
ar
X

iv
:1

60
6.

02
97

5v
3

 [
cs

.F
L

]
 2

3
Se

p
20

16

An automata characterisation for

multiple context-free languages∗

Tobias Denkinger

Faculty of Computer Science,

Technische Universität Dresden,

01062 Dresden, Germany

tobias.denkinger@tu-dresden.de

2018-10-23

Abstract

We introduce tree stack automata as a new class of automata with storage and
identify a restricted form of tree stack automata that recognises exactly the multiple
context-free languages.

Contents

1 Introduction 2

2 Preliminaries 2

2.1 Parallel multiple context-free grammars 3
2.2 Automata with storage . 3

3 Tree stack automata 4

3.1 Restricted TSA . 6
3.2 Normal forms . 7

4 The equivalence of MCFG and restricted TSA 9

4.1 Every MCFG has an equivalent restricted TSA 9
4.2 Every restricted TSA has an equivalent MCFG 13
4.3 The main theorem . 16

5 Conclusion 17

∗This is an extended version of a paper with the same title accepted at DLT 2016 which is available at
link.springer.com and via the DOI 10.1007/978-3-662-53132-7_12.

1

http://arxiv.org/abs/1606.02975v3
mailto:tobias.denkinger@tu-dresden.de
link.springer.com
https://dx.doi.org/10.1007/978-3-662-53132-7_12

1 Introduction

Prominent classes of languages are often defined with the help of their generating mech-
anism, e.g. context-free languages are defined via context-free grammars, tree-adjoining
languages via tree-adjoining grammars, and indexed languages via indexed grammars.
To achieve a better understanding of how languages from a specific language class can
be recognised, it is natural to ask for an automaton model. For context-free languages,
this question is answered with pushdown automata [Cho62, Sch63], yield languages of
tree-adjoining grammars are recognised by embedded pushdown automata [VS88, Sec. 3],
and indexed languages are recognised by nested stack automata [Aho69].

Mildly context-sensitive grammars are currently prominent in natural language pro-
cessing as they are able to express the non-projective constituents and dependencies that
occur in natural languages [KS09, Mai10]. Multiple context-free grammars [SMFK91] de-
scribe many mildly context-sensitive grammars. Yet, to the author’s knowledge, there is
no corresponding automaton model. Thread automata [VdlC02b, VdlC02a], introduced
by Villemonte de la Clergerie to describe parsing strategies for mildly context-sensitive
grammar formalisms, already come close to such an automaton model. A construction of
thread automata from ordered simple range concatenation grammars (which are equiva-
lent to multiple context-free languages) was given [VdlC02b, Sec. 4]. A construction for
the converse direction as well as proofs of correctness, however, were not provided.

Based on the idea of thread automata, we introduce a new automaton model, tree
stack automata, and formalise it using automata with storage [Sco67, Eng14] in the
notation of Herrmann and Vogler [HV15], see Section 3. Tree stack automata possess, in
addition to the usual finite state control, the ability to manipulate a tree-shaped stack
that has the tree’s root at its bottom. We find a restriction of tree stack automata that
makes them equivalent to multiple context-free grammars and we give a constructive
proof for this equivalence, see Section 4.

2 Preliminaries

In this section we fix some notation and briefly recall formalisms used throughout this
paper. We denote the set of natural numbers (including 0) by N, N \ {0} by N+, and
{1, . . . , n} by [n] for every n ∈ N. The reflexive, transitive closure of some endorelation
r is denoted as r∗. For two sets A and B, we denote the set of partial functions from
A to B by A → B. The operator → shall be right associative. Let f :A → B, a ∈ A,
and b ∈ B. The domain of f , denoted by dom(f), is the subset of A for which f is
defined. If dom(f) = A we call f total. We define f [a 7→ b] as the partial function from
A to B such that f [a 7→ b](a) = b and f [a 7→ b](a′) = f(a′) for every a′ ∈ dom(f) \ {a}.
We sometimes construe partial functions as relations in the usual manner. Let S be a
countable set (of sorts) and s ∈ S. An S-sorted set is a tuple (B, sort) where B is a set
and sort : B → S is total. We denote the preimage of s under sort by Bs and abbreviate
(B, sort) by B; sort will always be clear from the context. Let A be a set and L ⊆ A∗.
We call L prefix-closed if for every w ∈ A∗ and a ∈ A we have that wa ∈ L implies w ∈ L.

2

An alphabet is a finite set (of symbols). Let Γ be an alphabet. The set of trees over Γ ,
denoted by TΓ , is the set of partial functions from N

∗
+ to Γ with finite and prefix-closed

domain. The usual definition of trees [Gue83, Sec. 2] additionally requires that for every
ρ ∈ N

∗
+ and n ≥ 2: if ρn is in the domain of a tree then ρ(n− 1) is as well; we drop this

restriction here.

2.1 Parallel multiple context-free grammars

We fix a set X = {xji | i, j ∈ N+} of variables. Let Σ be an alphabet. The set
of composition representations over Σ is the (N∗

+ × N+)-sorted set RFΣ where for

every s1, . . . , sℓ, s ∈ N+ we define X(s1···sℓ,s) = {xji | i ∈ [ℓ], j ∈ [si]} ⊆ X and
(RFΣ)(s1···sℓ,s) = {[u1, . . . , us](s1···sℓ,s) | u1, . . . , us ∈ (Σ ∪X(s1···sℓ,s))

∗} as a set of strings
in which parentheses, brackets, commas, and the elements of N+, Σ, and X(s1···sℓ,s) are
used as symbols. Let f = [u1, . . . , us](s1···sℓ,s) ∈ RFΣ. The composition function of
f , also denoted by f , is the function from (Σ∗)s1 × · · · × (Σ∗)sℓ to (Σ∗)s such that
f((w1

1, . . . , w
s1
1), . . . , (w1

ℓ , . . . , w
sℓ
ℓ)) = (u′1, . . . , u

′
s) where (u′1, . . . , u

′
s) is obtained from

(u1, . . . , us) by replacing each occurrence of xji by w
j
i for every i ∈ [ℓ] and j ∈ [sℓ]. The

set of all composition functions for some composition representation over Σ is denoted
by FΣ . From here on we no longer distinguish between composition representations and
composition functions. We define the fan-out of f as s. We call f linear (non-deleting)
if in u1 · · · us every element of X occurs at most once (at least once, respectively). The
subscript is dropped from f if its sort is clear from the context.

Definition 2.1. A parallel multiple context-free grammar (short: PMCFG) is a tuple
G = (N,Σ, I,R) where N is a finite N+-sorted set (of non-terminals), Σ is an alphabet
(of terminals), I ⊆ N1 (initial non-terminals), andR ⊆

⋃

k,s,s1,...,sk∈N
Ns×(FΣ)(s1···sk,s)×

(Ns1 × · · · ×Nsk) is finite (rules). �

Let G = (N,Σ, I,R) be a PMCFG. A rule (A, f,A1 · · ·Ak) ∈ R is usually written as
A→ f(A1, . . . , Ak); it inherits its sort from f . A PMCFG that only contains rules with
linear composition functions is called a multiple context-free grammar (short: MCFG).
An MCFG that contains only rules of fan-out at most k is called a k-MCFG.

For every A ∈ N , we recursively define the set of derivations in G from A as DG(A) =
{r(d1, . . . , dk) | r = A → f(A1, . . . , Ak) ∈ R,∀i ∈ [k]: di ∈ DG(Ai)}. The elements of
DG(A) can be construed as trees over R. Let d ∈ DG(A). By projecting each rule in d on
its second component, we obtain a term over FΣ ; the tuple generated by d, denoted by JdK,
is obtained by evaluating this term. We identify 1-tuples of strings with strings. The set
of (complete) derivations in G is DG =

⋃

A∈N DG(A) (D
c
G =

⋃

S∈I DG(S), respectively).
The language of G is L(G) = {JdK | d ∈ Dc

G}.

2.2 Automata with storage

Definition 2.2. A storage type is a tuple S = (C,P, F,Ci) where C is a set (of storage
configurations), P ⊆ P(C) (predicates), F ⊆ C → C (instructions), and Ci ⊆ C (initial
configurations). �

3

Definition 2.3. An automaton with storage is a tuple M = (Q,S,Σ, qi, ci, δ,Qf) where
Q is a finite set (of states), S = (C,P, F,Ci) is a storage type, Σ is an alphabet (of
terminals), qi ∈ Q (initial state), ci ∈ Ci (initial storage configuration), δ ⊆ Q × (Σ ∪
{ε}) × P × F ×Q is finite (transitions), and Qf ⊆ Q (final states). �

Let M = (Q,S,Σ, qi, ci, δ,Qf) be an automaton with storage and S = (C,P, F,Ci).
Let τ = (q, ω, p, f, q′) ∈ δ be a transition. We call q the source state of τ , p the
predicate of τ , f the instruction of τ , and q′ the target state of τ . A configuration of
M is an tuple (q, c, w) where q ∈ Q, c ∈ C, and w ∈ Σ∗. We define the run relation
with respect to τ as the binary relation ⊢τ on the set of configurations of M such that
(q, c, w) ⊢τ (q′, c′, w′) iff (w = ωw′) ∧ (c ∈ p) ∧ (f(c) = c′). The set of runs in M is the
smallest set RM ⊆ δ∗ where for every k ∈ N and τ1, . . . , τk ∈ δ, the string θ = τ1 · · · τk
is in RM if there are q0, . . . , qk ∈ Q, c0, . . . , ck ∈ C, and ω1, . . . , ωk ∈ Σ ∪ {ε} such
that (q0, c0, ω1 · · ·ωk) ⊢τ1 (q1, c1, ω2 · · ·ωk) ⊢τ2 . . . ⊢τk (qk, ck, ε); we may then write
(q0, c0, ω1 · · ·ωk) ⊢θ (qk, ck, ε) or (q0, c0) ⊢θ (qk, ck) or JθK = ω1 · · ·ωk. The set of valid
runs in M, denoted by Rv

M, contains exactly the runs θ ∈ RM where (qi, ci) ⊢θ (q, c) for
some q ∈ Qf and c ∈ C. For θ ∈ Rv

M we say that M recognises JθK. The language of M
is L(M) = {JθK | θ ∈ Rv

M}.

3 Tree stack automata

Informally, a tree stack is a tree with a designated position in it. The root of the tree
serves as bottom-most symbol and the leaves are top-most symbols. We allow the stack
pointer to move downward (i.e. to the parent) and upward (i.e. to any child). We may
write at any position except for the root. We may also push a symbol to any vacant
child position of the current node. Formally, for an alphabet Γ , a tree stack over Γ is
a tuple (ξ[ε 7→ @], ρ) where ξ ∈ TΓ , @ /∈ Γ , and ρ ∈ dom(ξ) ∪ {ε}. The set of all tree
stacks over Γ is denoted by TS(Γ). We define the following subsets (or predicates) of
and partial functions on TS(Γ):

• equals(γ) = {(ξ, ρ) ∈ TS(Γ) | ξ(ρ) = γ} for every γ ∈ Γ and

• bottom = {(ξ, ρ) ∈ TS(Γ) | ρ = ε}.

• id: TS(Γ) → TS(Γ) where id(ξ, ρ) = (ξ, ρ) for every (ξ, ρ) ∈ TS(Γ),

• push:N+ → Γ → TS(Γ) → TS(Γ) where pushn(γ)(ξ, ρ) = (ξ[ρn 7→ γ], ρn) for
every (ξ, ρ) ∈ TS(Γ), n ∈ N+ with ρn /∈ dom(ξ), and γ ∈ Γ ,

• up:N+ → TS(Γ) → TS(Γ) where upn(ξ, ρ) = (ξ, ρn) for every (ξ, ρ) ∈ TS(Γ) and
n ∈ N+ with ρn ∈ dom(ξ),

• down:TS(Γ) → TS(Γ) where down(ξ, ρn) = (ξ, ρ) for every (ξ, ρn) ∈ TS(Γ) with
n ∈ N+, and

• set:Γ → TS(Γ) → TS(Γ) where set(γ)(ξ, ρ) = (ξ[ρ 7→ γ], ρ) for every γ ∈ Γ and
(ξ, ρ) ∈ TS(Γ) with ρ 6= ε.

4

δ: τ1 =
(

1, a,TS(Γ) ,push1(∗) , 1
)

τ2 =
(

1, ε,TS(Γ) ,push1(#), 2
)

τ3 =
(

2, ε, equals(#),down , 2
)

τ4 =
(

2,b, equals(∗) ,down , 2
)

τ5 =
(

2, ε,bottom ,up1 , 3
)

τ6 =
(

3, c , equals(∗) ,up1 , 3
)

τ7 =
(

3, ε, equals(#),down , 4
)

τ8 =
(

4,d, equals(∗) ,down , 4
)

τ9 =
(

4, ε,bottom , id , 5
)

(

1, {(ε,@)} , abcd
)

⊢τ1
(

1, {(ε,@), (1, ∗)} ,bcd
)

⊢τ2
(

2, {(ε,@), (1, ∗), (11,#)},bcd
)

⊢τ3
(

2, {(ε,@), (1, ∗), (11,#)},bcd
)

⊢τ4
(

2, {(ε,@), (1, ∗), (11,#)}, cd
)

⊢τ5
(

3, {(ε,@), (1, ∗), (11,#)}, cd
)

⊢τ6
(

3, {(ε,@), (1, ∗), (11,#)},d
)

⊢τ7
(

4, {(ε,@), (1, ∗), (11,#)},d
)

⊢τ8
(

4, {(ε,@), (1, ∗), (11,#)}, ε
)

⊢τ9
(

5, {(ε,@), (1, ∗), (11,#)}, ε
)

Figure 1: Set of transitions and a valid run in M (cf. Example 3.2).

We may denote a tree stack (ξ, ρ) ∈ TS(Γ) by writing ξ as a set and underlining the
unique tuple of the form (ρ, γ) in this set. Consider for example a tree ξ ∈ T{@,∗,#} with
domain {ε, 2, 23} such that ξ: ε 7→ @, 2 7→ ∗, 23 7→ #. We would then denote the tree
stack (ξ, 2) ∈ TS({∗,#}) by {(ε,@), (2, ∗), (23,#)}.

Definition 3.1. Let Γ be an alphabet. The tree stack storage with respect to Γ is the
storage type (TS(Γ), P, F, {{(ε,@)}}), abbreviated by TS(Γ), where

P = {bottom, equals(γ),TS(Γ) | γ ∈ Γ} and

F = {id,pushn(γ),upn,down, set(γ) | γ ∈ Γ, n ∈ N}. �

We call automata with tree stack storage tree stack automata (short: TSA). In a
storage configuration (ξ, ρ) of a TSA M we call ξ the stack (of M) and ρ the stack
pointer (of M).

Example 3.2. Let Σ = {a,b, c,d} and Γ = {∗,#}. Consider the TSA

M =
(

[5],TS(Γ), Σ, 1, {(ε,@)}, δ, {5}
)

where δ is shown in Fig. 1. Figure 1 also shows the valid run τ1τ2τ3τ4τ5τ6τ7τ8τ9 in M
recognising abcd. The language of M is L(M) = {anbncndn | n ∈ N} and thus not
context-free. �

While M from the above example only uses a monadic stack, a TSA may also utilise
branching as shown in the next example.

Example 3.3. Let again Σ = {a,b, c,d} and Γ = {∗,#}. Consider the TSA

M′ =
(

[9],TS(Γ), Σ, 1, {(ε,@)}, δ′, {9}
)

5

(

1, {(ε,@)} , aabccd
)

⊢τ ′
1

(

2, {(ε,@), (1, ∗)} , abccd
)

⊢τ ′
2

(

2, {(ε,@), (1, ∗), (11, ∗)} ,bccd
)

⊢τ ′
3

(

3, {(ε,@), (1, ∗), (11, ∗), (111,#)} ,bccd
)

⊢τ ′
4
τ ′
4
τ ′
4

(

3, {(ε,@), (1, ∗), (11, ∗), (111,#)} ,bccd
)

⊢τ ′
5

(

4, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗)} , ccd
)

⊢τ ′
7

(

5, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)}, ccd
)

⊢τ ′
8
τ ′
8

(

5, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)}, ccd
)

⊢τ ′
9

(

6, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)}, ccd
)

⊢τ ′
10
τ ′
10

(

6, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)},d
)

⊢τ ′
11

(

7, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)},d
)

⊢τ ′
12
τ ′
12

(

7, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)},d
)

⊢τ ′
13

(

8, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)},d
)

⊢τ ′
14

(

8, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)}, ε
)

⊢τ ′
15

(

9, {(ε,@), (1, ∗), (11, ∗), (111,#), (2, ∗), (21,#)}, ε
)

Figure 2: A valid run in M′ (cf. Example 3.3).

with δ′ = {τ ′1, . . . , τ
′
15} where

τ ′1 =
(

1, a,bottom,push1(∗) , 2
)

, τ ′9 =
(

5, ε,bottom ,up1 , 6
)

,

τ ′2 =
(

2, a,TS(Γ) ,push1(∗) , 2
)

, τ ′10 =
(

6, c , equals(∗) ,up1 , 6
)

,

τ ′3 =
(

2, ε,TS(Γ) ,push1(#), 3
)

, τ ′11 =
(

6, ε, equals(#),down, 7
)

,

τ ′4 =
(

3, ε,TS(Γ) ,down , 3
)

, τ ′12 =
(

7, ε, equals(∗) ,down, 7
)

,

τ ′5 =
(

3,b,bottom,push2(∗) , 4
)

, τ ′13 =
(

7, ε,bottom ,up2 , 8
)

,

τ ′6 =
(

4,b,TS(Γ) ,push1(∗) , 4
)

, τ ′14 =
(

8,d, equals(∗) ,up1 , 8
)

, and

τ ′7 =
(

4, ε,TS(Γ) ,push1(#), 5
)

, τ ′15 =
(

8, ε, equals(#), id , 9
)

.

τ ′8 =
(

5, ε,TS(Γ) ,down , 5
)

,

Then M′ recognises the languages L′ = {aibjcidj | i, j ∈ N \ {0}}. A valid run of M′ on
the word aabccd is shown in Fig. 2. �

3.1 Restricted TSA

Similar to Villemonte de la Clergerie [VdlC02b], we are interested in how often any
specific position in the stack is reached from below. For every TSA M we define
(cM(θ):N∗

+ → N+ | θ ∈ Rv
M) as the family of total functions where cM(ε)(ρ) = 0

6

for every ρ ∈ N
∗
+, and for every θτ ∈ Rv

M with τ ∈ δ we have cM(θτ) = cM(θ) if τ
has neither a push- nor up-instruction, and we have cM(θτ) = cM(θ)[ρ 7→ cM(θ)(ρ)+ 1]
if τ has a push- or up-instruction and {(ε,@)} ⊢θτ (ξ, ρ) for some tree ξ. We call M
k-restricted if cM(θ)(ρ) ≤ k holds for every θ ∈ Rv

M and ρ ∈ N
∗
+. Note that M from

Example 3.2 and M′ from Example 3.3 are both 2-restricted.
Since (unrestricted) TSA can write at any position (except for ε) arbitrarily often,

they can simulate Turing machines. It is apparent that 1-restricted TSA are exactly
as powerful as pushdown automata. The power of k-restricted TSA for k ≥ 2 is thus
between the context-free and recursively enumerable languages.

3.2 Normal forms

We will see that loops that do not move the stack pointer as well as acceptance with
non-ε stack pointers can be removed.

Let M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) be a TSA. For each q, q′ ∈ Q and γ, γ′ ∈

Γ ∪{@} we define RM(q, q′)|γ→γ′

stay as the set of runs θ in M such that θ only uses set- or
id-instructions and there are tree stacks (ξ, ρ), (ζ, ρ) ∈ TS(Γ) with ξ(ρ) = γ, ζ(ρ) = γ′,
and (q, (ξ, ρ)) ⊢θ (q

′, (ζ, ρ)).

Definition 3.4. We call a TSA M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) cycle-free if for

every q ∈ Q and γ ∈ Γ ∪ {@} we have RM(q, q)|γ→γ
stay = {ε}. �

Lemma 3.5. For every (k-restricted) TSA M, there is a (k-restricted) cycle-free TSA
M′ such that L(M) = L(M′).

Proof idea. Instead of performing all iterations of some loop θ ∈ RM(q, q)|γ→γ
stay \ {ε}

at the same position ρ in the stack, we insert additional push-instructions before each
iteration of the loop. In order to find position ρ again after the desired number of
iterations, we write symbols ∗ or # before every push, where a ∗ signifies that we have
to perform at least two further down-instructions to reach ρ and # signifies that we will
be at ρ after one more down-instruction. After returning to ρ, we enter a state q̃ that is
equivalent to q except that it prevents us from entering the loop again.

Proof. Let M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) be a TSA and

τ1 · · · τn = (q0, ω1, p1, f1, q1) · · · (qn−1, ωn, pn, fn, qn)

be a shortest element of RM(q, q)|γ→γ
stay \ {ε} with q0 = q = qn.

Construct the automaton M′ = (Q′,TS(Γ ′), Σ, qi, {(ε,@)}, δ′, Q′
f) where Q′ = Q ∪

{q′0, . . . , q
′
n−1, q

↑, q↓, q̃0}, q
′
0, . . . , q

′
n−1, q

↑, q↓, q̃0 are pairwise different and not in Q, Γ ′ =
Γ ∪ {∗,#}, ∗ and # are different and not in Γ , Q′

f = Qf if q0 /∈ Qf, Q
′
f = Qf ∪ {q̃0} if

q0 ∈ Qf, δ
′ contains the transition (q̄, ω, p′, f, q̂) for every (q̄, ω, p, f, q̂) ∈ δ \ {τn} where

p′ = TS(Γ ′) if p = TS(Γ), and p′ = p otherwise, δ′ contains the transition (q̃0, ω, p
′, f, p̂)

for every (q0, ω, p, f, q̂) ∈ δ \ {τ1} where p′ = TS(Γ ′) if p = TS(Γ), and p′ = p otherwise,

7

and also δ′ contains transitions

τ̃n = (qn−1, ωn, p
′
n, fn, q̃0)

τ↑ = (q, ε,TS(Γ ′),pushj(#), q↑) ,

τ ′0 = (q↑, ε,TS(Γ ′),pushj(∗), q
′
0) ,

τ ′κ = (q′κ−1, ωκ,TS(Γ
′), id, q′κ) for every κ ∈ [n− 1],

τ ′n = (q′n−1, ωn,TS(Γ
′), id, q↑) ,

τ ′ = (q↑, ε,TS(Γ ′), id, q↓) ,

τ↓a = (q↓, ε, equals(∗),down, q↓) , and

τ↓b = (q↓, ε, equals(#),down, q)

where p′n = TS(Γ ′) if pn = TS(Γ) and p′n = pn otherwise, and j ∈ N such that no pushj-

instruction occurs in δ. By definition of the above transitions, we have J(τ1 · · · τn)
ℓK =

Jτ↑(τ ′0 · · · τ
′
n)
ℓ(τ↓a)ℓτ

↓
bK for every ℓ ∈ N and hence for every valid run θ in M, there is a

valid run θ′ inM′ with JθK = Jθ′K. We iterate the above construction until the automaton
is cycle-free. �

Definition 3.6. We say that a TSA M is in stack normal form if the stack pointer of
M is ε whenever we reach a final state. �

Lemma 3.7. For every (k-restricted) TSA M, there is a (k-restricted) TSA M′ in stack
normal form such that L(M) = L(M′).

Proof idea. We introduce a new state qf as the only final state and add transitions such
that, beginning from any original final state, we may perform down-instructions until
the predicate bottom is satisfied and then enter state qf.

Proof. Let M = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) and qdown, qf /∈ Q. We construct an
automaton M′ = (Q ∪ {qdown, qf},TS(Γ), Σ, qi, {(ε,@)}, δ′, {qf}) where

δ′ = δ ∪ {(q, ε, Γ, id, qdown) | q ∈ Qf} ∪ {(qdown, ε, Γ,down, qdown)}

∪ {(qdown, ε,bottom, id, qf)} .

Since qf is reachable from every element of Qf and every storage configuration without
reading additional symbols, we have that L(M) = L(M′). Also M′ is in stack normal
form since qf can only be reached when the configuration satisfies the predicate bottom.
This construction preserves k-restrictedness since δ′ \ δ can not reach states from Q and
contains no additional push or up-instructions. �

Note that M from Example 3.2 is cycle-free and in stack normal form whereas M′

from Example 3.3 is cycle-free but not in stack normal form.

8

4 The equivalence of MCFG and restricted TSA

4.1 Every MCFG has an equivalent restricted TSA

The following construction applies the idea of Villemonte de la Clergerie [VdlC02b, Sec. 4]
to the case of parallel multiple context-free grammars where, additionally, we have to
deal with copying, deletion, and permutation of argument components. The overall idea
is to incrementally guess for an input word w a derivation d of G (that accepts w) on
the stack while traversing the relevant components of the composition functions on the
right-hand sides of already guessed rules (in d) left-to-right. This specific traversal of
the derivation tree is ensured using states and stack symbols that encode positions in
the rules of G.1

Construction 4.1. Let G = (N,Σ, I,R) be a PMCFG, Γ = {�} ∪ R ∪ R̄, and R̄ =
{

〈r, i, j〉 | r = A→ [u1, . . . , us](A1, . . . , Aℓ) ∈ R, i ∈ [s], j ∈ {0, . . . , |ui|}
}

. Intuitively, an
element 〈r, i, j〉 ∈ R̄ stands for the position in r right after the j-th symbol of the i-th com-
ponent. The automaton with respect to G is M(G) = (Q,TS(Γ), Σ,�, {(ε,@)}, {�}, δ)

where Q = {q, q+, q− | q ∈ R̄ ∪ {�}} and δ is the smallest set such that for every
r = S → [u](A1, . . . , Aℓ) ∈ R with S ∈ I, we have the transitions

init(r) =
(

�, ε,TS(Γ),push1(�), 〈r, 1, 0〉
)

,

suspend1(r, 1,�) =
(

〈r, 1, |u|〉, ε, equals(�), set(r),�−

)

, and

suspend2(�) =
(

�−, ε,TS(Γ),down,�
)

in δ;

for every r = A→ [u1, . . . , us](A1, . . . , Aℓ) ∈ R, i ∈ [s], j ∈ [|ui|] where σ ∈ Σ is the j-th
symbol in ui, we have the transition

read(r, i, j) =
(

〈r, i, j − 1〉, σ,TS(Γ), id, 〈r, i, j〉
)

in δ,

and for every r = A→ [u1, . . . , us](A1, . . . , Aℓ) ∈ R, i ∈ [s], j ∈ [|ui|], κ ∈ [ℓ], r′ = Aκ →
[v1, . . . , vs′](B1, . . . , Bℓ′) ∈ R, m ∈ [s′] where xmκ ∈ X is the j-th symbol in ui, we have
the transitions (abbreviating 〈r, i, j〉 by q)

call(r, i, j, r′) =
(

〈r, i, j − 1〉, ε,TS(Γ),pushκ(q), 〈r
′,m, 0〉

)

,

resume1(r, i, j) =
(

〈r, i, j − 1〉, ε,TS(Γ),upκ, q+
)

,

resume2(r, i, j, r
′) =

(

q+, ε, equals(r
′), set(q), 〈r′,m, 0〉

)

,

suspend1(r
′,m, q) =

(

〈r′,m, |vm|〉, ε, equals(q), set(r
′), q−

)

, and

suspend2(q) =
(

q−, ε,TS(Γ),down, q
)

in δ �

Let us abbreviate a run suspend1(r
′,m, q) suspend2(q) by suspend(r′,m, q) and a run

resume1(r, i, j) resume2(r, i, j, r
′) by resume(r, i, j, r′).

1The control flow of our constructed automaton is similar to that of the treewalk evaluator for attribute
grammars [KW76, Sec. 3]. The two major differences are that the treewalk evaluator also treats in-
herited attributes (which are not present in PMCFGs) and that our constructed automaton generates
the tree on the fly (while the treewalk evaluator is already provided with the tree).

9

(

� , {(ε,@)}
)

⊢init(r1)

(

〈r1, 1, 0〉, {(ε,@), (1,�)}
)

⊢call(r1,1,1,r3)

(

〈r3, 1, 0〉, {(ε,@), (1,�), (11, 〈r1 , 1, 1〉)}
)

⊢suspend(r3,1,〈r1,1,1〉)

(

〈r1, 1, 1〉, {(ε,@), (1,�), (11, r3)}
)

⊢call(r1,1,2,r4)
read(r4,1,1)

(

〈r4, 1, 1〉, {(ε,@), (1,�), (11, r3), (12, 〈r1 , 1, 2〉)}
)

⊢call(r4,1,2,r5)

(

〈r5, 1, 0〉, {(ε,@), (1,�), (11, r3), (12, 〈r1 , 1, 2〉), (121, 〈r4 , 1, 2〉)}
)

⊢suspend(r5,1,〈r4,1,2〉)

(

〈r4, 1, 2〉, {(ε,@), (1,�), (11, r3), (12, 〈r1 , 1, 2〉), (121, r5)}
)

⊢suspend(r4,1,〈r1,1,2〉)

(

〈r1, 1, 2〉, {(ε,@), (1,�), (11, r3), (12, r4), (121, r5)}
)

⊢resume(r1,1,3,r3)

(

〈r3, 2, 0〉, {(ε,@), (1,�), (11, 〈r1 , 1, 3〉), (12, r4), (121, r5)}
)

⊢suspend(r3,2,〈r1,1,3〉)

(

〈r1, 1, 3〉, {(ε,@), (1,�), (11, r3), (12, r4), (121, r5)}
)

⊢resume(r1,1,4,r4)
read(r4,2,1)

(

〈r4, 2, 1〉, {(ε,@), (1,�), (11, r3), (12, 〈r1 , 1, 4〉), (121, r5)}
)

⊢resume(r4,2,2,r5)

(

〈r5, 2, 0〉, {(ε,@), (1,�), (11, r3), (12, 〈r1 , 1, 4〉), (121, 〈r4 , 2, 2〉)}
)

⊢suspend(r5,2,〈r4,2,2〉)

(

〈r4, 2, 2〉, {(ε,@), (1,�), (11, r3), (12, 〈r1 , 1, 4〉), (121, r5)}
)

⊢suspend(r4,2,〈r1,1,4〉)

(

〈r1, 1, 4〉, {(ε,@), (1,�), (11, r3), (12, r4), (121, r5)}
)

⊢suspend(r1,1,�)

(

� , {(ε,@), (1, r1), (11, r3), (12, r4), (121, r5)}
)

Figure 3: Run of M(G) that recognises bd (cf. Example 4.2). The symbols b and d
are read by read(r4, 1, 1) and read(r4, 2, 1), respectively, all other transitions
in this run read ε.

Example 4.2. Consider the MCFG G = ({S,A,B}, {a, b, c, d}, {S}, R) where

R : r1 = S → [x11x
1
2x

2
1x

2
2](A,B) r2 = A→ [ax11, cx

2
1](A) r3 = A→ [ε, ε]()

r4 = B → [bx11,dx
2
1](B) r5 = B → [ε, ε]() .

Then L(G) = {aibjcidj | i, j ∈ N}. Figure 3 shows that M(G) recognises bd. �

For the rest of Section 4.1, let G = (N,Σ, I,R) and R̄ be defined as in
Construction 4.1.

Lemma 4.3. The TSA M(G) is k-restricted if G is a k-MCFG.

Proof. Let G = (N,Σ, I,R). Consider some arbitrary position ρ ∈ N
∗ and number κ ∈ N.

Position ρκ can only be reached from below if the current stack pointer is at position
ρ and if we either execute the transition call(r, i, j, r′) or the transition resume1(r, i, j)
for some r = A→ [u1, . . . , us](A1, . . . , Aℓ) ∈ R, r′ = Aκ → [v1, . . . , vs′](B1, . . . , Bℓ′) ∈ R,

10

i ∈ [s], j ∈ [|ui|], and m ∈ [s′] with (ui)j = xmκ . For those transitions to be applicable,
the automaton has to be in state 〈r, i, j〉. Therefore, there are exactly as many states
from which we can reach position ρi as there are occurrences of elements of {x1κ, . . . , x

s′

κ }
in the string u1 · · · us. Since [u1, . . . , us] is linear, the number of such occurrences is
smaller or equal to s′ and (since G is a k-MCFG) also smaller or equal to k. It is easy
to see that in the part of the run where the stack pointer is never below ρ, the states
〈r, i, 1〉, . . . , 〈r, i, |ui|〉 occur in that order whenever the stack pointer is at ρ and, in
particular, none of those states occur twice. Therefore, we have that cM(G)(θ)(ρκ) ≤ k
for every run θ and, since ρ and κ were chosen arbitrarily, we have that for any non-
empty position ρ′ 6= ε and every run θ holds cM(G)(θ)(ρ

′) ≤ k. Since the position ε can
never be entered from below, we have that M(G) is k-restricted. �

Lemma 4.4. L(G) ⊆ L(M(G)).

Proof. For every A ∈ N and every derivation d = r(d1, . . . , dm) ∈ DG(A) where
sort(r) = (s1 · · · sm, s) and r = A → [u1, . . . , us](B1, . . . , Bm), we recursively con-
struct a tuple (θ1, . . . , θs) of runs in M(G). For the derivations d1, . . . , dm we al-
ready have the tuples (θ11, . . . , θ

s1
1), . . . , (θ1m, . . . , θ

sm
m), respectively. For every κ ∈ [s],

let uκ = ω1 · · ·ωℓ where ω1, . . . , ωℓ ∈ Σ ∪ X. We define θκ = ω′
1 · · ·ω

′
ℓ as the run

in M(G) such that for every κ′ ∈ [ℓ], we have that ω′
κ′ = read(r, κ, κ′) if ωκ′ ∈ Σ,

ω′
κ′ = call(r, κ, κ′, r′) θ1i suspend(r

′, 1, 〈r, κ, κ′〉) if ωκ′ = x1i for some i ≥ 1, and ω′
κ′ =

resume(r, κ, κ′, r′) θji suspend(r
′, j, 〈r, κ, κ′〉) if ωκ′ = xji for some i ≥ 1 and j ≥ 2, where

r′ = di(ε). We can prove by structural induction on d that JdK = (Jθ1K, . . . , JθsK). If
d ∈ Dc

G, then s is 1 and hence the valid run init(r) θ1 suspend(r, 1,�) recognises exactly
JdK. �

Lemma 4.5. Let τ1, . . . , τn ∈ δ with θ = τ1 · · · τn ∈ RM(G) and let ρ ∈ N
∗
+ \ {ε}. There

is a rule ϕθ(ρ) in G such that, during the run θ, the automaton M(G) is in some state
〈ϕθ(ρ), i, j〉 ∈ R̄ whenever the stack pointer is at ρ.

Proof. The rule ϕθ(ρ) is selected when ρ is first reached (with call). Then whenever we
enter ρ with resume, a previous suspend1 has stored ϕθ(ρ) at position ρ and resume2
enforces the claimed property. The claimed property is preserved by read. And whenever
we enter ρ with suspend, a previous call or resume2 has stored an appropriate state in the
stack and suspend merely jumps back to that state, observing the claimed property. �

Examining the form of runs in M(G) (Construction 4.1) and using Lemma 4.5 we
observe:

Lemma 4.6. Let τ, τ ′ ∈ δ, q, q′, q′′ ∈ Q, ξ, ξ′, ξ′′ ∈ TS(Γ), ρ ∈ N
∗
+, i ∈ N+, and ϕθ(ρi)

be of the form A→ [u1, . . . , us](A1, . . . , Aℓ). Then:

1. If (q′, (ξ′, ρ)) ⊢τ (q, (ξ, ρi)) with q ∈ R̄, then q = 〈ϕθ(ρi), j, 0〉 for some j ∈ [s] and
τ must be either an init- or call-transition.

2. If (q′′, (ξ′′, ρ)) ⊢τ (q′, (ξ′, ρi)) ⊢τ ′ (q, (ξ, ρi)) with q′ ∈ {q+ | q ∈ R̄}, then q =
〈ϕθ(ρi), j, 0〉 for some j ∈ [s], τ is a resume1-transition, and τ ′ is a resume2-
transition.

11

3. If (q, (ξ, ρi)) ⊢τ (q′, (ξ′, ρi)) ⊢τ ′ (q′′, (ξ′′, ρ)), then q = 〈ϕθ(ρi), j, |uj |〉 for some
j ∈ [s], τ is a suspend1-transition, and τ

′ is a suspend2-transition.

Proof. (for 1, 2, and 3) The first projection of q is ϕθ(ρi) due to Lemma 4.5.
(for 1) We only move the stack pointer to a child position and simultaneously go to a

state from the set R̄ when making a init or a call transition. From the definition of init
and call transitions we know that the third projection of q is 0.

(for 2) We only move the stack pointer to a child position and simultaneously go to
a state from the set {q+ | q ∈ R̄} when making a resume1 transition. Every resume1
transition is followed by a resume2 transition. From the definition of resume2 transitions
we know that the third projection of q is 0.

(for 3) We only move the stack pointer to a parent position when making a suspend2
transition. Every suspend2 transition is preceded by a suspend1 transition. From the
definition of suspend1 transitions we know that the third projection of q is |uj |. �

Lemma 4.7. L(G) ⊇ L(M(G)) if G only has productive non-terminals.

Proof. For every run θ ∈ RM(G) we define ϕ′
θ:N

∗ → R by ϕ′
θ(ρ) = ϕθ(1ρ) for every

ρ ∈ N
∗
+ with 1ρ ∈ dom(ϕθ) (cf. Lemma 4.5). Then ϕ′

θ is a tree. One could show for
every d ∈ DG with d ⊇ ϕ′

θ by structural induction on ϕ′
θ that for every ρ ∈ dom(ϕ′

θ) and
every maximal interval [a, b] where ρa, . . . , ρb have prefix ρ, we have Jτa · · · τbK = Jd|ρKm
with qa = 〈ϕ′

θ(ρ),m, 0〉 for some m ∈ N+. Let us call this property (†). Let τ1, . . . , τn ∈ δ
with θ = τ1 · · · τn ∈ Rv

M(G). Consider the run (�, (@, ε)) ⊢τ1 (q1, (ξ1, 1ρ1)) ⊢τ2 . . . ⊢τn−1

(qn−1, (ξn−1, 1ρn−1)) ⊢τn (�, (ξn, ε)). By (†) we obtain that Jτ2 · · · τn−1K = JdK. By
Lemma 4.6 and the fact that only an init-transition may start from � we obtain that τ1
is an init-transition and τn is a suspend2-transition. Thus Jτ1K = ε = JτnK and therefore
JθK = JdK.

It remains to proof (†). For this we will denote the i-th component of the tuple
generated by a derivation d as JdKi. Let ϕ

′
θ(ρ) = A→ [u1, . . . , us](A1, . . . , Aℓ). Consider

the run (qa−1, (ξa−1, 1ρa−1)) ⊢τa (qa, (ξa, 1ρa)) ⊢τa+1
. . . ⊢τb (qb, (ξb, 1ρb)). Since [a, b] is

maximal and a transition can add at most one symbol to the stack pointer, we know
that ρa = ρ = ρb. By Lemma 4.6 we also know that qa = 〈ϕ′

θ(ρ),m, 0〉 and qb =
〈ϕ′

θ(ρ),m, |um|〉 for some m ∈ [s]. We now define the strings w1, . . . , w|um| for every
i ∈ [|um|]

1. as wi = σ if (um)i = σ for some σ ∈ Σ and

2. as wi = Jd|ρκKj if (um)i = xjκ for some xjκ ∈ X.

From Construction 4.1 we know that if we are in Case 1, then the only possibility to
continue from state 〈ϕ′

θ(ρ),m, i − 1〉 is to use the transition read(ϕ′
θ(ρ),m, i). We then

end up in state 〈ϕ′
θ(ρ),m, i〉. If we are in Case 2 and in state 〈ϕ′

θ(ρ),m, i− 1〉, then, due
to Construction 4.1 and Lemma 4.5, we can only continue with either (depending on
the current stack) call(ϕ′

θ(ρ),m, i, ϕ
′
θ(ρκ)) or resume(ϕ′

θ(ρ),m, i, ϕ
′
θ(ρκ)). By induction

hypothesis we know that after executing either of the above runs, the automaton will
recognise Jd|ρκKj = wi and set the stack pointer to ρ. Then (by Construction 4.1) the

12

δ: τ1 =
(

1, a,TS(Γ) ,push1(∗) , 1
)

τ2 =
(

1, ε,TS(Γ) ,push1(#), 2
)

τ3 =
(

2, ε, equals(#),down , 2
)

τ4 =
(

2,b, equals(∗) ,down , 2
)

τ5 =
(

2, ε,bottom ,up1 , 3
)

τ6 =
(

3, c , equals(∗) ,up1 , 3
)

τ7 =
(

3, ε, equals(#),down , 4
)

τ8 =
(

4,d, equals(∗) ,down , 4
)

τ9 =
(

4, ε,bottom , id , 5
)

(

1, {(ε,@)} , abcd
)

⊢τ1
(

1, {(ε,@), (1, ∗)} ,bcd
)

⊢τ2
(

2, {(ε,@), (1, ∗), (11,#)},bcd
)

⊢τ3
(

2, {(ε,@), (1, ∗), (11,#)},bcd
)

⊢τ4
(

2, {(ε,@), (1, ∗), (11,#)}, cd
)

⊢τ5
(

3, {(ε,@), (1, ∗), (11,#)}, cd
)

⊢τ6
(

3, {(ε,@), (1, ∗), (11,#)},d
)

⊢τ7
(

4, {(ε,@), (1, ∗), (11,#)},d
)

⊢τ8
(

4, {(ε,@), (1, ∗), (11,#)}, ε
)

⊢τ9
(

5, {(ε,@), (1, ∗), (11,#)}, ε
)

Figure 1: Set of transitions and a valid run in M, cf. Example 3.2, repeated from page
5.

automaton is in state 〈ϕ′
θ(ρ),m, i + 1〉. Repeating the step above eventually brings

M(G) to the state 〈ϕ′
θ(ρ),m, |um|〉 where only some suspend-transition is applicable.

Thus Jτa · · · τbK = w1 · · ·w|um| = Jd|ρKm. �

Proposition 4.8. L(G) = L(M(G)) if G only has productive non-terminals.

Proof. The claim follows directly from Lemmas 4.4 and 4.7. �

M(G) is almost a parser for G. Let (ξ, ε) be a storage configuration of M(G) after
recognising some word w and let ξ|1 be the first subtree of ξ, defined by the equation
ξ|1(ρ) = ξ(1ρ). Then every complete derivation d in G with ξ|1 ⊆ d generates w. If
G only contains rules with non-deleting composition functions, we even have that ξ|1 is
a derivation in G generating w. In Fig. 3, for example, we see that r1(r3, r4(r5)) is a
derivation of bd in G (cf. Example 4.2).

4.2 Every restricted TSA has an equivalent MCFG

We construct an MCFG G′(M) that recognises the valid runs of a given automaton M,
and then use the closure of MCFGs under homomorphisms. A tuple of runs (θ1, . . . , θm)
can be derived from non-terminal 〈q1, q

′
1, . . . , qm, q

′
m; γ0, . . . , γm〉 iff the runs θ1, . . . , θm

all return to the stack position they started from and never go below it, and θi starts
from state qi and stack symbol γi−1 and ends with q′i and γi for every i ∈ [m]. We start
with an example.

Example 4.9. Recall the TSA M from Example 3.2 (also cf. Fig. 1). Note that M is
cycle-free and in stack normal form. Let us consider position ε of the stack. The only
transitions applicable there are τ1, τ2, τ5, and τ9. Clearly, every valid run in M starts

13

with τ1 or τ2 and ends with τ9, every τ5 must be preceded by τ4 or τ3, and every τ9 must
be preceded by τ8 or τ7. Thus each valid run inM is either of the form θ = τ1θ1τ4τ5θ2τ8τ9
or θ′ = τ2θ

′
1τ3τ5θ

′
2τ7τ9 for some runs θ1, θ2, θ

′
1, and θ

′
2. The target state of τ1 is 1 and

the source state of τ4 is 2. Also τ1 pushes a ∗ to position 1 and the predicate of τ4
accepts only ∗. Thus θ1 must go from state 1 to 2 and from stack symbol ∗ to ∗ at
position 1. Similarly, we obtain that θ2, θ

′
1, and θ

′
2 go from state 3 to 4, 2 to 2, and 3

to 3, respectively, and from stack symbol ∗ to ∗, # to #, and # to #, respectively, at
position 1. The runs θ1 and θ2 are linked since they are both executed while the stack
pointer is in the first subtree of the stack; the same holds for θ′1 and θ′2.

Clearly, linked runs need to be produced by the same non-terminal. For the pair
(θ1, θ2) of linked runs, we have the non-terminal 〈1, 2, 3, 4; ∗, ∗, ∗〉 and for (θ′1, θ

′
2) we have

〈2, 2, 3, 3;#,#,#〉. Since θ and θ′ go from state 1 to 5 and from storage symbol @ to @,
we have the rules

〈1, 5;@,@〉 →
[

τ1x
1
1τ4τ5x

2
1τ8τ9

](

〈1, 2, 3, 4; ∗, ∗, ∗〉
)

and

〈1, 5;@,@〉 →
[

τ2x
1
1τ3τ5x

2
1τ7τ9

](

〈2, 2, 3, 3;#,#,#〉
)

in G′(M).

Next, we explore the non-terminal 〈1, 2, 3, 4; ∗, ∗, ∗〉, i.e. we need a run that goes from
state 1 to 2 and from storage symbol ∗ to ∗ and another run that goes from state 3 to
4 and from storage symbol ∗ to ∗. There are only two kinds of suitable pairs of runs:
(

τ1θ1τ4, τ6θ2τ8
)

and
(

τ2θ
′
1τ3, τ6θ

′
2τ7

)

for some runs θ1, θ2, θ
′
1, and θ′2. The runs θ1, θ2,

θ′1, and θ
′
2 of this paragraph then have the same state and storage behaviour as in the

previous paragraph and we have rules

〈1, 2, 3, 4; ∗, ∗, ∗〉 →
[

τ1x
1
1τ4, τ6x

2
1τ8

](

〈1, 2, 3, 4; ∗, ∗, ∗〉
)

and

〈1, 2, 3, 4; ∗, ∗, ∗〉 →
[

τ2x
1
1τ3, τ6x

2
1τ7

](

〈2, 2, 3, 3;#,#,#〉
)

in G′(M).

For non-terminal 〈2, 2, 3, 3;#,#,#〉, we may only take the pair of empty runs and
thus have the rule 〈2, 2, 3, 3;#,#,#〉 →

[

ε, ε
]()

in G′(M). �

For all q, q′ ∈ Q, γ, γ′ ∈ Γ , and j ∈ N+ we define the following sets:

δ(q, q′)|γր•
upj

= {(q, ω, p,upj, q
′) ∈ δ | γ ∈ p} ,

δ(q, q′)|γրγ′

pushj
= {(q, ω, p,pushj(γ

′), q′) ∈ δ | γ ∈ p} , and

δ(q, q′)|γց•
down = {(q, ω, p,down, q′) ∈ δ | γ ∈ p} .

For every q, q′ ∈ Q, γ, γ′ ∈ Γ ∪{@}, β, β′ ∈ Γ , and j ∈ N+ we distinguish the following
groups of runs (to help the intuition, they are visualised in Fig. 5):

1. A sequence of id- or set-instructions followed by an up- or push-instruction:

Ω↑
M(q, q′; γ, γ′; j, β) =

⋃

q̄∈Q
RM(q, q̄)|γ→γ′

stay ·
(

δ(q̄, q′)|γ
′րβ

pushj
∪ δ(q̄, q′)|γ

′ր•
upj

)

2. A down-instruction followed by id- or set-instructions:

Ω↓
M(q, q′; γ, γ′;β′) =

⋃

q̄∈Q
δ(q, q̄)|β

′ց•
down · RM(q̄, q′)|γ→γ′

stay

14

γ γ′

q q′

stay β
γ γ′

q q′

stay pushj β
γ γ′

q q′

stay upj

RM(q, q′)|γ→γ′

stay Ω↑
M(q, q′; γ, γ′; j, β)

β′

γ γ′

q q′

down stay β′ β
γ γ′

q q′

down stay pushj β′ β
γ γ′

q q′

down stay upj

Ω↓
M(q, q′; γ, γ′;β′) Ω↓↑

M(q, q′; γ, γ′;β′, j, β)

Figure 5: Groups of runs in M where dashed arrows signify the change of states and
continuous arrows signify the change in the storage.

3. A down-instruction, then a sequence of id- or set-instructions and finally an up- or
push-instruction:

Ω↓↑
M(q, q′; γ, γ′;β′, j, β) =

⋃

q̄∈Q
δ(q, q̄)|β

′ց•
down ·Ω↑

M(q̄, q′; γ, γ′; j, β)

The arguments of Ω↑
M, Ω↓

M, and Ω↓↑
M are grouped using semicolons. The first group

describes the state behaviour of the run; the second group describes the storage be-
haviour at the parent position (i.e. the position of the set- and id-instructions), and
the third group describes the storage behaviour at the child positions (i.e. the positions
immediately above the parent position).

We build tuples of runs from the three groups above by matching the storage behaviour
of neighbouring runs at the parent position. A tuple t = (θ0, . . . , θℓ) of runs is admissible
if ℓ = 0 and θ0 only uses id- and set-instructions; or if ℓ ≥ 1, θ0 is in group 1, θℓ is in
group 2, and for every i ∈ [ℓ], we have

θi−1 ∈ Ω↑
M(q, q′; γ, γ̄; j, β) ∪Ω↓↑

M(q, q′; γ, γ̄;β′, j, β) and

θi ∈ Ω↓
M(q′′, q′′′; γ̄, γ′;β′′′) ∪Ω↓↑

M(q′′, q′′′; γ̄, γ′;β′′′, j′, β′′)

for some γ, γ̄, γ′ ∈ Γ ∪{@}, β, β′, β′′, β′′′ ∈ Γ , q, q′, q′′, q′′′ ∈ Q, and j, j′ ∈ N+. Note that
only the γ̄ has to match. Then θi−1θi may not be a run in M since it is not guaranteed
that q′ = q′′ and β = β′. We therefore say that there is a (q′, q′′; j, β, β′)-gap between θi−1

and θi. Let q1, q2 ∈ Q and γ1, γ2 ∈ Γ ∪{@}. We say that t has type 〈q1, q2; γ1, γ2〉 if ℓ = 0
and θ0 ∈ RM(q1, q2)|

γ1→γ2
stay ; or if ℓ ≥ 1, the first transition in θ0 has source state q1 and its

predicate contains γ1, the last transition of θℓ has target state q2, the last set-instruction
occurring in t, if there is one, is set(γ2), and γ1 = γ2 if no set-instruction occurs in t. The
set of admissible tuples in Ω∗

M is denoted by Ω⋆
M. We define t[y1, . . . , yℓ] = θ0y1θ1 · · · yℓθℓ

for every y1, . . . , yℓ ∈ X to later fill the gaps with variables.
Let T = (t1, . . . , ts) ∈ (Ω⋆

M)∗ and ℓ1, . . . , ℓs be the counts of gaps in t1, . . . , ts, re-
spectively. For every i ∈ [s] and κ ∈ [ℓi] we set q(i,κ), q

′
(i,κ) ∈ Q, β(i,κ), β

′
(i,κ) ∈ Γ , and

15

j(i,κ) ∈ N+ such that the κ-th gap in ti is a (q(i,κ), q
′
(i,κ); j(i,κ), β(i,κ), β

′
(i,κ))-gap. Let

ϕT , ψT :N+ × N+ → N+ and πT :N+ × N+ → N+ × N+ be partial functions such that
for every i ∈ [s] and κ ∈ [ℓi], the number j(i,κ) is the ϕT (i, κ)-th distinct number occur-
ring in J = j(1,1) · · · j(1,|t1|) · · · j(s,1) · · · j(s,|ts|) when read left-to-right, j(i,κ) occurs for the
ψT (i, κ)-th time at the element with index (i, κ) in J , and πT (i, κ) = (ϕT (i, κ), ψT (i, κ)).
Moreover let m be the count of distinct numbers in J . We call T admissible if

• the κ-th run in ti ends with a push-instruction whenever ϕT (i, κ) = 1,

• β′
π−1

T
(κ′,κ)

= β
π−1

T
(κ′,κ+1) for every κ

′ ∈ [m] and κ ∈ [ℓκ′ − 1], and

• there are q1, q̄1, . . . , qs, q̄s ∈ Q and γ0, . . . , γs ∈ Γ ∪ {@} such that for every κ ∈ [s],
we have that tκ is of type 〈qκ, q̄κ; γκ−1, γκ〉.

We then say that T has (A;B1, . . . , Bm), denoted by type(T) = (A;B1, . . . , Bm), where
A = 〈q1, q̄1, . . . , qs, q̄s; γ0, . . . , γs〉, and for every κ′ ∈ [m]:

Bκ′ = 〈q
π−1

T
(κ′,1), q

′
π−1

T
(κ′,1)

, . . . , q
π−1

T
(κ′,ℓκ′)

, q′
π−1

T
(κ′,ℓκ′)

;

βπ−1

T
(κ′,1), β

′
π−1

T
(κ′,1)

, . . . , β′
π−1

T
(κ′,ℓκ′)

〉 .

The set of admissible elements of (Ω⋆
M)∗ is denoted by Ω⋆⋆

M.

Construction 4.10. LetM = (Q,TS(Γ), Σ, qi, {(ε,@)}, δ,Qf) be a cycle-free k-restricted
TSA in stack normal form. Define the k-MCFG G′(M) = (N,Σ, I,R′) where N =
{A,B1, . . . , Bm | 〈A;B1, . . . , Bm〉 ∈ type(Ω⋆⋆

M)}, I = {〈qi, q; @,@〉 | q ∈ Qf}, and R′

contains for every T = (t1, . . . , ts) ∈ Ω⋆⋆
M the rule A →

[

u1, . . . , us
]

(B1, . . . , Bm) where

(A;B1, . . . , Bm) is the type of T and uκ = tκ[x
ψT (κ,1)
ϕT (κ,1), . . . , x

ψT (κ,ℓκ)
ϕT (κ,ℓκ)

] for every κ ∈ [s]. Let

G(M) be a k-MCFG recognising {JθK | θ ∈ L(G′(M))}.2 �

Proposition 4.11. L(M) = L(G(M)) for every cycle-free k-restricted TSA M in stack
normal form.

Proof. We can show by induction that G′(M) generates exactly the valid runs of M.
Our claim then follows from the definition of language of G(M). �

4.3 The main theorem

Theorem 4.12. Let L ⊆ Σ∗ and k ∈ N+. The following are equivalent:

1. There is a k-MCFG G with L = L(G).

2. There is a k-restricted tree stack automaton M with L = L(M).

Proof. We get the implication (1 =⇒ 2) from Lemma 4.3 and Proposition 4.8 and the
implication (2 =⇒ 1) from Lemmas 3.5 and 3.7 and Proposition 4.11. �

2The k-MCFG G(M) exists since J·K is a homomorphism and k-MCFLs are closed under homomor-
phisms [SMFK91, Thm. 3.9].

16

5 Conclusion

The automata characterisation of multiple context-free languages presented in this paper
is achieved through tree stack automata that possess, in addition to the usual finite state
control, the ability to manipulate a tree-shaped stack; tree stack automata are then
restricted by bounding the number of times that the stack pointer enters any position of
the stack from below (cf. Section 3). The proofs for the inclusions of multiple context-
free languages in restricted tree stack languages and vice versa are both constructive; the
former even works for parallel multiple context-free grammars, although the resulting
automaton may then no longer be restricted (cf. Section 4). Theorem 4.12 closes a
gap in formal language theory open since the introduction of MCFGs [SMFK91]. The
proof allows for the easy implementation of a parser for parallel multiple context-free
grammars.

References

[Aho69] A. V. Aho. Nested stack automata. Journal of the ACM, 16(3):383–406,
1969. DOI: 10.1145/321526.321529.

[Cho62] N. Chomsky. Formal properties of grammars. In R. D. Luce, R. R. Bush, and
E. Galanter, editors, Handbook of Mathmatical Psychology, volume 2. 1962.

[Eng14] J. Engelfriet. Context-free grammars with storage. CoRR, 2014. arXiv:
1408.0683.

[Gue83] I. Guessarian. Pushdown tree automata. Mathematical systems theory,
16(1):237–263, 1983. DOI: 10.1007/BF01744582.

[HV15] L. Herrmann and H. Vogler. A Chomsky-Schützenberger theorem for
weighted automata with storage. In A. Maletti, editor, Proceedings of
the 6th International Conference on Algebraic Informatics (CAI 2015), vol-
ume 9270, pages 90–102. Springer International Publishing, 2015. DOI:
10.1007/978-3-319-23021-4_11.

[KS09] M. Kuhlmann and G. Satta. Treebank grammar techniques for non-projective
dependency parsing. In Proceedings of the 12th Conference of the European
Chapter of the Association for Computational Linguistics, EACL ’09, pages
478–486, Stroudsburg, PA, USA, 2009. Association for Computational Lin-
guistics. URL: http://dl.acm.org/citation.cfm?id=1609067.1609120.

[KW76] K. Kennedy and S. K. Warren. Automatic generation of efficient evaluators
for attribute grammars. Proceedings of the 3rd ACM SIGACT-SIGPLAN
symposium on Principles on programming languages (POPL’76), 1976. DOI:
10.1145/800168.811538.

17

https://dx.doi.org/10.1145/321526.321529
https://arxiv.org/abs/1408.0683
https://dx.doi.org/10.1007/BF01744582
https://dx.doi.org/10.1007/978-3-319-23021-4_11
http://dl.acm.org/citation.cfm?id=1609067.1609120
https://dx.doi.org/10.1145/800168.811538

[Mai10] W. Maier. Direct Parsing of Discontinuous Constituents in German. In
Proceedings of the NAACL HLT 2010 First Workshop on Statistical Pars-
ing of Morphologically-Rich Languages, SPMRL ’10, pages 58–66, Strouds-
burg, PA, USA, 2010. Association for Computational Linguistics. URL:
http://dl.acm.org/citation.cfm?id=1868771.1868778.

[Sch63] M. P. Schützenberger. On context-free languages and push-down
automata. Information and control, 6(3):246–264, 1963. DOI:
10.1016/S0019-9958(63)90306-1.

[Sco67] D. Scott. Some definitional suggestions for automata theory. Jour-
nal of Computer and System Sciences, 1(2):187–212, 1967. DOI:
10.1016/s0022-0000(67)80014-x.

[SMFK91] H. Seki, T. Matsumura, M. Fujii, and T. Kasami. On multiple context-
free grammars. Theoretical Computer Science, 88(2):191–229, 1991. DOI:
10.1016/0304-3975(91)90374-B.

[VdlC02a] È. Villemonte de la Clergerie. Parsing mcs languages with thread automata.
In Proceedings of the Sixth International Workshop on Tree Adjoining Gram-
mars and Related Formalisms (TAG+6), pages 101–108, 2002.

[VdlC02b] È. Villemonte de la Clergerie. Parsing mildly context-sensitive languages
with thread automata. In Proceedings of the 19th International Conference
on Computational Linguistics (COLING ’02), volume 1, pages 1–7, Strouds-
burg, PA, USA, 2002. Association for Computational Linguistics. DOI:
10.3115/1072228.1072256.

[VS88] K. Vijay-Shanker. A study of tree adjoining grammars. PhD thesis, 1988.

18

http://dl.acm.org/citation.cfm?id=1868771.1868778
https://dx.doi.org/10.1016/S0019-9958(63)90306-1
https://dx.doi.org/10.1016/s0022-0000(67)80014-x
https://dx.doi.org/10.1016/0304-3975(91)90374-B
https://dx.doi.org/10.3115/1072228.1072256

	1 Introduction
	2 Preliminaries
	2.1 Parallel multiple context-free grammars
	2.2 Automata with storage

	3 Tree stack automata
	3.1 Restricted TSA
	3.2 Normal forms

	4 The equivalence of MCFG and restricted TSA
	4.1 Every MCFG has an equivalent restricted TSA
	4.2 Every restricted TSA has an equivalent MCFG
	4.3 The main theorem

	5 Conclusion

