0 = sT [A‖v] + [eT ‖e′] + µ bq/2e · [0T ‖1] .

This is essentially a dual-Regev encryption of µ under public key A,v. The rest of the cipher-
text will contain auxiliary information that will allow to decrypt given a proper functional

secret key. Specifically, we sample for all i ∈ [`] a noise vector ẽi
$← χ̃N , and compute

cTi,xi⊕β = sT (Ci − (xi ⊕ β)G) + ẽTi , (1)

Finally, the vectors ci,β are encrypted again using the old ABE scheme:

ψi,β = oldABE.Encoldabepp((`, i, β), ci,xi⊕β) .

The final ciphertext is

ct =
(
c0, (ψi,β)i∈[`],β∈{0,1}

)
.

• ABE.Keygenmsk(f). Given a circuit f computing a function {0, 1}` → {0, 1}, the key is
generated as follows. We recall that we work with negated policies so skf should decrypt only
when f(x) = 0.

For all i, define ∆i = PRF.Eval(σ, i). Further let ∆≤` = ∆1 · · ·∆` be the `-prefix of the infinite
string ∆ (in fact, we can think of ∆ as having length 2ν , which is finite but super-polynomial).

Generate a key for the old scheme oldabesk` = oldABE.Keygenoldabemsk(BitCheckν,∆≤`). Note
that ∆≤` and oldabesk` depend only on msk and `, and not on f , and therefore they can be
generated and published once and for all for each value of `. Define f∆ : {0, 1}` → {0, 1} as
f∆(x) = f(x⊕∆≤`).

For all i ∈ [`], generate Ci = Eval(PRF.Eval(·, i), ~B) (as in the encryption algorithm). Let
~C = [C1‖ · · · ‖C`] and set Cf = Eval(f∆, ~C). Let

rf = [Cf‖A]−1
τ (v) ,

where τ = 2ν ·mN2(N + 1)d+dprf ≥ τ0 and tf = [−rTf ‖1]T . Note that [Cf‖A‖v] · tf = 0.

Output skf = (f,∆≤`, oldabesk`, tf ).

• ABE.Dec(skf , x, ct). Given skf = (f,∆≤`, oldabesk`, tf ), x ∈ {0, 1}` such that f(x) = 0, and

ct =
(
c0, (ψi,β)i∈[`],β∈{0,1}

)
, the decryption process runs as follows.

Use oldabesk` to compute

ci,xi⊕∆i = oldABE.Dec(oldabesk`, ψi,∆i , (`, i,∆i)) , (2)

and recompose
cTx⊕∆≤`

= [cT1,x1⊕∆1
‖ · · · ‖cT`,x`⊕∆`

] .

We again compute Ci = Eval(PRF.Eval(·, i), ~B), ~C = [C1‖ · · · ‖C`] and Cf = Eval(f∆, ~C).
We also compute H = H

f∆,x⊕∆≤`,~C
. Note that by the properties stated above, it holds that

(~C− (x⊕∆≤`)~G) ·H = Cf − f∆(x⊕∆≤`)G = Cf ,
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since f∆(x⊕∆≤`) = f(x) = 0.

Recalling that cTx⊕∆≤`
is linear (up to noise) in ~C − (x ⊕∆≤`)~G, we will set cTf = cTx⊕∆≤`

·
H
f∆,x⊕∆≤`,~C

, with intent to show that cTf is linear (up to noise) in Cf .

Finally, we compute µ̃ = [cTf ‖cT0 ] · tf , and output µ′ = 0 if |µ̃| < q/4 and µ′ = 1 if |µ̃| ≥ q/4.

4.1 Correctness

Let {(fλ, xλ)}λ be an arbitrary sequence of function-message pairs s.t. fλ has depth at most d(λ),
and |x| ≤ `(λ) for some polynomial `. Consider properly generated (pp,msk) = ABE.Params(1λ), a
properly encrypted ciphertext ct = Encpp(µ, x) for some value µ ∈ {0, 1} and a properly generated
functional key skf = ABE.Keygenmsk(f).

Consider the execution of ABE.Dec(skf , x, ct). The correctness of oldABE implies that with all
but negligible probability, the vectors ci,xi⊕∆i computed in Eq. (2) are indeed equal to the ones
encrypted in Eq. (1). Namely, that

cTi,xi⊕∆i
= sT (Ci − (xi ⊕∆i)G) + eTRi ,

and therefore
cTx⊕∆≤`

= sT (~C− (x⊕∆≤`)~G) + ẽT ,

which, recalling that f(x) = 0 and denoting H = H
f∆,x⊕∆≤`,~C

, implies that

cTf = cTx⊕∆≤`
·H = sTCf + ẽTH .

Finally, we get that

[cTf ‖cT0 ] = sT [Cf‖A‖v] +
[
ẽTH‖eT ‖e′

]
+ µ bq/2e · [0T ‖1] ,

and therefore that
[cTf ‖cT0 ] · tf =

[
ẽTH‖eT ‖e′

]
· tf + µ bq/2e .

We conclude that we have correct decryption so long as
∣∣[ẽTH‖eT ‖e′

]
· tf
∣∣ is bounded away from

q/4. We will produce a fairly loose bound, since the asymptotic parameters will only be effected
marginally. A precise analysis could be obtained using standard techniques. We recall that by the
properties of discrete Gaussians, it holds that ‖tf‖∞ ≤ τ

√
m+N with all but 2−(m+N) = negl(λ)

probability, and also that asymptotically ` ≤ 2ν . Therefore, with all but negligible probability[
ẽTH‖eT ‖e′

]
· tf ≤

∥∥[ẽTH‖eT ‖e′
]∥∥
∞ · ‖tf‖∞ · (N +m+ 1)

≤
(
B̃ · (N + 1)d · (`N) +B · (m+ 1)

)
· ‖tf‖∞ · (N +m+ 1)

≤
(
B̃ · (N + 1)d · (`N) +B · (m+ 1)

)
τ
√
m+N · (N +m+ 1)

≤ B · (N + 1)2(dprf+d)22ν · poly(n, log q) .

Since we set q/B ≥ (N + 1)2(dprf+d)23ν , we get that correctness holds asymptotically for any
polynomials `(λ), d(λ).
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4.2 Security

We prove that our scheme is semi-adaptively secure as per Definition 2.6. Our proof heavily relies
on the structure of the string ∆. Whereas ∆ has a succinct representation as the output of a PRF,
the view of the adversary does not depend on the seed of the PRF in any way except through the
bits of ∆. Therefore, it follows from the pseudorandomness property that ∆ is indistinguishable
from a completely random string. It follows, therefore, that XORing x∗ into ∆ will go unnoticed by
the adversary. However, this allows us to embed the challenge attribute in the public parameters
in an indirect way, namely, now the XOR of the PRF’s ith bit with ∆i is exactly x∗i . This means
that x∗i ⊕∆i = PRF(i) and thus that Ci− (x∗i ⊕∆i)G is independent of x∗ itself and therefore can
be known to the reduction ahead of time. This will allow us to apply similar techniques to those
in [BGG+14] to prove security. A formal statement of the lemma together with a detailed sketch
of the proof follows.

Lemma 4.1. Let PRF be a family of secure pseudorandom functions as per Section 2.2, and let
oldABE be a selectively secure ABE scheme for the function class BitCheckν,x for some super-
logarithmic ν = ν(λ). Then under the DLWEn,q,χ assumption, the scheme ABE is a semi-adaptively
secure ABE scheme for the function class Pd.
Extended sketch. We use `∗ to denote the length of the challenge attribute x∗. We also extend the
notation x∗i as follows: if i ≤ `∗ then x∗i denotes the ith bit of x∗ as usual, however, for i > `∗ our
convention is that x∗i = 0.

The proof follows by a sequence of hybrids. We consider an adversary A for the semi-adaptive
security game in Definition 2.6. Let Adv[A] denote the advantage of A in the security game. We
will denote by AdvH[A] the advantage of A in the experiment described in hybrid H.

Hybrid H0. This is the ABE semi-adaptive security game as per Definition 2.5. By definition
Adv[A] = AdvH0 [A].

Hybrid H1. In this hybrid, we change the way the (infinite) string ∆ is defined. Recall that in
the previous hybrid, ∆i = PRF.Eval(σ, i). However in this hybrid and throughout the proof we set

∆i =

{
(PRF.Eval(σ, i)⊕ x∗i ) if i ≤ `∗,
PRF.Eval(σ, i) otherwise .

(3)

Note that now x∗ needs to be known in order to compute ∆. However, ∆ is not used at all
until the first key query is answered. Therefore, to execute this hybrid, the challenger only needs to
know x∗ before responding to the first key query, which is consistent with semi-adaptive security.

To see why the view of the adversary is indistinguishable in H1 and H0, consider replacing
PRF.Eval(σ, i) with an oracle that returns a random bit for every i. In such case, the distributions in
both hybrids are identical. Since σ itself is not used anywhere except to generate PRF.Eval(σ, i), the
pseudorandomness of PRF guarantees that the views when using PRF.Eval(σ, i) are computationally
indistinguishable. We conclude that

|AdvH1 [A]−AdvH0 [A]| = negl(λ) .

We remark that this is the only place where the pseudorandomness of the PRF is used, and from
this hybrid and on one can think of σ as public.

Lastly, we notice that since we extended our notation so that x∗i = 0 for i > `∗, we can say that
from this hybrid and throughout the proof, it holds that ∆i = PRF.Eval(σ, i)⊕ x∗i for all i ∈ N.
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Hybrid H2. We now change the way the matrices ~B are generated. We will now generate Bi as

follows: Sample Ri
$← {0, 1}m×N and set Bi = ARi + σiG. Indistinguishability will follow from

the leftover hash lemma since m ≥ ndlog qe + 2λ. We point out that one has to be careful when
applying the leftover hash lemma since A is only statistically close to uniform, and it is generated
together with A−1

τ0 . We notice, however that A−1
τ0 − A − ARi is a Markov chain, and therefore

we can think about first sampling A and then sampling A−1
τ0 and ARi independently from the

marginals. Therefore, since (A,ARi) is statistically indistinguishable from uniform when A is
uniform, it also holds true when A is only statistically close to uniform, and also holds true when
A−1
τ0 is known as well.

|AdvH2 [A]−AdvH1 [A]| = negl(λ) .

We notice that in this hybrid, we now have that ~B = A~R + σ ~G, where ~R = [R1‖ · · · ‖Rη].

Recalling that Ci = Eval(PRF.Eval(·, i), ~B), we can define H∗i = HPRF.Eval(·,i),σ,~B, and it will hold

that
Ci = A~RH∗i + PRF.Eval(σ, i) ·G = A~RH∗i + (x∗i ⊕∆i)G . (4)

We recall that H∗i is computable given σ, and furthermore ‖H∗i ‖∞ ≤ (N + 1)dprf . If we denote
~H∗ = [H∗1‖ · · · ‖H∗` ], we conclude that

~C− (x∗ ⊕∆≤`)~G = A~R~H∗ . (5)

Hybrid H3. In this hybrid we will switch from generating skf using A−1
τ0 to generating them

using ~R. We recall that we are only required to generate keys for f s.t. f(x∗) = 1, otherwise the
adversary loses in the semi-adaptive security game.

We recall that by definition, in order to derive skf , we need to sample from [Cf‖A]−1
τ . We

recall that we defined Cf = Eval(f∆, ~C), and therefore, denoting H = H
f∆,(x∗⊕∆≤`),~C

, it holds that

Cf − f∆(x∗ ⊕∆≤`) ·G =
(
~C− (x∗ ⊕∆≤`)~G

)
·H .

Plugging in Eq. (5), and since f∆(x∗ ⊕∆≤`) = f(x∗) = 1, we get that

Cf = A~R~H∗H + G .

Therefore, [Cf‖A] = [A · (~R~H∗H)+G‖A]. This means that given ~R and the computable matrices

~H∗,H, one can sample from [Cf‖A]−1
τ for all values of τ ≥ τ ′ for τ ′ = O

(
m ·

∥∥∥~R · ~H∗ ·H∥∥∥
∞

)
.

Plugging in the known bounds, we get that

τ ′ = O(m ·Nη · (N + 1)dprf ·N` · (N + 1)d) = O(`) · (N + 1)d+dprf ·mN2 ,

Recall that we need to sample with τ = 2ν ·mN2(N + 1)d+dprf which is asymptotically greater than
τ ′, which is enabled by our parameter setting.

It follows that changing our method of sampling rf does not change the resulting distribution,
and therefore

AdvH3 [A] = AdvH2 [A] .

We notice that in this hybrid, the challenger does not require A−1
τ0 at all.
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Hybrid H4. In this hybrid, we change the distribution of A and sample it uniformly from Zn×mq

rather than via TrapEmbed. Since TrapEmbed samples A which is statistically indistinguishable
from uniform, we conclude that the distribution produced in the two hybrids are statistically
indistinguishable as well.

|AdvH4 [A]−AdvH3 [A]| = negl(λ) .

Hybrid H5. In this hybrid we change the way the challenge ciphertext is computed. Specifically
we change the way we compute ψi,1−∆i , for all i, and set

ψi,1−∆i = oldABE.Encoldabepp((`∗, i, 1−∆i),0) ,

where the zero vector has the same length as ci,x∗i⊕∆i⊕1.
Since for all `, i, BitCheckn,∆≤`(`, i, 1 −∆i) = 1, and thus for all `, the key oldabesk` must not

decrypt ψi,1−∆i , we would like to use the security of oldABE to argue that H5 is computationally
indistinguishable from H4. However, some care needs to be taken since we only assume that oldABE
is selectively secure.

The formal proof will proceed via a hybrid argument going over all values of ` and β (note that
we at this point we have an upper bound on ` given by the running time of A). In the (i, β) hybrid,
we change all ciphetexts ψi′,β′ such that (i′, β′) < (i, β) (lexicographically) to 0 if β′ 6= ∆i′ . To
argue that two adjacent hybrids are indistinguishable, we rely on the selective hardness of oldABE
for the fixed attribute (i, β) which can be provided in the beginning of the game as required for
selective security.

We conclude that this hybrid is computationally indistinguishable from the previous one.

|AdvH5 [A]−AdvH4 [A]| = negl(λ) .

Hybrid H6. We again change the contents of the challenge ciphertext as follows. We generate
s, e, e′ as before, and set bT = sTA + eT , and b′ = sTv + e′. The vector c0 is generated identically
to before, but we can express it in terms of b, b′ as

cT0 = [bT ‖b′] + µ bq/2e · [0T ‖1] .

We recall that as of the previous hybrid, the values ci,x∗i⊕∆i⊕1 no longer appear in the challenge
ciphertext, so they are not generated at all. The only change that we make is in the generation of
ci,x∗i⊕∆i . We recall that in the previous hybrid

cTi,x∗i⊕∆i
= sT (Ci − (x∗i ⊕ β)G) + ẽTi .

and since at this point (Ci − (x∗i ⊕ β)G) = A~RH∗i , as per Eq. (4), we had that

cTi,x∗i⊕∆i
= sTA~RH∗i + ẽTi .

In this hybrid, we change these values to

cTi,x∗i⊕∆i
= bT ~RH∗i + ẽTi = sTA~RH∗i + eT ~RH∗i + ẽTi .
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This distribution, however, is statistically close to the previous one, since the distribution
eT ~RH∗i is

(
B ·m · ηN · (N + 1)dprf

)
-bounded and since we selected χ̃ to be

(
BmηN(N + 1)dprf

)
-

swallowing, statistical indistinguishability follows by definition.

|AdvH6 [A]−AdvH5 [A]| = negl(λ) .

We note that in this hybrid, given b, b′, the challenger does not need to know the values of
s, e, e′ since they are not used directly.

Hybrid H7. In the final hybrid, we change the distribution of b, b′ to be uniform in Zmq ,Zq,
respectively. Indistinguishability follows by definition from the DLWEn,q,χ assumption. We have

|AdvH7 [A]−AdvH6 [A]| = negl(λ) .

Clearly, in this hybrid the adversary has no advantage since b′ is uniform and completely masks
the value of µ. It follows therefore that

AdvH7 [A] = 1/2 ,

and therefore
|Adv[A]− 1/2| = negl(λ) ,

which completes the proof of security.

4.3 Conclusion

Finally we can put all the pieces together and state our result with all parameters.

Theorem 4.2. Assume that GapSVP (respectively SIVP) is hard to approximate by a polynomial
time classical (respectively quantum) algorithm to within a factor of 2n

ε
. Then for any polynomial

d = d(λ) there exists a correct and semi-adaptively secure ABE scheme for the policy class Pd.
Letting k = (λd)1/ε, the public parameters of the scheme are of size poly(k), ciphertexts are of

length ` · poly(k), where ` is the attribute length, and the key length is ` + poly(k), where ` is the
input length of the policy function (all poly(·) notations indicate a specific polynomial function).

Proof. A secure family of pseudorandom functions can be instantiated based on the existence
of any one-way function, and in particular on the hardness of lattice approximation to within
poly(n)� 2n

ε
factor.

We instantiate oldABE using the scheme from [BGG+14]. Recall that oldABE only needs to sup-
port attributes of length O(ν) and policies which can be represented by circuits of depth O(log(ν)).
This means that such a scheme can be based on the hardness of DLWE with parameters that
translate to the hardness of lattice approximation to within a factor of 2n

o(1) � 2n
ε
. The keys and

ciphertexts of oldABE will have overhead poly(λ) for a fixed polynomial.
Combining these primitives with the correctness analysis and with the security analysis in

Lemma 4.1, the theorem follows.
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