
Deciding Equivalence of Linear Tree-to-Word

Transducers in Polynomial Time

Adrien Boiret∗1 and Raphaela Palenta2

1CRIStAL, University Lille 1, France
2Department of Informatics, Technical University of Munich,

Germany

Abstract

We show that the equivalence of deterministic linear top-down tree-
to-word transducers is decidable in polynomial time. Linear tree-to-word
transducers are non-copying but not necessarily order-preserving and can
be used to express XML and other document transformations. The result
is based on a partial normal form that provides a basic characterization
of the languages produced by linear tree-to-word transducers.

1 Introduction

Tree transformations are widely used in functional programming and document
processing. Tree transducers are a general model for transforming structured
data like a database in a structured or even unstructured way. Consider the
following internal representation of a client database that should be transformed
to a table in HTML.

∗This work was partially supported by a grant from CPER Nord-Pas de Calais/FEDER
DATA Advanced data science and technologies 2015-2020

1

ar
X

iv
:1

60
6.

03
75

8v
1

 [
cs

.F
L

]
 1

2
Ju

n
20

16

{ {
 name: "Alexander"
 surname: "Walker"
 nickname: "Alex"
 title: "Prof."
 salutation: "Mr."
 }
 {
 name: "Sara"
 surname: "Tolin"
 nickname: "Sara"
 title: []
 salutation: "Ms."
 }
 ...
}

<table>
 <tr> <th> name <\th>
 <th> surname <\th>
 <th> nickname <\th>
 <th> title <\th>
 <th> salutation <\th> <\tr>
 <tr> <td> Alexander <\td>
 <td> Walker <\td>
 <td> Alex <\td>
 <td> Prof. <\td>
 <td> Mr. <\td> <\tr>
 <tr> <td> Sara <\td>
 <td> Tolin <\td>
 <td> Sara <\td>
 <td> <\td>
 <td> Ms. <\td> <\tr>
<\table>

Top-down tree transducers can be seen as functional programs that trans-
form trees from the root to the leaves with finite memory. Transformations
where the output is not produced in a structured way or where, for example,
the output is a string, can be modeled by tree-to-word transducers.

In this paper, we study deterministic linear tree-to-word transducers (ltws),
a subset of deterministic tree-to-word transducers that are non-copying, but not
necessarily order-preserving. Processing the subtrees in an arbitrary order is
important to avoid reordering of the internal data for different use cases. In the
example of the client database the names may be needed in different formats,
e.g.

<s a l u ta t i o n> <name> <surname>
<surname>, <name>
<t i t l e > <surname>
<t i t l e > <surname>, <name>

The equivalence of unrestricted tree-to-word transducers was a long standing
open problem that was recently shown to be decidable [14]. The algorithm
by [14] provides an co-randomized polynomial algorithm for linear transducers.
We show that the equivalence of ltws is decidable in polynomial time and
provide a partial normal form.

To decide equivalence of ltws, we start in Section 3 by extending the meth-
ods used for sequential (linear and order-preserving) tree-to-word transducers
(stws), discussed in [15]. The equivalence for these transducers is decidable in
polynomial time [15]. Moreover a normal form for sequential and linear tree-
to-word transducers, computable in exponential time, is known [7, 1]. Two
equivalent ltws do not necessarily transform their trees in the same order.
However, the differences that can occur are quite specific and characterized
in [1]. We show how they can be identified. We use the notion of earliest states,
inspired by the existing notion of earliest sequential transducers [7]. In this
earliest form, two equivalent stws can transform subtrees in different orders
only if they fulfill specific properties pertaining to the periodicity of the words
they create. Computing this normal form is exponential in complexity as the

2

number of states may increase exponentially. To avoid this size increase we do
not compute these earliest transducers fully, but rather locally. This means we
transform two ltws with different orders to a partial normal form in polyno-
mial time (see Section 4) where the order of their transformation of the different
subtrees are the same. ltws that transform the subtrees of the input in the
same order can be reduced to sequential tree-to-word transducers as the input
trees can be reordered according to the order in the transformation.

A short version of this paper will be published in the proceedings of the 20th
International Conference on Developements in Language Theory (DLT 2016).

Related Work. Different other classes of transducers, such as tree-to-tree
transducers [5], macro tree transducers [6] or nested-word-to-word transduc-
ers [15] have been studied. Many results for tree-to-tree transducers are known,
e.g. deciding equivalence [12], minimization algorithms [12] and Gold-style learn-
ing algorithms [9]. In contrast, transformations where the output is not gener-
ated in a structured way like a tree are not that well understood. In macro-tree
transducers, the decidability of equivalence is a well-known and long-standing
question [2]. However, the equivalence of linear size increase macro-tree trans-
ducers that are equivalent to MSO definable transducers is decidable [3, 4].

2 Preliminaries

Let Σ be a ranked alphabet with Σ(n) the symbols of rank n. Trees on Σ (TΣ)
are defined inductively: if f ∈ Σ(n), and t1, ..., tn ∈ TΣ, then f(t1, ..., tn) ∈ TΣ is
a tree. Let ∆ be an alphabet. An element w ∈ ∆∗ is a word. For two words u, v
we denote the concatenation of these two words by uv. The length of a word
w is denoted by |w|. We call ε the empty word. We denote a−1 the inverse of
a symbol a where aa−1 = a−1a = ε. The inverse of a word w = u1 . . . un is
w−1 = u−1

n . . . u−1
1 .

A context-free grammar (CFG) is defined as a tuple (∆, N, S, P), where ∆
is the alphabet of G, N is a finite set of non-terminal symbols, S ∈ N is the
initial non-terminal of G, P is a finite set of rules of form A→ w, where A ∈ N
and w ∈ (∆ ∪ N)∗. A CFG is deterministic if each non-terminal has at most
one rule.

We define the language LG(A) of a non-terminal A recursively: if A →
u0A1u1...Anun is a rule of P , with ui words of ∆∗ and Ai non-terminals of N ,
and wi a word of LG(Ai), then u0w1u1...wnun is a word of LG(A). We define
the context-free language LG of a context-free grammar G as LG(S).

A straight-line program (SLP) is a deterministic CFG that produces exactly
one word. The word produced by an SLP (∆, N, S, P) is called wS .

We denote the longest common prefix of all words of a language L by lcp(L).
Its longest common suffix is lcs(L).

A word u is said to be periodic of period w if w is the smallest word such
that u ∈ w∗. A language L is said to be periodic of period w if w is the smallest
word such that L ⊆ w∗.

A language L is quasi-periodic on the left (resp. on the right) of handle u

3

and period w if w is the smallest word such that L ⊆ uw∗ (resp. if L ⊆ w∗u).
A language is quasi-periodic if it is quasi-periodic on the right or left. If L is a
singleton or empty, it is periodic of period ε. Iff L is periodic, it is quasi-periodic
on the left and the right of handle ε. If L is quasi-periodic on the left (resp.
right) then lcp(L) (resp. lcs(L)) is the shortest word of L.

3 Linear Tree-to-Word Transducers

A linear tree-to-word transducer (ltw) is a tuple M = (Σ,∆, Q, ax, δ) where
• Σ is a ranked alphabet,
• ∆ is an alphabet of output symbols,
• Q is a finite set of states,
• the axiom ax is of the form u0q(x)u1, where q ∈ Q and u0, u1 ∈ ∆∗,
• δ is a set of rules of the form q, f → u0q1(xσ(1)) . . . qn(xσ(n))un where
q, q1, . . . , qn ∈ Q, f ∈ Σ of rank n, u0, . . . , un ∈ ∆∗ and σ is a permutation
from {1, . . . , n} to {1, . . . , n}. There is at most one rule per pair q, f .

The partial function JMKq of a state q on an input tree f(t1, . . . , tn) is defined
inductively as
• u0JMKq1(tσ(1)) . . . JMKqn(tσ(n))un, if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un ∈
δ

• undefined, if q, f is not defined in δ.
The partial function JMK of an ltw M with axiom u0q(x)u1 on an input tree
t is defined as JMK(t) = u0JMKq(t)u1.

Two ltws M and M ′ are equivalent if JMK = JM ′K.
A sequential tree-to-word transducer (stw) is an ltw where for each rule of

the form q, f → u0q1(xσ(1))u1 . . . qn(xσ(n))un, σ is the identity on 1 . . . n.
We define accessibility of states as the transitive and reflexive closure of

appearance in a rule. This means state q is accessible from itself, and if q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un, and q is accessible from q′, then all states qi, 1 ≤
i ≤ n, are accessible from q′.

We denote by dom(M) (resp. dom(q)) the domain of an ltw M (resp. a
state q), i.e. all trees t ∈ TΣ such that JMK(t) is defined (resp. JMKq(t)). We
only consider ltws with non-empty domains and assume w.l.o.g. that no state
q in an ltw has an empty domain by eliminating transitions using states with
empty domain.

We denote by LM (resp. Lq) the range of JMK (resp. JMKq), i.e. the
set of all images JMK(t) (resp. JMKq(t)). The languages LM and Lq for each
q ∈ Q are all context-free languages. We call a state q (quasi-)periodic if Lq is
(quasi-)periodic.

Note that a word u in a rule of an ltw can be represented by an SLP without
changing the semantics of the ltw. Therefore a set of SLPs can be added to the
transducer and a word on the right-hand side of a rule can be represented by
an SLPs. The decidability of equivalence of stws in polynomial time still holds
true with the use of SLPs. The advantage of SLPs is that they may compress
the size of a word as the following example shows.

4

Example 1. We define an SLP G = (∆, N, S0, P), where N is a set {S0, ..., Sn},
the initial non-terminal is S0, and P is the set of rules S0 → S1S1, S1 → S2S2,
. . . , Sn−1 → SnSn, and Sn → a. This SLP produces the word a2n

. G has n+ 1
non-terminals and n+ 1 rules. Thus, G produces a word that is exponential in
the size of G.

The results of this paper require SLP compression to avoid exponential blow-
up. SLPs are used to prevent exponential blow-up in [13], where morphism
equivalence on context-free languages is decided in polynomial time.

The equivalence problem for sequential tree-to-word transducer can be re-
duced to the morphism equivalence problem for context-free languages [15]. This
reduction relies on the fact that STWs transform their subtrees in the same or-
der. As ltws do not necessarily transform their subtrees in the same order the
result cannot be applied on ltws in general. However, if two ltws transform
their subtrees in the same order, then the same reduction can be applied. To
formalize that two ltws transform their subtrees in the same order we intro-
duce the notion of state co-reachability. Two states q1 and q2 of ltws M1, M2,
respectively, are co-reachable if there is an input tree such that the two states
are assigned to the same node of the input tree in the translations of M1, M2,
respectively.

Two ltws are same-ordered if for each pair of co-reachable states q1, q2

and for each symbol f ∈ Σ, neither q1 nor q2 have a rule for f , or if q1, f →
u0q
′
1(xσ1(1)) . . . q

′
n(xσ1(n))un and q2, f → v0q

′′
1 (xσ2(1)) . . . q

′′
n(xσ2(n))vn are rules

of q1 and q2, then σ1 = σ2.
If two ltws are same-ordered the input trees can be reordered according to

the order in the transformations. Therefore for each ltw a tree-to-tree trans-
ducer is constructed that transforms the input tree according to the transfor-
mation in the ltw. Then all permutations σ in the ltws are replaced by the
identity. Thus the ltws can be handled as stws and therefore the equivalence
is decidable in polynomial time.

Theorem 1. The equivalence of same-ordered ltws is decidable in polynomial
time.

3.1 Linear Earliest Normal Form

In this section we introduce the two key properties that are used to build a
normal form for linear tree-to-word transducers, namely the earliest and erase-
ordered properties. The earliest property means that the output is produced as
early as possible, i.e. the longest common prefix (resp. suffix) of Lq is produced
in the rule in which q occurs, and as left as possible. The erase-ordered property
means that all states that produce no output are ordered according to the input
tree and pushed to the right in the rules.

An ltw is in earliest form if
• each state q is earliest, i.e. lcp(Lq) = lcs(Lq) = ε,
• and for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, for each i, 1 ≤ i ≤ n,
lcp(Lqiui) = ε.

5

In [1, Lemma 9] it is shown that for each ltw M an equivalent earliest ltw
M ′ can be constructed in exponential time. Intuitively, if lcp(Lq) = v 6= ε (resp.
lcs(Lq) = v 6= ε) then q′ is constructed with Lq′ = v−1Lq (resp. Lq′ = Lqv

−1)
and q(x) is replaced by vq′(x) (resp. q′(x)v). If lcp(Lqu) = v 6= ε and v is a prefix
of u = vv′ then we push v through Lq by constructing q′ with Lq′ = v−1Lqv
and replace q(x)u by vq′(x)v′.

Note that the construction to build the earliest form M ′ of an ltwM creates
a same-ordered M ′. Furthermore, if a state q of M and a state q′ of M ′ are co-
reachable, then q′ is an “earliest” version of q, where some word u was pushed
out of the production of q to make it earliest, and some word v was pushed
through the production of q to ensure that the rules have the right property:
there exists u, v ∈ ∆∗ such that for all t ∈ dom(q), JM ′Kq′(t) = v−1u−1JMKq(t)v.

Theorem 2. For each ltw an equivalent same-ordered and earliest ltw can
be constructed in exponential time.

The exponential time complexity is caused by a potential exponential size
increase in the number of states as it is shown in the following example.

We call a state q that produces only the empty word, i.e. Lq = {ε}, an
erasing state. As erasing states do not change the transformation and can occur
at any position in a rule we need to fix their position for a normal form.

An ltwM is erase-ordered if for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
in M , if qi is erasing then for all j ≥ i, qj is erasing, σ(i) ≤ σ(j) and uj = ε.

We test whether Lq = {ε} in polynomial time and then reorder a rule ac-
cording to the erase-ordered property. If an ltw is earliest it is still earliest
after the reordering.

Lemma 1 (extended from [1, Lemma 18]). For each (earliest) ltw an equiva-
lent (earliest) erase-ordered ltw can be constructed in polynomial time.

Example 2. Consider the rule q0, f → q1(x4)q2(x3)q1(x2)q4(x1) where q2 trans-
lates trees of the form fn(g), n ≥ 0 to (abc)n, q4 translates trees of the form
fn(g), n ≥ 0 to (abc)2n, q1 translates trees of the form fn(g), n ≥ 0 to ε. Thus
the rule is not erase-ordered. We reorder the rule to the equivalent and erase-
ordered rule q0, f → q2(x3)q4(x1)q1(x2)q1(x4).

If two equivalent ltws are earliest and erase-ordered, then they are not
necessarily same-ordered. For example, the rule q, f → q4(x1)q2(x3)q1(x2)q1(x4)
is equivalent to the rule in the above example but the two rules are not same-
ordered. However, in earliest and erase-ordered ltws, we can characterize the
differences in the orders of equivalent rules: Just as two words u, v satisfy
the equation uv = vu if and only if there is a word w such that u ∈ w∗ and
v ∈ w∗, the only way for equivalent earliest and erase-ordered ltws to not be
same-ordered is to switch periodic states.

Theorem 3 ([1]). Let M and M ′ be two equivalent erase-ordered and earliest
ltws and q, q′ be two co-reachable states in M , M ′, respectively. Let
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q

′
n(xσ2(n))vn

be two rules for q, q′. Then

6

• for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l, are periodic of the
same period and all uj = ε, k ≤ j < l,

• for k, l such that σ1(k) = σ2(l), JMKqk = JM ′Kq′l .

As the subtrees that are not same-ordered in two equivalent earliest and
erase-ordered states are periodic of the same period the order of these can be
changed without changing the semantics. Therefore the order of these subtrees
can be fixed such that equivalent earliest and erase-ordered ltws are same-
ordered. Then the equivalence is decidable in polynomial time, see Theorem 1.
However, building the earliest form of an ltw is in exponential time.

To circumvent this difficulty, we will show that the first part of Theorem 3
still holds even on a partial normal form, where only quasi-periodic states are
earliest and the longest common prefix of parts of rules q(x)u with Lqu being
quasi-periodic is the empty word.

Theorem 4. Let M and M ′ be two equivalent erase-ordered ltws such that
• all quasi-periodic states q are earliest, i.e. lcp(q) = lcs(q) = ε
• for each part q(x)u of a rule where Lqu is quasi-periodic, lcp(Lqu) = ε

Let q, q′ be two co-reachable states in M , M ′, respectively and
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q

′
n(xσ2(n))vn

be two rules for q, q′. Then for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l,
are periodic of the same period and all uj = ε, k ≤ j < l.

4 Partial Normal Form

In this section we introduce a partial normal form for ltws that does not suffer
from the exponential blow-up of the earliest form. Inspired by Theorem 4, we
wish to solve order differences by switching adjacent periodic states of the same
period. Remember that the earliest form of a state q is constructed by removing
the longest common prefix (suffix) of Lq to produce this prefix (suffix) earlier.
It follows that all non-earliest states from which q can be constructed following
the earliest form are quasi-periodic.

We show that building the earliest form of a quasi-periodic state or a part
of a rule q(x)u with Lqu being quasi-periodic is in polynomial time. Therefore
building the following partial normal form is in polynomial time.

Definition 1. A linear tree-to-word transducer is in partial normal form if
1. all quasi-periodic states are earliest,
2. it is erase-ordered and
3. for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un if LqiuiLqi+1

is quasi-
periodic then qi(xσ(i))uiqi+1(xσ(i+1)) is earliest and σ(i) < σ(i+ 1).

4.1 Eliminating Non-Earliest Quasi-Periodic States

In this part, we show a polynomial time algorithm to build an earliest form
of a quasi-periodic state. From which an equivalent ltw can be constructed

7

in polynomial time such that any quasi-periodic state is earliest, i.e. lcp(Lq) =
lcs(Lq) = ε. Additionally, we show that the presented algorithm can be adjusted
to test if a state is quasi-periodic in polynomial time.

As quasi-periodicity on the left and on the right are symmetric properties
we only consider quasi-periodic states of the form uw∗ (quasi-periodic on the
left). The proofs in the case w∗u are symmetric and therefore omitted here.
In the end of this section we shortly discuss the introduced algorithms for the
symmetric case w∗u.

To build the earliest form of a quasi-periodic state we use the property
that each state accessible from a quasi-periodic state is as well quasi-periodic.
However, the periods can be shifted as the following example shows.

Example 3. Consider states q, q1 and q2 with rules q, f → aq1(x1)c, q1, f →
aaq2(x1)ab, q2, f → q2(x1)abc, q2, g → abc. State q accepts trees of the form
fn(g), n ≥ 2, and produces the language aaa(abc)n, i.e. q is quasi-periodic of
period abc. State q1 accepts trees of the form fn(g), n ≥ 1, and produces the
language aa(abc)nab, i.e. q1 is quasi-periodic of period cab. State q2 accepts
trees of the form fn(g), n ≥ 0 and produces the language (abc)n+1, i.e. q2 is
(quasi-)periodic of period abc.

We introduce two definitions to measure the shift of periods. We denote by
ρn [u] the from right-to-left shifted word of u of shift n, n ≤ |u|, i.e. ρn [u] =
u′−1uu′ where u′ is the prefix of u of size n. If n ≥ |u| then ρn[u] = ρm[u] with
m = n mod |u|.

For two quasi-periodic states q1, q2 of period u = u1u2 and u′ = u2u1,
respectively, we denote the shift in their period by s(q1, q2) = |u1|.

The size of the periods of a quasi-periodic state and the states accessible
from this state can be computed from the size of the shortest words of the
languages produced by these states.

Lemma 2. If q is quasi-periodic on the left with period w, and q′ accessible
from q, then q′ is quasi-periodic with period ε or a shift of w. Moreover we can
calculate the shift s(q, q′) in polynomial time.

We now use these shifts to build, for a state q in M that is quasi-periodic on
the left, a transducer Mq equivalent to M where each occurrence of q is replaced
by its equivalent earliest form, i.e. a periodic state and the corresponding prefix.

Algorithm 1. Let q be a state in M that is quasi-periodic on the left. Mq

starts with the same states, axiom, and rules as M .

• For each state p accessible from q, we add a copy pe to Mq.

• For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible
from q, we add a rule pe, f → upq

e
1(xσ(1))q

e
2(xσ(2)) . . . q

e
n(xσ(n)) with up =

ρs(q,p)
[
lcp(p)−1u0lcp(q1) . . . lcp(qn)un

]
in Mq.

• We delete state q in Mq and replace any occurrence of q(x) in a rule or
the axiom of Mq by lcp(q)qe(x).

8

Note that lcp(p)−1u0lcp(q1) . . . lcp(qn)un is equivalent to deleting the prefix
of size |lcp(p)| from the word u0lcp(q1) . . . lcp(qn)un.

Intuitively, to build the earliest form of a state q that is quasi-periodic on
the left we need to push all words and all longest common prefixes of states
on the right-hand side of a rule of q to the left. Pushing a word to the left
through a state needs to shift the language produced by this state. We explain
the algorithm in detail on state q from Example 3.

Example 4. Remember that q produces the language aaa(abc)n, n ≥ 2 and q1,
q2 accessible from q produce languages aa(abc)nab, n ≥ 1 and (abc)n+1, n ≥ 0,
respectively. Therefore lcp(q) = aaaabcabc, lcp(q1) = aaabcab and lcp(q2) = abc.
We start with state q. As there is only one rule for q the longest common prefix
of q and the longest common prefix of this rule are the same and therefore
eliminated.

qe, f → ρs(q,q)[lcp(q)−1alcp(q1)c]qe1(x1)

→ ρs(q,q)[(aaaabcabc)
−1aaaabcabc]qe1(x1)

→ qe1(x1)
As there is only one rule for q1 the argumentation is the same and we get
qe1, f → qe2. For the rule q2, f we calculate the longest common prefix of the
right-hand side lcp(q2)abc = abcabc that is larger than the longest common prefix
of q2. Therefore we need to calculate the shift s(q, q2) = s(q, q1) + s(q1, q2) =
|c|+ |ab| = 3 as q1 is accessible from q in rule q, f and q2 is accessible from q1

in rule q1, f . This leads to the following rule.
qe2, f → ρs(q,q2)[lcp(q2)−1lcp(q2)abc]qe2(x1)

→ ρ3[(abc)−1abcabc]qe2(x1)

→ abcqe2(x1)
As the longest common prefix of q2 is the same as the longest common prefix
of the right-hand side of rule q2, g we get qe2, g → ε. The axiom of Mq is
lcp(q)qe(x1) = aaaabcabcqe(x1).

Lemma 3. Let M be an ltw and q be a state in M that is quasi-periodic on the
left. Let Mq be constructed by Algorithm 1 and pe be a state in Mq accessible
from qe. Then M and Mq are equivalent and pe is earliest.

To replace all quasi-periodic states by their equivalent earliest form we need
to know which states are quasi-periodic. Algorithm 1 can be modified to test
an arbitrary state for quasi-periodicity on the left in polynomial time. The only
difference to Algorithm 1 is that we do not know how to compute lcp(p) in
polynomial time and s(q, p) does not exist. We therefore substitute lcp(p) by
some smallest word of Lp and we define a mock-shift s′(q, p) as follows
• s′(q, q) = 0 for all q,
• if q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, we say s′(q, qi) = |uiwqi+1

. . . wqnun|,
where wq is a shortest word of Lq,

• if s′(q1, q2) = n and s′(q2, q3) = m then s′(q1, q3) = n+m.
If several definitions of s′(q, p) exist, we use the smallest. If p is accessible from
a quasi-periodic q, then s′(q, p) = s(q, p).

9

Algorithm 2. Let M = (Σ,∆, Q, ax, δ) be an ltw and q be a state in M . We
build an ltw T q as follows.
• For each state p accessible from q, we add a copy pe to T q.
• The axiom is wqq

e(x) where wq is a shortest word of Lq.
• For each rule p, f → u0q1(xσ(1)) . . . qn(xσ(n))un in M with p accessible

from q, we add a rule
pe, f → upq

e
1(xσ(1))q

e
2(xσ(2)) . . . q

e
n(xσ(n))

in T q, where up is constructed as follows.
– We define u = u0w1 . . . wnun, where wi is a shortest word of Lqi .
– Then we remove from u its prefix of size |w′|, where w′ is a shortest

word of Lp. We obtain a word u′.
– Finally, we set up = ρs′(q,p)[u

′].

As the construction of Algorithms 1 and 2 are the same if the state q is
quasi-periodic, JMKq and JT qK are equivalent if q is quasi-periodic. Moreover, q
is quasi-periodic if JMKq and JT qK are equivalent.

Lemma 4. Let q be a state of an ltw M and T q be constructed by Algorithm 2.
Then M and T q are same-ordered and q is quasi-periodic on the left if and only
if JMKq = JT qK and qe is periodic.

As M and T q are same-ordered we can test the equivalence in polynomial
time, cf. Theorem 1. Moreover testing a CFG for periodicity is in polynomial
time and therefore testing a state for quasi-periodicity is in polynomial time.

Algorithm 2 can be applied to a part q(x)u of a rule to test Lqu for quasi-
periodicity on the left. In this case for each rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added to M and each occurrence
of the part q(x)u in a rule of M is replaced by q̂(x). We then apply the above
algorithm to q̂ and test JMKq̂ and JT q̂K for equivalence and q̂e for periodicity.

Example 5. Let q be a state with the rules q, f → bcaq(x1), q, g → ε. Thus, q
transforms trees of the form fn(g), n ≥ 0 to (bca)n. We use Algorithm 2 to test
Lqbc for quasi-periodicity on the left. As explained above we introduce a state q̂
with the rules q̂, f → bcaq̂(x1), q̂, g → bc. We now apply Algorithm 2 on q̂. We
build T q̂ = {{f, g}, {a, b, c}, {q̂e}, ax, δ} as follows. The axiom ax is bcq̂e(x0) as
the shortest word of Lq̂ is bc. For the rule q̂, f we build u = bcabc as bc is the
shortest word of q̂. Then we obtain u′ = abc and uq̂ = ρs′(q̂,q̂)[abc] = abc. Thus
we get q̂e, f → abcq̂e(x1). For the rule q̂, g we build u = bc and obtain u′ = ε as
the shortest word of q̂ is bc. Thus we get q̂e, g → ε.

T q̂ transforms trees of the form fn(g) to bc(abc)n and q̂ transforms trees
of the form fn(g) to (bca)nbc. Thus, they are equivalent. Additionally q̂e is
periodic with period abc. It follows that Lq1bc is quasi-periodic.

We introduced algorithms to test states for quasi-periodicity on the left and
to build the earliest form for such states. These two algorithms can be adapted
for states that are quasi-periodic on the right. There are two main differences.
First, as the handle is on the right the shortest word of a language L that is
quasi-periodic on the right is lcs(L). Second, instead of pushing words through a

10

periodic language to the left we need to push words through a periodic language
to the right.

Hence, we can test each state q of an ltw M for quasi-periodicity on the
left and right. If the state is quasi-periodic we replace q by its earliest form.
Algorithm 1 and 2 run in polynomial time if SLPs are used. This is crucial as the
shortest word of a CFG can be of exponential size, cf. Example 1. However, the
operations that are needed in the algorithms, namely constructing the shortest
word of a CFG and removing the prefix or suffix of a word, are in polynomial
time using SLPs, cf. [11].

Theorem 5. Let M be an ltw. Then an equivalent ltw M ′ where all quasi-
periodic states are earliest can be constructed in polynomial time.

4.2 Switching Periodic States

In this part we obtain the partial normal form by ordering periodic states of an
erase-ordered transducer where all quasi-periodic states are earliest. Ordering
means that if the order of the subtrees in the translation can differ, we choose
the one similar to the input, i.e. if q(x3)q′(x1) and q′(x1)q(x3) are equivalent,
we choose the second order. We already showed how we can build a transducer
where each quasi-periodic state is earliest and therefore periodic. However, we
need to make parts of rules earliest such that periodic states can be switched as
the following example shows.

Example 6. Consider the rule q, h→ q1(x2)bq2(x1) where q1, q2 have the rules
q1, f → bcabcaq1(x), q1, g → ε, q2, f → cabq2(x), q2, g → ε. States q1 and q2

are earliest and periodic but not of the same period as a subword is produced
in between. We replace the non-earliest and quasi-periodic part q1(x2)b by their
earliest form. This leads to q, h → bqe1(x2)q2(x1) with qe1, f → cabcabqe1(x),
qe1, g → ε. Hence, qe1 and q2 are earliest and periodic of the same period and can
be switched in the rule.

To build the earliest form of a quasi-periodic part of a rule q(x)u each
occurrence of this part is replaced by a state q̂(x) and for each rule q, f →
u0q1(xσ(1)) . . . qn(xσ(n))un a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu is added.
Then we apply Algorithm 1 on q̂ to replace q̂ and therefore q(x)u by their earliest
form. Iteratively this leads to the following theorem.

Theorem 6. For each ltw M where all quasi-periodic states are earliest we
can build in polynomial time an equivalent ltw M ′ such that each part q(x)u
of a rule in M where Lqu is quasi-periodic is earliest.

In Theorem 4 we showed that order differences in equivalent erase-ordered
ltws where all quasi-periodic states are earliest and all parts of rules q(x)u
are earliest are caused by adjacent periodic states. As these states are periodic
of the same period and no words are produced in between these states can be
reordered without changing the semantics of the ltws.

Lemma 5. Let M be an ltw such that

11

• M is erase-ordered,
• all quasi-periodic states in M are earliest and
• each qi(xσ(i))ui in a rule of M that is quasi-periodic is earliest.

Then we can reorder adjacent periodic states qi(xσ(i))qi+1(xσ(i+1)) of the same
period in the rules of M such that σ(i) < σ(j) in polynomial time. The reorder-
ing does not change the transformation of M .

We showed before how to construct a transducer with the preconditions
needed in Lemma 5 in polynomial time. Note that replacing a quasi-periodic
state by its earliest form can break the erase-ordered property. Thus we need
to replace all quasi-periodic states by its earliest form before building the erase-
ordered form of a transducer. Then Lemma 5 is the last step to obtain the
partial normal form for an ltw.

Theorem 7. For each ltw we can construct an equivalent ltw that is in
partial normal form in polynomial time.

4.3 Testing Equivalence in Polynomial Time

It remains to show that the equivalence problem of ltws in partial normal form
is decidable in polynomial time. The key idea is that two equivalent ltws in
partial normal form are same-ordered.

Consider two equivalent ltws M1, M2 where all quasi-periodic states and
all parts of rules q(x)u with Lqu is quasi-periodic are earliest. In Theorem 4 we
showed if the orders σ1, σ2 of two co-reachable states q1, q2 of M1, M2, respec-
tively, for the same input differ then the states causing this order differences
are periodic with the same period. The partial normal form solves this order
differences such that the transducers are same-ordered.

Lemma 6. If M and M ′ are equivalent and in partial normal form then they
are same-ordered.

As the equivalence of same-ordered ltws is decidable in polynomial time
(cf. Theorem 1) we conclude the following.

Corollary 1. The equivalence problem for ltws in partial normal form is de-
cidable in polynomial time.

To summarize, the following steps run in polynomial time and transform a
ltw M into its partial normal form.

1. Test each state for quasi-periodicity. If it is quasi-periodic replace the
state by its earliest form.

2. Build the equivalent erase-ordered transducer.
3. Test each part qi(xi)ui in each rule from right to left for quasi-periodicity

on the left. If it is quasi-periodic on the left replace the part by its earliest
form.

4. Order adjacent periodic states of the same period according to the input
order.

12

This leads to our main theorem.

Theorem 8. The equivalence of ltws is decidable in polynomial time.

5 Conclusion

The equivalence problem for linear tree-to-word transducers can be decided in
polynomial time. To prove this we used a reduction to the equivalence problem
between sequential transducers [7], or more exactly, to an extension of this re-
sult to same-ordered transducers. This reduction hinges on two points. First,
we showed that the only structural differences between two equivalent earliest
linear transducers are caused by periodic languages which are interchangeable.
The structural characteristic of periodic languages has been used in the normal-
ization of stws [7]. Second, we showed that if building a fully earliest transducer
is potentially exponential, our reduction only requires quasi-periodic states to
be earliest, which can be done in polynomial time. The use of the equivalence
problem for morphisms on a CFG [13] and of properties on straight-line pro-
grams [10] is essential here as it was in [7, 8]. This leads to further research
questions, starting with generalization of this result to all tree-to-words trans-
ducers. Furthermore, is it possible that these techniques can be used to decrease
the complexity of some problems in other classes of transducer classes, such as
top-down tree-to-tree transducers, where the equivalence problem is known to
be between Exptime-Hard and NExptime?

References

[1] Adrien Boiret. Normal form on linear tree-to-word transducers. In Lan-
guage and Automata Theory and Applications, pages 439–451. Springer,
2016.

[2] Joost Engelfriet. Some open question and recent results on tree transducers
and tree languages. In Formal Language Theory, Perspectives and Open
Problems, pages 241–286. Academic Press, 1980.

[3] Joost Engelfriet and Sebastian Maneth. Macro tree translations of linear
size increase are MSO definable. SIAM Journal on Computing, 32(4):950–
1006, 2003.

[4] Joost Engelfriet and Sebastian Maneth. The equivalence problem for deter-
ministic MSO tree transducers is decidable. Information Processing Letters,
100(5):206–212, 2006.

[5] Joost Engelfriet, Grzegorz Rozenberg, and Giora Slutzki. Tree transducers,
L systems and two-way machines. In Proceedings of the tenth annual ACM
symposium on Theory of computing, pages 66–74. ACM, 1978.

13

[6] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of
Computer and System Sciences, 31(1):71–146, 1985.

[7] Grégoire Laurence, Aurélien Lemay, Joachim Niehren, S lawek Staworko,
and Marc Tommasi. Normalization of sequential top-down tree-to-word
transducers. In Language and Automata Theory and Applications, pages
354–365. Springer, 2011.

[8] Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Slawek Staworko,
and Marc Tommasi. Learning sequential tree-to-word transducers. In Lan-
guage and Automata Theory and Applications, pages 490–502, 2014.

[9] Aurélien Lemay, Sebastian Maneth, and Joachim Niehren. A learning
algorithm for top-down XML transformations. In Proceedings of the
Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, pages 285–296, 2010.

[10] Markus Lohrey. Algorithmics on SLP-compressed strings: A survey. Groups
Complexity Cryptology, 4(2):241–299, 2012.

[11] Markus Lohrey. The Compressed Word Problem for Groups. Springer,
2014.

[12] Sebastian Maneth and Helmut Seidl. Deciding equivalence of top-down
XML transformations in polynomial time. In Programming Language Tech-
nologies for XML, pages 73–79, 2007.

[13] Wojciech Plandowski. The complexity of the morphism equivalence problem
for context-free languages. PhD thesis, Warsaw University, 1995.

[14] Helmut Seidl, Sebastian Maneth, and Gregor Kemper. Equivalence of de-
terministic top-down tree-to-string transducers is decidable. In IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 943–962,
2015.

[15] S lawomir Staworko, Grégoire Laurence, Aurélien Lemay, and Joachim
Niehren. Equivalence of deterministic nested word to word transducers.
In Fundamentals of Computation Theory, pages 310–322. Springer, 2009.

A Proof of Theorem 4

Theorem. Let M and M ′ be two equivalent erase-ordered ltws such that
• all quasi-periodic states q are earliest, i.e. lcp(q) = lcs(q) = ε
• for each part q(x)u of a rule where Lqu is quasi-periodic, lcp(Lqu) = ε

Let q, q′ be two co-reachable states in M , M ′, respectively and
q, f → u0q1(xσ1(1)) . . . qn(xσ1(n))un and q′, f → v0q

′
1(xσ2(1)) . . . q

′
n(xσ2(n))vn

be two rules for q, q′. Then for k < l such that σ1(k) = σ2(l), all qi, k ≤ i ≤ l,
are periodic of the same period and all uj = ε, k ≤ j < l.

14

Proof. Let Me and M ′e be the equivalent earliest transducer of M and M ′,
respectively, such that M and Me as well as M ′ and M ′e are same-ordered (cf.
Theorem 2).

Suppose there exists co-reachable (and thus equivalent) states qe and q′e in
Me and M ′e, respectively, with rules

qe, f → v0q
e
1(xσ(1)) . . . q

e
n(xσ(n))vn,

q′e, f → v′0q
′e
1 (xσ′(1)) . . . q

′e
n (xσ(n))v

′
n

such that σ 6= σ′.
Let i be the first index such that σ(i) 6= σ′(i). Following Theorem 3, we have

j, j′ such that σ′(j′) = σ(i) and σ(j) = σ′(i) and all qel , i ≤ l ≤ j are periodic
with the same period.

Let q and q′ be the states in M and M ′, respectively, from which the co-
reachable states qe and q′e were constructed with the earliest construction pro-
posed by [7]. From the earliest construction it follows that q and q′ are co-
reachable. Since the construction preserves the rule structure, we have:

q, f → u0q1(xσ(1)) . . . qn(xσ(n))un
q′, f → u′0q

′
1(xσ′(1)) . . . q

′
n(xσ(n))u

′
n

The earliest construction gives us that for all l ∈ {1, . . . , n}, JMeKqel (t) =

v−1u−1JMKql(t)v for some u, v ∈ ∆∗. This means that if qel is periodic, then ql
is quasi periodic in its non-earliest form. The same is true for all q′l.

However, the first property we supposed of M and M ′ implies that all those
ql and q′l that are quasi-periodic are not only quasi periodic, but periodic. Con-
sider a part of the rule qi(xσ(i))ui . . . qj(xσ(j)) that is periodic in the earliest form
and therefore quasi-periodic in the non-earliest form. The first condition gives us
that qi, . . . , qj are periodic. However, then the words ui, . . . , uj−1 are not neces-
sarily empty. As the part qi(xσ(i))ui . . . qj(xσ(j)) is quasi-periodic we know that
each part qk(xσ(k))uk, i ≤ k < j is quasi-periodic. Then the second condition
of this theorem guarantees that the parts qk(xσ(k))uk, i ≤ k < j are not only
quasi-periodic, but periodic. From which it follows that the words ui, . . . , uj−1

are empty. As the part qi(xσ(i))ui . . . qj(xσ(j)) is periodic and ui, . . . , uj−1 are
empty we get that qi, . . . , qj are periodic of the same period. The same holds
true for states of a part of the rule q′i(xσ′(i))u

′
i . . . q

′
j(xσ′(j)) that is periodic in

the earliest form.

B Proof of Lemma 2

Lemma. If q is quasi-periodic on the left with period w, and q′ accessible from
q, then q′ is quasi-periodic with period ε or a shift of w. Moreover we can
calculate the shift s(q, q′) in polynomial time.

Proof. This is done as an iterative proof with the following elementary step:
If q, f → u0q1(xσ(1)) . . . qn(xσ(n))un, and q is quasi-periodic on the left with
handle u and period w, then for all i between 1 and n, qi is quasi-periodic with
period ε or a shift of w.

We pick vj a smallest word produced by state qj . We then have that for all
t ∈ dom(qi), u0v1...ui−1JMKqi(t)ui...vnun ∈ Lq. If we call ul = u0v0...ui−1 and

15

ur = ui...vnun, we obtain that Lqi ⊆ u−1
l Lqu

−1
r . Since Lq ⊆ uw∗, we can say

Lqi ⊆ u−1
l (uw∗)u−1

r . It is a classical result of regular languages that (uw∗)u−1
r

is either empty, a singleton, or a quasi-periodic language of period urwu
−1
r . By

further removing a prefix to this language the period does not change. Hence,
we get that u−1

l (uw∗)u−1
r is also either empty, a singleton, or a quasi-periodic

language of period urwu
−1
r . This means that qi is quasi-periodic, of period ε, or

urwu
−1
r , which is a shift of q. The size of ur can easily be computed from the

sizes of the minimal productions of states qj . We build the CFG for Lqj . Then,
finding the smallest production of qj and their size is finding the smallest word
of Lqj and their size, which is a polynomial problem on CFG.

To show that the shifts of the periods can be calculated in polynomial time
we show that shifts are additive in nature: If q1 has period w, q1 and q2 are of
shifted period, and q2 and q3 are of shifted period, then q1 and q3 are of shifted
period, and s(q1, q3) ≡ s(q1, q2) + s(q2, q3) (mod |w|).

If q1 is of period w, then q2 is of period w2 = w′ww′−1, where w′ is the
suffix of w of size s(q1, q2). If q2 is of period w2, then q2 is of period w3 =
w′′w2w

′′−1, where w′′ is the suffix of w2 of size s(q2, q3). We then have that
w3 = (w′′w′)w(w′′w′)−1, where (w′′w′) is of size s(q1, q2) + s(q2, q3).

We can compute the shift of the period of each state accessible from q rule
by rule using the additive property of the shifts we proved above.

C Proof of Lemma 3

Lemma. Let M be an ltw and q be a state in M that is quasi-periodic on the
left. Let Mq be constructed by Algorithm 1 and pe be a state in Mq accessible
from qe. Then M and Mq are equivalent and pe is earliest.

Proof. To show that M and Mq are equivalent we show that lcp(q)JMqKqe(t) =
JMKq(t), for all t ∈ dom(q). To show that lcp(q)JMqKqe(t) = JMKq(t) we
show that, for all states p accessible from q and all t ∈ dom(p), JMqKpe(t)
and ρs(q,p)

[
lcp(p)−1JMKp(t)

]
are equivalent as then

lcp(q)JMqKqe(t) = lcp(q)ρs(q,q)
[
lcp(q)−1JMKq(t)

]
= lcp(q)lcp(q)−1JMKq(t)
= JMKq(t).

To show that JMqKpe(t) = ρs(q,p)
[
lcp(p)−1JMKp(t)

]
for all p accessible from q

and all t = (s1, . . . , sn) ∈ dom(p), we prove that JMqKpe(t) is of the same period
and of the same size as ρs(q,p)

[
lcp(p)−1JMKp(t)

]
. From Lemma 2 we know

that all p accessible from q are quasi-periodic and therefore lcp(p)−1JMKp(t)
is periodic. Hence, if JMqKpe(t) and ρs(q,p)

[
lcp(p)−1JMKp(t)

]
are of the same

period and of the same size then they are equivalent.
To show that JMqKpe(t) and ρs(q,p)

[
lcp(p)−1JMKp(t)

]
have the same size, for

all t ∈ dom(p), we show that |JMqKpe(t)| = |JMKp(t)| − |lcp(p)|. The proof is by

16

induction on the input tree. For an input tree t with no subtrees we have
|JMqKpe(t)| = |ρs(q,p)[lcp(p)−1u0 . . . un]|

= |u0|+ · · ·+ |un| − |lcp(p)|
= |JMKp(t)| − |lcp(p)|
= |ρs(q,p)

[
lcp(p)−1JMKp(t)

]
|.

Thus, the base casef holds. Consider an input tree t = f(s1, . . . , sn) ∈ dom(p).
Then JMqKpe(t) is of size |up| + |JMqKqe1 (sσ(1))| + · · · + |JMqKqen(sσ(n))| with
|up| = |ρs(q,p)[lcp(p)−1u0lcp(q1) . . . lcp(qn)un]|. Since shifting a word preserves
its length, we have |up| = |u0| + |lcp(q1)| + · · · + |un| − |lcp(p)|. Thus, we have
to show that
|up|+ |JMqKqe1 (sσ(1))|+ · · ·+ |JMqKqen(sσ(n))| = |ρs(q,p)

[
lcp(p)−1JMKp(t)

]
|.

By induction we have |JMqKqei (sσ(i))| = |JMKqi(sσ(i))|− |lcp(qi)|. Thus, we have

|up|+|JMqKqe1 (sσ(1))|+ · · ·+ |JMqKqen(sσ(n))|
= |u0|+ |lcp(q1)|+ · · ·+ |lcp(qn)|+ |un| − |lcp(p)|

+ |JMKq1(sσ(1))| − |lcp(q1)|+ · · ·+ |JMKqn(sσ(n))| − |lcp(qn)|
= |u0|+ |JMKq1(sσ(1))|+ · · ·+ |JMKqn(sσ(n))|+ |un| − |lcp(p)|
= |JMKp(t)| − |lcp(p)|
= |ρs(q,p)

[
lcp(p)−1JMKp(t)

]
|.

To show that JMqKpe(t) and ρs(q,p)
[
lcp(p)−1JMKp(t)

]
have the same period,

for all t ∈ dom(p), we show that JMqKpe(t) ∈ u∗ and ρs(q,p)
[
lcp(p)−1JMKp(t)

]
∈

u∗ where Lq ⊆ wu∗. From Lemma 2 it follows that ρs(q,p)
[
lcp(p)−1JMKp(t)

]
∈

u∗. To proof that JMqKpe(t) ∈ u∗ is by induction on the input tree. For an
input tree t with no subtrees we have JMqKpe(t) = ρs(q,p)

[
lcp(p)−1u0 . . . un

]
.

From Lemma 2 we know that Lp is quasi-periodic of period u′u′′ where u =
u′′u′ and u′ is of size s(q, p). Thus, lcp(p)−1u0 . . . un ∈ (u′u′′)∗ and therefore
ρs(q,p)

[
lcp(p)−1u0 . . . un

]
∈ (u′u′′)∗ = u∗. Hence, the base case holds. Con-

sider an input tree t = f(s1, . . . , sn) ∈ dom(p). Then we have JMqKpe(t) =
ρs(q,p)

[
lcp(p)−1u0lcp(q1) . . . lcp(qn)un

]
JMqKqe1 (sσ(1)) . . . JMqKqen(sσ(n)). By in-

duction, JMqKqei (sσ(i)) ∈ u∗. With the same argumentation as in the base case
lcp(p)−1u0lcp(q1) . . . lcp(qn)un ∈ (u′u′′)∗ with u = u′′u′ and u′ is of size s(q, p).
Thus, ρs(q,p)

[
lcp(p)−1u0lcp(q1) . . . lcp(qn)un

]
∈ (u′′u′)∗ = u∗ and therefore we

get JMqKpe(t) ∈ u∗.

D Proof of Lemma 4

Lemma. Let q be a state of an ltw M and T q be constructed by Algorithm 2.
Then M and T q are same-ordered and q is quasi-periodic on the left if and only
if JMKq = JT qK and qe is periodic.

Proof. We show that q is quasi-periodic on the left if and only if JMKq = JT qK
and qe is periodic. If q is quasi-periodic on the left the transformation in Al-
gorithm 2 is the same as in Algorithm 1. Therefore JMKq = JT qK and qe is
periodic.

17

If JMKq = JT qK and qe is periodic, then JMKq is quasi-periodic as JT qK =
wqJT qKqe with wq a shortest word of Lq.

M and T q are same-ordered as the order of the rules in T q is the same as in
M by construction.

E Proof of Theorem 5

Theorem. Let M be an ltw. Then an equivalent ltw M ′ where all quasi-
periodic states are earliest can be constructed in polynomial time.

Proof. This proof works by induction. We first show that ifM = (Σ,∆, Q, ax, δ)
has n, n > 1 quasi-periodic states that are non-earliest, then we can build in
polynomial time an equivalent ltw M ′ with n − 1 non-earliest quasi-periodic
states. Using Algorithm 2 we choose q as a non-earliest quasi-periodic state of
Q. We apply Algorithm 1 on state q and get Mq, whose set of state is of form
Q t Qe\{q}, where Qe is the set of states pe with p accessible from q that are
created by Algorithm 1. According to Lemma 3 all the states of Qe are periodic.
This means that the non-earliest quasi-periodic states of Mq are all in Q\{q}.
Since Q has n non-earliest quasi-periodic states, including q, Mq has n− 1.

Now we can build M1 equivalent to M with n−1 non-earliest quasi-periodic
states, then M2 equivalent to M1 (hence to M) with n − 2 non-earliest quasi-
periodic states, and so on. Finally we get Mn equivalent to M with no non-
earliest quasi-periodic state. Each step is in polynomial time and the number
n is smaller than the number of states in M . For each occurence of a state
on the right-hand side of a rule there is at most one new state needed in the
construction. Therefore the size increase of the transducer is only polynomial.
To avoid the construction of equivalent states q should be considered before q′ if
q′ is accessible from q. If q is accessible from q′ and q′ is accessible from q then
q is considered first if there is a acyclic way from the axiom to q that contains
q′.

In the above proof we assumed that Algorithm 2 and 1 run in polynomial
time. In both algorithms it is crucial that SLPs are used to represent the short-
est words of the languages produced by the states of a transducer as these can
be of exponential size, cf. Example 1. Instead of these uncompressed words
nonterminals representing these words as SLPs are inserted in the transducers.
All operations that are needed in the algorithms, namely constructing a SLP
for the shortest word of an CFG, concatenation of SLPs, shifting the word pro-
duced by an SLP and removing the prefix or suffix of an SLP are in polynomial
time [11].

F Proof of Theorem 6

Theorem. For each ltw M where all quasi-periodic states are earliest we can
build in polynomial time an equivalent ltw M ′ such that each part q(x)u of a

18

rule in M where Lqu is quasi-periodic is earliest.

Proof. First, we show that one part q(x)u of a rule where Lqu is quasi-periodic
on the left can be replaced by their earliest form. We can apply Algorithm 2 and
1 on a part q(x)u of a rule that is quasi-periodic by replacing q(x)u by a new state
q̂. Therefore each occurrence of q(x)u in any rule is replaced by q̂(x) and for each
rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un a rule q̂, f → u0q1(xσ(1)) . . . qn(xσ(n))unu
is added. Then we can apply Algorithm 2 on q̂ to test q(x)u for quasi-periodicity
on the left. If q̂u is quasi-periodic on the left we apply Algorithm 1 on q̂ to
replace q(x)u by their earliest form.

Second, we show that for any rule of an ltw an equivalent rule can be con-
structed such that all parts q(x)u in the rule where Lqu is quasi-periodic on
the left are earliest. Consider a rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))un. Replac-
ing a part q(x)u with Lqu is quasi-periodic by their earliest form as described
above means that all occurrences of q̂(x) are replaced by lcp(q̂)q̂e(x). Thus, to
replace all parts of a rule that produce quasi-periodic languages by their ear-
liest form the testing and replacing should be done from right to left as the
earliest form may introduce new words on the left of the replaced state. For a
rule q, f → u0q1(xσ(1)) . . . qn(xσ(n))unwe start by testing qn(xσ(n))un for quasi-
periodicity on the left and replace the part if necessary as described above.
If so, we obtain q, f → u0q1(xσ(1)) . . . qn−1(xσ(n−1))un−1lcp(q̂n)q̂n

e(xσ(n)) and
continue with testing qn−1(xσ(n−1))un−1lcp(q̂n) for quasi-periodicity on the left.
If not, then we continue with testing qn−1(xσ(n−1))un−1 for quasi-periodicity on
the left. Following this construction for the rule from right to left, i.e. from
index n to 1, leads to an equivalent rule where all parts q(x)u with Lqu is
quasi-periodic on the left are earliest.

The construction runs in polynomial time as Algorithm 2 and 1 run in
polynomial time (for details see the proof of Theorem 5) and for each rule
q, f → u0q1(xσ(1)) . . . qn(xσ(n))unthe algorithms are applied at most n times.

G Proof of Lemma 6

Lemma. If M and M ′ are equivalent and in partial normal form then they are
same-ordered.

Proof. The proof is by contradiction. Suppose that M, M ′ are two equiva-
lent ltws in partial normal form that are not same-ordered. We consider co-
reachable state q and q′ of M and M ′ that are not same-ordered. Then for
q, f → u0q1(xσ(1)) . . . qn(xσ(n))un and q′, f → v0q

′
1(xσ′(1)) . . . q

′
n(xσ′(n))vn we

choose i, j, i < j such that j − i is minimal under the following constraints
• {σ(k) | i ≤ k ≤ j} = {σ′(k) | i ≤ k ≤ j} and
• there is k, i ≤ k ≤ j such that σ(k) 6= σ′(k).

As the set of indices of σ(k) and σ′(k) between i and j is the same but in different
orders there is l, i ≤ l ≤ j such that σ(l) > σ(l+1) or σ′(l) > σ′(l+1). W.l.o.g.
we assume that σ(l) > σ(l + 1). Additionally, from the above constraints it

19

follows that there is s, t, i ≤ s ≤ l < t ≤ j such that σ(s) = σ′(t). As the partial
normal form satisfies the preconditions of Theorem 4 we get that qs, . . . , qt are
periodic with the same period and us, . . . , ut−1 are empty. Thus, LqlulLql+1

is
quasi-periodic. Then it follows from the partial normal form that σ(l) < σ(l+1),
a contradiction.

H Proof of Theorem 8

Theorem. The equivalence problem for linear tree-to-word transducers is de-
cidable in polynomial time.

Proof. Let M and M ′ be two linear tree-to-word transducers. We construct
equivalent ltws M1 and M ′1, respectively, such that M1 and M2 are in partial
normal form following Theorem 7. We then test if M1 and M ′1 are same-ordered.
If they are same-ordered we test M1 and M ′1 for equivalence, see Theorem 1. If
M1 and M ′1 are not same-ordered we know following Lemma 6 that M1 and M ′1
are not equivalent and therefore M and M ′ are not equivalent.

20

	1 Introduction
	2 Preliminaries
	3 Linear Tree-to-Word Transducers
	3.1 Linear Earliest Normal Form

	4 Partial Normal Form
	4.1 Eliminating Non-Earliest Quasi-Periodic States
	4.2 Switching Periodic States
	4.3 Testing Equivalence in Polynomial Time

	5 Conclusion
	A Proof of Theorem 4
	B Proof of Lemma 2
	C Proof of Lemma 3
	D Proof of Lemma 4
	E Proof of Theorem 5
	F Proof of Theorem 6
	G Proof of Lemma 6
	H Proof of Theorem 8

