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Abstract. We propose a method for detecting ambiguity in context-free
grammars using multi-stack pushdown automata. Since the ambiguity
problem is undecidable in general, we use restricted MPDAs that have
a limited configuration space. The analysis might thus not be complete,
but it is able to detect both ambiguity and unambiguity. Our method
is general in the type of automata used. We discuss the suitability of
existing MPDAs in our setting and present a new class called bounded-
balance MPDAs. These MPDAs allow for infinitely deep nesting/nesting
intersection, as long as the nesting depth differences within each scope
stay within the balance bound. We compare our contributions to various
related MPDAs and ambiguity detection methods.

1 Introduction

Context-free ambiguity detection and related problems like intersection empti-
ness and inclusion are important in various fields like programming language
development [5], program verification [13], model checking and bioinformatics [7].
For instance, context-free grammars are very suitable for specifying formal lan-
guages because they allow the definition of regular as well as nested language
constructs. However, they have the often undesirable property that they can
be ambiguous. Their combinatorial complexity makes ambiguities very hard to
spot, which makes automated ambiguity detection essential.

Unfortunately, deciding the ambiguity of a grammar is undecidable in the
general case. Still, various ambiguity detection methods exist that aim at being
either sound or complete. They limit the possibly infinite search space to either a
finite subset [3,6,9,12,13,22,25] or an infinite overapproximation that is check-
able in finite time [4,7,21]. For practical purposes however, it is desirable for
a method to be able to answer both ‘ambiguous’ and ‘unambiguous’. In this
paper we describe a novel way to search an infinite subset in finite time, without
approximation. This allows us to detect both ambiguity and unambiguity.

We propose a framework for ambiguity detection using restricted multi-stack
pushdown automata. These types of automata are often used in model check-
ing [1,8,10,16,17,20] because they can represent concurrent recursive processes.
In general they are Turing complete, but with certain restrictions their configu-
ration space can be limited and searched in finite time. Our framework is general
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in the type of MPDA used, allowing the reuse of results from the model checking
literature.

In addition, we propose a new class of multi-pushdown automata called
bounded-balance multi-stack pushdown automata. The balance of a scope—the
part of a run between the matching push and pop of a symbol—is the number of
symbols pushed but not popped on other stacks during this scope. In the context
of language intersection, limiting the balances in a run has several advantages
over limiting the number of contexts or phases. First, it enables the possibility
to detect the unambiguity of a grammar. Second, it allows for full intersection
of the regular structures within a grammar with other regular or nesting struc-
tures. Third, nesting-only intersection can reach unbounded depth, as long as
the nesting depths within each scope do not differ more than the balance bound.

Outline. This paper is structured as follows. The next section starts by intro-
ducing some basic definitions and notational conventions. In Sect. 3 we pro-
pose our ambiguity detection method and discuss the use of different automata
types. Section 4 presents bounded-balance multi-stack pushdown automata. In
Sect. 5 we compare our ambiguity detection method and MPDA type to other
approaches and MPDAs. Section 6 concludes.

2 Preliminaries and Notational Conventions

Throughout this paper we use the following definitions and notations.

2.1 Context-Free Grammars

A context-free grammar G is a 4-tuple (N,T, P, S) consisting of N , a finite set
of nonterminals, T , a finite set of terminals (the alphabet), P , a finite subset of
N × (N ∪ T )∗, called the production rules, and S ∈ N , the start symbol. The
character ε represents the empty string. We use V to denote the set N ∪ T
and T ε for T ∪ {ε}. The following characters are used to represent different
symbols and strings: a, b, . . . are terminals, A,B, . . . are nonterminals, α, β, . . .
are strings in V ∗, u, v, . . . are strings in T ∗. A production (A,α) in P is written
as A→α. We use the function pid :P →N to relate each production to a unique
integer. Given the string αBγ and a production rule B → β from P , we can write
αBγ =⇒ αβγ—read αBγ directly derives αβγ. The language of a grammar G is
L(G) = {u |S =⇒+ u}. A nonterminal A is said to be self-embedding or nesting
iff A =⇒+ uAv, otherwise its language is regular.

The parse tree of a sentential form describes how it is derived from S, but
disregards the order of the derivation steps. To represent parse trees we use brack-
eted strings, which are described by bracketed grammars [11]. From a grammar
G = (N,T, P, S) a bracketed grammar Gb can be constructed by adding unique
terminals to the beginning and end of every production rule. The bracketed
grammar Gb is defined as the 4-tuple (N,Tb, Pb, S), where Tb = T ∪ T〈 ∪ T〉,
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T〈 = { 〈i | ∃p ∈ P : i = pid(p)}, T〉 = { 〉i | ∃p ∈ P : i = pid(p)}, and
Pb = {A → 〈iα〉i | A → α ∈ P, i = pid(A → α)}. Vb is defined as Tb ∪ N .
The homomorphism yield from V ∗

b to V ∗ maps each string in T ∗
b to T ∗. It

is defined by yield(〈i) = ε, yield(〉i) = ε, and yield(a) = a. L(Gb) describes
exactly all parse trees of all strings in L(G). The set of ambiguous strings of G
is A(G) = {yield(u) | u, v ∈ L(Gb), u 	= v, yield(u) = yield(v)}. A grammar G is
ambiguous iff A(G) is non-empty.

2.2 Pushdown Automata

A pushdown automaton, or PDA, M is a 6-tuple (Q,T ε, Γ,Δ, q0, F ) consisting
of: Q, a finite set of states, T ε, a finite set of input symbols, Γ , a finite set
of stack symbols containing a bottom-of-stack symbol ⊥, Δ = Δ→ ∪ Δ↓ ∪ Δ↑
is the transition relation, Δ→ over Q × T ε × Q are shift transitions, Δ↓ over
Q × {↓ } × Γ × Q are push transitions, Δ↑ over Q × {↑ } × Γ × Q are pop
transitions, q0 ∈ Q, is the start state, F ⊆ Q, a finite set of accepting states. To
distinguish between pushes and pops of stack symbols we define Γ ′ = {↓ , ↑}×Γ .
We use p to represent stack symbols in Γ , π for strings in Γ ∗ and ϕ for symbols
in T ε ∪ Γ ′. An element in Q × Γ ∗ is called a configuration, representing a state
and stack contents. We assume every PDA to start with the initial configuration
c0 = (q0,⊥). The relation Δ defines state transitions. We write q

α→ q′ for tuples

in Δ→, q
↓p→ q′ for tuples in Δ↓ and q

↑p→ q′ for tuples in Δ↑. Configuration
transition is denoted with �. We write (q, π) �α (q′, π) if q

α→ q′, (q, π) �↓p

(q′, πp) if q
↓p→ q′ and (q, πp) �↑p (q′, π) if q

↑p→ q′. A run ρ is a sequence of �
steps. We write c0 �ρ cn if ρ = p1 . . . pn ∈ (T ε ∪ Γ ′)+ and for every i ∈ [n] there
exists ci s.t. ci−1 �pi ci, where [n] denotes the set {1 . . . n}. The set of possible
configurations of M is C(M) = {c | c0 �∗ c}. The set of accepting runs of M is
R(M) = {ρ | ∃qf ∈ F, π ∈ Γ ∗ : c0 �ρ (qf , π)}.

A multi-stack pushdown automaton, or MPDA, Mn with n stacks is a tuple
(Q,T, ˜Γn,Δ, q0, F ) where Q,T,Δ, q0 and F are defined the same as for a PDA
and ˜Γn =

⋃n
i=1 Γi are the n stack alphabets, each containing ⊥i. W.l.o.g. we

assume all subsets Γi ⊂ ˜Γn to be disjoint. We use {πi}i∈[n] to denote a set of
stacks. A configuration is a tuple over Q×Γ ∗

1 ×· · ·×Γ ∗
n and c0 = {q0, {⊥i}i∈[n]}.

We write (q, {πi}i∈[n]) �α (q′, {πi}i∈[n]) if q
α→ q′; (q, {πi}i∈[n]) �↓p (q′, {π′

i}i∈[n])

if q
↓p→ q′, p ∈ Γj , π′

j = πjp and π′
i = πi for i 	= j; and (q, {πi}i∈[n]) �↑p

(q′, {π′
i}i∈[n]) if q

↑p→ q′, p ∈ Γj , πj = π′
jp and π′

i = πi for i 	= j.

3 Ambiguity Detection with MPDAs

We present a framework for ambiguity detection of context-free grammars using
multi-stack automata.
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3.1 Checking Ambiguity

Given a PDA M that defines the derivations of a context-free grammar G, we
can express the ambiguity problem for the grammar using an MPDA. This can
be done on the condition that there is a bijective relation between the runs of
the PDA and parse trees of G, let us call it tree : R(M) → L(Gb). Two different
runs of the same input string then prove the ambiguity of G.

We build a 2-stack MPDA that simulates two runs of the PDA for the same
input string. The states of this MPDA consist of pairs of states of the PDA. Both
stacks can be modified independently of each other, but non-empty shifts are
synchronized to ensure both runs parse the same input string. Different runs for
the same input string both start from q0 but eventually split up. There are two
ways in which the runs can deviate from a common state: the runs can each take
different transitions, or only one of the two continues independently until the
next common shift. W.l.o.g. we distinguish three possible phases in this process:

1. the runs are not split up yet and alternately follow the same transitions;
2. the first run continues with independent transitions while the second run

waits for the next shift;
3. both runs are in different states.

We add two additional fields to the state pairs to register these phases: an
integer field denoting the current phase and a symbol from T ε ∪ ˜Γ ′

2 to record the
last action taken by the first run. The second field is used to synchronize shifts
and internal transitions during phase 1, and to recognize phase transitions.

Definition 1. Given a PDA M = (Q,T ε, Γ,Δ, q0, F ) the ambiguity MPDA of
M is a 2-stack MPDA Ma = (Qa, T ε, ˜Γ2,Δ

a, qa
0 , F a), where Qa ⊆ Q×Q×(T ε ∪

˜Γ ′
2) × [3], qa

0 = (q0, q0,⊥, 1), F a = F × F × (T ε ∪ ˜Γ ′
2) × {2, 3}, Δ↓↑ = Δ↓ ∪ Δ↑,

Δa ={ (q, q,⊥, 1)
ϕ→ (q′, q, ϕ, 1) | q

ϕ→ q′ ∈Δ↓↑}∪
{ (q′, q, ϕ, 1)

ϕ→ (q′, q′,⊥, 1) | } ∪
{ (q, q,⊥, 1) α→ (q′, q, α, 1) | q

α→ q′ ∈Δ→}∪
{ (q′, q, α, 1) ε→ (q′, q′,⊥, 1) | } ∪
{ (q, q,⊥, 1)

ϕ→ (q′, q,⊥, 2) | q
ϕ→ q′ ∈Δ↓↑}∪

{ (q′, q, ϕ, 1)
ϕ′
→ (q′, q′′,⊥, 3) | q

ϕ′
→ q′′ ∈Δ↓↑, ϕ′ 	= ϕ ∨ q′′ 	= q′}∪

{ (q′, q, α, 1) ε→ (q′, q′′,⊥, 3) | q
α→ q′′ ∈Δ→, q′′ 	= q′}∪

{ (q, q′,⊥, y)
ϕ→ (q′′, q′,⊥, y) | q

ϕ→ q′′ ∈Δ↓↑, y∈{2, 3}}∪
{ (q, q′,⊥, y) ε→ (q′′, q′,⊥, y) | q

ε→ q′′ ∈Δ→, y∈{2, 3}}∪
{ (q, q′,⊥, y) b→ (q′′, q′, b, y) | q

b→ q′′ ∈Δ→, y∈{2, 3}}∪
{ (q, q′, b, y) ε→ (q, q′′,⊥, 3) | q′ b→ q′′ ∈Δ→, y∈{2, 3}}∪
{ (q, q′, x, 3)

ϕ→ (q, q′′, x, 3) | q′ ϕ→ q′′ ∈Δ↓↑}∪
{ (q, q′, x, 3) ε→ (q, q′′, x, 3) | q′ ε→ q′′ ∈Δ→}.
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The input strings of runs leading to accepting states are the ambiguous
strings of G. To test for ambiguity we choose a restricted MPDA class and
compute the image of {qa

0 , {⊥i}i∈[n]} under �∗. If we can reach a state in F a

the MPDA’s language is non-empty and G is ambiguous. On the other hand,
if the chosen MPDA class allows the complete exploration of the configuration
space of Ma and no accepting state can be reached then G is unambiguous.
Otherwise, the problem remains unanswered. This is formalized by the following
statements.

Lemma 2. Given a grammar G, a PDA M and a bijective relation tree :
R(M) → L(Gb), the language L(Ma) equals A(G).

Definition 3. Given an MPDA class Cm, a PDA M is MSA(Cm)-ambiguous
iff Ma has at least one run that complies with the restrictions of Cm. The PDA
is MSA(Cm)-unambiguous iff Ma is a member of Cm and L(Ma) is empty.

Definition 4. Given a PDA class Cp and an MPDA class Cm, a grammar
G is MSA(Cp, Cm)-ambiguous iff a Cp-PDA of G is MSA(Cm)-ambiguous.
Similarly, G is MSA(Cp, Cm)-unambiguous iff a Cp-PDA of G is MSA(Cm)-
unambiguous.

Definition 5. Given a PDA class Cp and an MPDA class Cm, a grammar
G is in MSA(Cp, Cm) iff it is MSA(Cp, Cm)-ambiguous or MSA(Cp, Cm)-
unambiguous.

Theorem 6. Given a PDA class Cp, an MPDA class Cm and a grammar G,
if G is MSA(Cp, Cm)-ambiguous then G is ambiguous.

Theorem 7. Given a PDA class Cp, an MPDA class Cm and a grammar G,
if G is MSA(Cp, Cm)-unambiguous then G is unambiguous.

3.2 Choice of Pushdown Automaton

Since our method is parametric in the type of PDA, it can apply different strategies
for exploring parse trees. Furthermore, this allows for easy integrationwith existing
parser implementations. The parse tree exploration depends on the way a PDA
uses its stack. For instance, recursive descent parsers—like LL [15]—push on every
entry of a production and pop on a reduce. This makes the stack depth correspond
to parse tree height. The number of pushes in a run corresponds to the number of
non-leaf parse tree nodes. Shift-reduce parsers—like LR [14]—push on every shift
and pop when a production is reduced, followed by another push of the reduced
nonterminal. In this case the number of pushes in a run corresponds to the total
number of parse tree nodes.

In general, the less stack activity a PDA requires for a given language, the
larger the set of parse trees that can be covered by the configuration space of
the restricted MPDA. Reduce incorporated parsers [24] are aimed at reducing the
stack activity of a parser. They use the PDA as a DFA for regular structures and
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only use the stack to record the derivation of nesting nonterminals. Parse trees of
the regular structures are built using special ε-transitions that mark reductions.
However, when a nesting nonterminal is also right or left recursive the stack is
used to track these kinds of derivations as well. To reduce the stack activity
even further—and use it purely for nesting—we can apply a similar strategy as
Nederhof ([19] Sect. 4.2), which completely separates the regular structures in a
grammar from the context-free ones. This way we can completely intersect the
regular structures in a grammar with each other and with the nesting ones, and
fully use the stack space for nesting/nesting intersection. We do not define such
a PDA here, but only mention their possibility. We will call them Nesting Stack
PDAs or NSPDAs.

3.3 Choice of Multi-stack Pushdown Automaton

Below we discuss various existing MPDA types and explore their suitability for
detecting ambiguity and unambiguity. To detect the ambiguity of a grammar
with a certain type of MPDA, it suffices to explore a single path in Ma to an
accepting state. The more paths an MPDA can cover, the higher the chance of
finding an ambiguous one. In advance we can state that this is possible with all
MDPA types described below, to varying extents. However, to detect unambi-
guity we need to ensure no state in F a can be reached at all. This requires the
configuration space of the MPDA to cover all possible paths of Ma. In order to
do so, an MPDA type should pose no restrictions on nesting depth, since every
nesting nonterminal will create paths in (at least) phase 1 that push to infinite
stack depths and pop out of these as well. We will see that no discussed MPDA
is able to cover such paths.

Another criteria we will look at is to what extent an MPDA type is able
to intersect the regular structures in a grammar with other regular structures
as well as with nesting structures. Since the emptiness of both regular/regular
intersection and regular/nesting intersection is decidable, making use of these
results enlarges the class of grammars the MPDA can decide the ambiguity
of. With NSPDAs all MPDAs allow full regular/regular intersection, since this
requires no stack activity. For full regular/nesting intersection an MPDA should
allow one stack to reach and return from infinite depths, while the other remains
untouched.

Bounded nesting depth MPDAs [10] pose an intuitive restriction, which allows
complete regular/regular intersection, but only limited regular/nesting and nest-
ing/nesting intersection. They are thus suitable for ambiguity detection, but not
for unambiguity detection.

Bounded-context switching MPDAs [20] use the concept of contexts—a part
of a run in which only one stack can push and pop—and restrict runs to a limited
number of contexts. This allows for complete regular/regular and regular/nesting
intersection. However, the depth of nesting/nesting intersection is bounded since
every alternate nesting requires a context-switch. Bounded-context MPDAs can
be useful for finding ambiguity, but not for finding unambiguity.
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Bounded-phase MPDAs [16] use the concept of phases, in which only one
stack can pop, but others are free to push. These MPDAs cover a strictly larger
search space than bounded-context MPDAs [17] and are thus better suitable
for finding ambiguity. Stacks can nest simultaneously to unlimited depth, but
only pop out together for a limited number of steps. Hence, they can still not
completely explore all configurations of phase 1.

MPDAs with scope-bounded matching relations [17,18] require that every
push is popped within a bounded number of rounds, or never at all. During
a round all stacks are allowed one context each, in a predefined order. These
MPDAs have a larger coverage than bounded-context MPDAs, but are incom-
parable with bounded-phase [17]. The fact that pushes do not have to be popped
can be helpful for finding ambiguity, but not for detecting unambiguity if we
require all pushes to be popped. In this case, the first push of any stack has to
immediately start a scope and the MPDA reverts to a bounded-context explo-
ration.

Budget bounded MPDAs [1] allow unlimited context switches for stacks whose
depth is below a certain bound, and a limited number of contexts for as long
as they are above this depth bound. In other words, once the depth limit is
reached, a new scope is started which has to be closed within a bounded number
of contexts. Budget bounded MPDAs are thus closely related to scope-bounded
MPDAs, but because they also allow pops before the start of a scope they have
a larger coverage. Nevertheless, there remains a bound on the nesting depth.

Ordered MPDAs [8], the earliest type of restricted MPDA, assume an order-
ing of the stacks and allow only the first non-empty stack to pop. All stacks can
push freely at any time. At first sight this concept might not seem suitable for
nesting/nesting intersection, because it does not allow simultaneous pops. How-
ever, ordered MDPAs can simulate bounded-phase MPDAs [2] and thus allow
bounded nesting/nesting intersection. In fact, they are even more expressive
than bounded-phase, which makes them at least equally suitable for detecting
ambiguity and unambiguity.

Concluding, we can say that all discussed MPDA types are suitable to find
ambiguities with our scheme, resulting in different exploration strategies of
strings and prefixes. All MPDAs can either simultaneously push into bounded or
unbounded nesting depths, and some can simultaneously pop a bounded number
of steps as well. However, none of the MPDAs are able to let both stacks pop
out of infinitely deep nestings together, making them unsuitable for detecting
the unambiguity of context-free grammars in general. In the next section we
describe a new type of restricted MPDA that does have this property.

4 Bounded-Balance Multi-Stack Pushdown Automata

We propose a new type of restricted MPDA called bounded-balance multi-stack
pushdown automata, or BBMPDAs. They are MPDAs with an upper bound on
the number of symbols that are pushed but not popped within each scope of
matching push and pop transitions.
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4.1 Definition

First we introduce the concepts of scope and balance. A scope is the part of a run
between the push of a symbol and the pop of that symbol. We use μ ⊆ N×N to
hold matching transition indices that open and close a scope (as in [18]). Given
a run ρ = c0 �ϕ1 c1 �ϕ2 · · · �ϕm cm, a pair (s, t) ∈ μρ iff s < t and exists p ∈ Γi

for some i ∈ [n] s.t. ϕs =↓p, ϕt =↑p and

– for all s < s′ < t, if ϕs′ =↓ p′, p′ ∈ Γi then there exists s′ < t′ < t such that
(s′, t′) ∈ μρ, and

– for all s < t′ < t, if ϕt′ =↑ p′, p′ ∈ Γi then there exists s < s′ < t′ such that
(s′, t′) ∈ μρ.

The balance of a scope is the number of stack symbols that were pushed but
not popped within the scope.

Definition 8. The balance of a scope (s, t) ∈ μρ is balance(s, t) = |{ s′ | (s′, t′) ∈
μρ, s < s′ < t < t′}|.

Viewed differently, balance corresponds to the stack depth differences built
up during a scope. By limiting the balances during runs, we acquire a new class
of restricted MPDAs, which we call bounded-balance MPDAs.

Definition 9. An n-MPDA Mn is a BB(k)MPDA iff for every run ρ ∈ R(Mn)
and scope (s, t) ∈ μρ it holds that balance(s, t) ≤ k.

A finite balance bound allows for a finite representation of the possibly infinite
configuration space of BBMPDAs. This makes testing for the BB(k) property
decidable. In the following section we show how a BBMPDA can be simulated
by a standard single stack PDA, which enables using existing techniques for
configuration space exploration [23].

4.2 Configuration Exploration

BB(k)MPDAs can be simulated by a standard PDA that can pop from the
topmost k + 1 symbols of its stack, by temporarily remembering up to k stack
symbols in its states. It has a single stack over ˜Γn, storing pushes of all stacks
sequentially. When a certain stack needs to be popped, but its top symbol is
not at the top of the simulating stack, intermediary symbols are popped and
temporarily stored in the PDA states, until the required symbol is reached. This
symbol is then popped as per usual, and temporarily stored symbols are pushed
back to the stack again. The number of the stack to be popped is also stored in
the states, so a series of borrows is always targeted at a single stack. To make
sure that the order in which the symbols of the individual stacks are pushed and
popped remains unchanged, a stack cannot be borrowed from once it has been
targeted, i.e. only the top of the targeted stack can be popped. The number 0 is
used to indicate no stack is currently targeted.
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Definition 10. Given an n-stack MPDA M = (Q,T ε, ˜Γn,Δ, q0, F ) the
k-borrowing PDA of M is M b

k = (Qb, T ε, ˜Γn,Δb, (q0, 0, ε), F × {0} × {ε}), where
Qb = Q × {0 . . . n} × ( ˜Γn ∪ {ε})k, Δb =

{ (q, 0, ε)
X→ (q′, 0, ε) | q

X→ q′ ∈ Δ} ∪ (copy of Δ)

{ (q, i, π)
↑p→ (q, j, pπ) | q

↑p′
→ q′ ∈ Δ↑, p′ ∈ Γj , p /∈ Γj , i ∈ {0, j}} ∪ (borrows)

{ (q, i, π)
↑p→ (q′, 0, π) | q

↑p→ q′ ∈ Δ↑, p ∈ Γi} ∪ (pops)

{ (q, 0, pπ)
↓p→ (q, 0, π) | }. (returns)

The initial configuration of M b
k is ((q0, 0, ε),⊥1 . . . ⊥n).

Theorem 11. The k-borrowing PDA M b
k of a BB(k)MPDA M simulates

exactly all runs of M .

Testing whether an MPDA is BB(k) for a fixed k comes down to constructing
M b

k+1 and testing whether no states with borrowed stacks of size k + 1 can be
reached. Note that this scheme allows for incremental search with increasing k.
The computational complexity depends on the chosen model checking algorithm,
of which most are polynomial in the size of the PDA. The number of states and
transitions of M b

k is exponential in k, which puts our approach in exptime.

4.3 Application to Ambiguity Detection

When applied in the ambiguity detection scheme of Sect. 3, BBMPDAs yield
several desirable properties. First, they allow for full regular/regular intersection
and regular/nesting intersection of the paths of M in Ma. In combination with
NSPDAs, regular/regular intersection requires no stack activity and will not
build up any balance. During regular/nesting intersection, which starts with
the opening of a scope on one stack and ends when this scope is closed or the
other stack becomes active, pushes on the active stack do add to the balance
of the current scope of the other stack. However, this balance is only compared
to the bound at the moment the regular/nesting intersection ends. During the
intersection the nesting stack is allowed to grow and shrink indefinitely.

Second, full nesting/nesting intersection is also possible in case Ma meets the
BB(k) condition. Both stacks are allowed to reach unbounded depths together
and pop out of them as well, as long as the scope balances stay within the bound.

Third, BBMPDAs have the possibility of detecting the unambiguity of gram-
mars with nesting structures, which is a consequence from the previous property.
As the next theorem states, the scope balances in the paths of Ma in phase 1
will never be more than 1. Therefore, the configuration space of BB(k)MPDAs
with k ≥ 1 will at least cover all these paths. If in the continuations of these
paths in phases 2 and 3, the scope balances stay within the balance bound as
well and no end state is reached, the tested grammar is unambiguous.

Theorem 12. Given a PDA M , for all partial runs c0 . . . �↑p ((q, q′, x, 1),
{πi}i∈[n]) in phase 1 of Ma, the balance of the closed scope of p is at most 1.
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5 Comparisons and Related Work

In this section we compare our contributions to related MPDAs and ambiguity
detection methods.

5.1 Multi-Stack Pushdown Automata

We show that BBMPDAs include bounded depth MPDAs but that they are incom-
parablewithbounded-context switchingMPDAs.This implies they are also incom-
parable with the larger MPDA classes mentioned in Sect. 3.3—bounded-phase,
scope-bounded, budget-bounded and ordered MPDAs—since none of these can, in
general, cover all paths in phase 1 of Ma. For detecting ambiguity however, these
MPDAs and BBMPDAs are complementary.

Theorem 13. If M is a n-stack MPDA with depth bound k, its scope balances
are bounded by k ∗ (n − 1).

Theorem 14. The class of BBMPDAs is incomparable with bounded-context
switching MPDAs.

Regarding simulation, any 1-stack MPDA with enough freedom to be a plain
PDA can simulate BBMPDAs. With the exception of bounded depth MPDAs
this is the case for all MPDA types mentioned above.

5.2 Ambiguity Detection Methods

In this section we will discuss related work in ambiguity detection and compare
it with our approach if possible.

Bounded-Search Methods. There are several methods that enumerate strings
in L(G) of bounded length and test them for ambiguity [3,6,9,12,13,22,25].
In general these approaches are only able to detect ambiguities, because they
can never entirely cover L(G). In essence our approach also applies a bounded
search, but with the difference that the search space can cover an infinitely large
language. Depending on G and the types of PDA and MPDA we can cover
L(G) entirely and detect unambiguity. However, with certain types of PDA and
MPDA, our method can also be set up for bounded string exploration. For
example, using a—nondeterministic—LR PDA with a bounded-context MPDA
will result in the exploration of strings and prefixes of bounded length. An LR
PDA pushes with every shift, requiring a context switch to allow both stacks to
push. Every reduction requires a number of pops and a push, but each stack can
perform all its reductions within one context, either after the last push or before
the next push, requiring no additional context switches.

Conservative Approximation Methods. Contrary to bounded search, other
methods apply conservative approximation to reduce the infinite L(G) to a lim-
ited space. This yields the possibility of detecting unambiguity, but prohibits
detecting ambiguity in most cases. The ACLA-test [7] applies regular approx-
imation to the languages of individual production rules and searches for the
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absence of horizontal and vertical ambiguities using intersection and overlap
operations. The NU-test [21] approximates the set of parse trees of a grammar
and searches for the absence of different trees for the same ambiguous string.
An extension to the NU-test allows the detection of harmless productions, which
are rules that do not contribute to any ambiguity [4]. The rules can be filtered
from the grammar to incrementally improve the approximation.

A significant difference between both approximative methods and our app-
roach is that they are less able to recognize the unambiguity of nesting structures.
Due to the regular approximation they lose the ability to match the left and right
contexts of nestings, i.e. count the nesting depth. The ACLA-test applies pro-
duction unfolding to counter this disadvantage, but this is only possible up to a
certain depth. As an example, both tests are not able the detect the unambiguity
of the following grammar, which is MSA(LL(0), BB(3))-unambiguous.

S → A | B, A → aAb | ab, B → aBb | a (1)

6 Conclusion

We present a novel method for detecting ambiguity in context-free grammars
using restricted multi-stack pushdown automata. It is able to find both ambi-
guity and unambiguity. We discuss the use of existing MPDA classes within
our framework, as well as propose a new class called bounded-balance MPDAs.
These MPDAs are particularly useful for language intersection since they allow
for unbounded nesting/nesting intersection, as long as the nesting depth differ-
ences stay within the balance bound.
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L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
pp. 692–703. Springer, Heidelberg (2007)
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