
Efficient Farthest-Point Queries in
Two-Terminal Series-Parallel Networks

Carsten Grimm1,2

1 Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
2 Carleton University, Ottawa, Ontario, Canada

Abstract. Consider the continuum of points along the edges of a network,
i.e., a connected, undirected graph with positive edge weights. We measure
the distance between these points in terms of the weighted shortest path
distance, called the network distance. Within this metric space, we study
farthest points and farthest distances. We introduce a data structure
supporting queries for the farthest distance and the farthest points on two-
terminal series-parallel networks. This data structure supports farthest-
point queries in O(k + logn) time after O(n log p) construction time,
where k is the number of farthest points, n is the size of the network,
and p parallel operations are required to generate the network.

1 Introduction

Consider a geometric network with positive edge weights. For any two points
on this network (i.e., points that may be vertices or in the interior of an edge),
their network distance is the weight of a weighted shortest-path connecting them.
Within this metric space, we study farthest points and farthest distances. We
introduce a data structure supporting queries for the farthest distance and the
farthest points on two-terminal series-parallel networks.

As a prototype application, imagine the task to find the ideal location for a
new hospital within the network formed by the streets of a city. One criterion for
this optimization would be the emergency unit response time, i.e., the worst-case
time an emergency crew needs to drive from the hospital to the site of an accident.
However, a location might be optimal in terms of emergency unit response time,
but unacceptable with respect to another criterion such as construction costs. We
provide a data structure that would allow a decision maker to quickly compare
various locations in terms of emergency unit response time.

We obtain our data structure for two-terminal series-parallel networks by
studying simpler networks reflecting parallel structure (parallel-path) and serial
structure (bead-chains). Combining these insights, we support queries on flat
series-parallel networks (abacus). Finally, we decompose series-parallel networks
into a tree of nested abaci and combine their associated data structures.

Our focus on supporting human decision makers with data structures deviates
from the common one-shot optimization problems in location analysis, where
we assume that only one factor determines suitable locations for some facility
in a network. Moreover, we illustrate new ways of exploiting different parallel
structures of networks that may be useful for tackling related problems.

ar
X

iv
:1

50
3.

01
70

6v
4

 [
cs

.D
S]

 2
9

Ju
l 2

01
5

1.1 Preliminaries

A network is defined as a simple, connected, undirected graph N = (V,E) with
positive edge weights. We write wuv to denote the weight of the edge uv ∈ E
that connects the vertices u, v ∈ V . A point p on edge uv subdivides uv into two
sub-edges up and pv with wup = λwuv and wpv = (1−λ)wuv, for some λ ∈ [0, 1].3

We write p ∈ uv when p is on edge uv and p ∈ N when p is on some edge of N .
The network distance between p, q ∈ N , denoted by dN (p, q), is measured as
the weighted length of a shortest path from p to q in N . We denote the farthest
distance from p by d̄N (p), i.e., d̄N (p) = maxq∈N dN (p, q). Accordingly, we say a
point p̄ on N is farthest from p if and only if dN (p, p̄) = d̄N (p).

We develop data structures supporting the following queries in a network N .
Given a point p on N , what is the farthest distance from p? What are the farthest
points from p in N? We refer to the former as farthest-distance query and to the
latter as farthest-point query. The query point p is represented by the edge uv
containing p together with the value λ ∈ [0, 1] such that wup = λwuv.

u v

x

parallel

u vu v

se
ri
es

(a) The operations. (b) A two-terminal series-parallel network.

Fig. 1. The operations (a) that generate two-terminal series-parallel networks (b).

The term series-parallel network stems from the following two operations
that are illustrated in Fig. 1. The series operation splits an existing edge uv into
two new edges ux and xv where x is a new vertex. The parallel operation creates
a copy of an existing edge. A network N is two-terminal series-parallel when
its underlying graph4 can be generated from a single edge uv using a sequence
of series and parallel operations; the vertices u and v are called terminals of N .
We refer to the number of parallel operations required to generate N as the
parallelism of N and to the number of series operations as the serialism of N .

A network is called series-parallel when every bi-connected component is
two-terminal series-parallel with respect to any two vertices. In this work, we
only consider bi-connected networks; in future work, we shall adapt our treatment
of multiple bi-connected components from cacti [5] to series-parallel networks.

3 Observe that p /∈ V when λ ∈ (0, 1) in which case none of the sub-edges up and pv
are edges in E. When λ = 0 or λ = 1, the point p coincides with u and v, respectively.

4 The final graph is simple even if intermediate graphs have loops and multiple edges.

2

1.2 Related Work

Duffin [8] studies series-parallel networks to compute the resistance of circuit
boards. He characterizes three equivalent definitions of series-parallel networks
and establishes their planarity. Two-terminal series-parallel networks admit linear
time solutions for several problems that are NP-hard on general networks [3,15].
Since series-parallel networks have tree-with two [6], this applies to all problems
with efficient algorithms on networks with bounded treewidth [1].

A network Voronoi diagram subdivides a network depending on which site is
closest [11] or farthest [9,14] among a finite set of sites. Any data structure for
farthest-point queries on a network represents a network farthest-point Voronoi
diagram where all points on the network are considered sites [4].

A continuous absolute center is a point on a network with minimum farthest-
distance. Computing a continuous absolute center takes O(n) time on cacti [2]
and O(m2 log n) time on general networks [12]. As a by-product, we obtain all
continuous absolute centers of a series-parallel network in O(n log p) time.

1.3 Structure and Results

We introduce a data structure supporting queries for the farthest distance and
the farthest points on two-terminal series-parallel networks. We obtain this data
structure by isolating sub-structures of series-parallel networks: In Sections 2
and 3, we study networks consisting of parallel paths and networks consisting of
a cycle with attached paths (bead-chains), respectively. In Section 4, we combine
these results into abacus networks, which are series-parallel networks without
nested structures. Finally, we combine these intermediate data structures to
obtain our main result in Section 5. Table 1 summarizes the characteristics of
the proposed data structures and compares them to previous results.

Type Farthest-Point Query Size Construction Time Reference

General O(k + logn) O(m2) O(m2 logn) [4]

Tree O(k) O(n) O(n) [5]
Cycle O(logn) O(n) O(n) [5]

Uni-Cyclic O(k + logn) O(n) O(n) [5]
Cactus O(k + logn) O(n) O(n) [5]

Parallel-Path O(k + logn) O(n) O(n) this work
Bead-Chain O(k + logn) O(n) O(n) this work

Abacus O(k + logn) O(n) O(n log p) this work
Series-Parallel O(k + logn) O(n) O(n log p) this work

Table 1. The traits of our data structures for queries in different types of networks,
with n vertices, m edges, k reported farthest points, and parallelism p.

3

2 Parallel-Path Networks

u v

Fig. 2. A parallel-path two-terminal series-
parallel network with parallelism p = 7.

A parallel-path network consists of a
bundle of edge disjoint paths connect-
ing two vertices u and v, as illustrated
in Fig. 2. In terms of series-parallel
networks, parallel-path networks are
generated from an edge uv using a se-
quence of parallel operations followed
by a sequence of series operations.

Let P1, P2, . . . , Pp be the paths of
weighted lengths w1 ≤ w2 ≤ · · · ≤ wp
between the terminals u and v in a parallel-path network N . Consider a shortest
path tree5 from a query point q ∈ N . As depicted in Fig. 3, there are three
cases: either all shortest paths from q reach v via u (left case), or all shortest
paths from q reach u via v (right case), or neither (middle case). We distinguish
the three cases using the following notation. Let x̄i denote the farthest point
from x ∈ {u, v} among the points of path Pi, i.e., x̄i is a point on Pi such that
d(x, x̄i) = maxy∈Pi d(x, y). Together with Fig. 3, the next lemma justifies our
choice of the names left case, middle case, and right case.

u v

v̄i

ūj

ūi

q̄i
q

(a) The left case.

u v

q̄j

q̄1

q
v̄i

v̄j
ūj

ūi

(b) The middle case.

u v

v̄i

v̄j

ūi

q̄i
q

(c) The right case.

Fig. 3. The three cases for queries in parallel-path networks. Consider the shortest path
tree from a query point q ∈ Pi along the paths P1 (center), Pi (bottom), and Pj (top).
In the left case (a), we reach v via u. In the right case (c), we reach u via v. In the
middle case (b), neither holds, i.e., we enter path P1 from both terminals u and v.
Points colored red are reached fastest via a path through u or towards u along uv, while
points colored blue are reached fastest via a path through v or towards v along uv.

Lemma 1. Consider a query q from the i-th path of a parallel-path network.

(i) We are in the left case when q lies on the sub-path from u to v̄i with q 6= v̄i,
(ii) we are in the middle case when q lies on the sub-path from v̄i to ūi, and
(iii) we are in the right case when q lies on the sub-path from ūi to v with q 6= ūi.

5 More precisely, we consider extended shortest path trees [14] which result from splitting
each non-tree edge st of a shortest path tree into two sub-edges sx and xt, where all
points on sx reach the root through s and all points on xt reach the root through t.

4

Proof. Assume we are in the left case, where every shortest path from the query
point q ∈ Pi to v contains u, i.e., d(q, v) = d(q, u) + d(u, v) and d(q, v) < wqv.
The latter implies q 6= v̄i, since d(v, v̄i) = wv̄iv. Moreover, v̄i cannot lie on the
sub-path from q to u along Pi, since otherwise

d(q, v) = d(q, v̄i) + d(v̄i, v)
q 6=v̄i
> d(v̄i, v) ,

contradicting the choice of v̄i as farthest point from v on Pi. Therefore, q must
lie between u and v̄i along Pi when we are in the left case.

Conversely, assume q lies between u and v̄i along Pi with q 6= v̄i. No shortest
path from q to v can contain v̄i in its interior. Hence, every shortest path from
q to v reaches v via u, i.e., the left case applies. Symmetrically, the right case
applies if and only if q 6= ui lies between ūi and v. Consequently, only the middle
case remains for all points on the sub-path from v̄i to ūi and the claim follows. ut

Using Lemma 1, we deal with the three cases as follows.

Left Case and Right Case In the left case, every shortest path from q ∈ Pi to
any point outside of Pi leaves Pi through u. Hence, the farthest point from q on
Pj with j 6= i is the farthest point ūj from u on Pj . The distance from q to q̄j is

d(q, q̄j) = d(q, u)+d(u, ūj) = wqu+
w1+wj

2 . On the other hand, the farthest point
q̄i from q on Pi itself moves from ūi to v as q moves from u to v̄i maintaining a
distance of d(q, q̄i) = w1+wi

2 . Therefore, the farthest distance from q in N is

d̄(q) = max

[
w1 + wi

2
, max
j 6=i

(
wqu +

w1 + wj
2

)]

=





wqu +
w1 + wp

2
if i 6= p

wqu +
w1 + wp−1

2
if i = p and

wp − wp−1

2
≤ wqu

w1 + wp
2

if i = p and
wp − wp−1

2
≥ wqu

.

The first case means that, for queries from anywhere other than Pp, the farthest
points lie on the u-v-paths of maximum length. The second and third case distin-
guish whether Pp contains a farthest point for queries from Pp itself. Accordingly,
we answer a farthest point query from q ∈ Pi in the left case as follows.

– If i 6= p, we report all ūj where wj = wp and i 6= j.

– If i = p and
wp−wp−1

2 ≤ wqu, we report all ūj where wj = wp−1 and j 6= p.

– If i = p and
wp−wp−1

2 ≥ wqu, we report the farthest point q̄p from q on Pp
using a binary search along the sub-path of Pp from ūp to v.

The overlap between the last two cases covers the boundary case when a query
from Pp yields a farthest point on Pp itself and farthest points on other u-v-paths.

Swapping u and v above yields the procedure for the right case. Thus, an-
swering farthest-point queries takes O(k + log n) time in the left and right cases.

5

Middle Case In the middle case, there are no farthest points from q on Pi itself
and every path Pj with j 6= i contains points that we reach from q via u as well
as points that we reach from q via v. Let q̄j be the farthest point from q along the

cycle formed by Pj and Pi. Since the distance from q to q̄j is d(q, q̄j) =
wi+wj

2 ,
the farthest distance d̄(q) from q in N is

d̄(q) = max
j 6=i

(
wi + wj

2

)
=





wi + wp
2

if i 6= p

wp + wp−1

2
if i = p

.

The first case applies for queries from anywhere other than Pp who have their
farthest points on the longest u-v-paths, i.e., on the paths Pj with wj = wp.
The second case applies for queries from Pp who have their farthest points on
the second longest u-v-paths, i.e., on the paths Pj with wj = wp−1. Using binary
search, we can answer a farthest point query from q ∈ Pi in the middle case by
reporting the points q̄j on those k paths Pj that contain farthest points from q.
To improve the resulting query time of O(k log n), we take a closer look at the
position of q̄j relative to ūj and v̄j . As illustrated in Fig. 4, the farthest point q̄j
from q ∈ Pi along Pj moves from ūj to v̄j as q moves from v̄i to ūi.

Lemma 2. Let N be a parallel-path network with terminals u and v. For any
point x ∈ N , let x̄i denote the farthest point from x along the u-v-path Pi.

(i) The sub-path from v̄i to ūi has length d(u, v).
(ii) For every point q along the sub-path from v̄i to ūi, the sub-path from v̄i to q

has the same length as the sub-path from ūj to q̄j for any j 6= i.

Proof. We have wuv̄i = wvūi
for every path Pi, since

wuv̄i + wv̄iūi
= wuūi

=
d(u, v) + wi

2
= wvv̄i = wvūi

+ wūiv̄i .

The above implies the first claim, since adding a nutritious zero yields

wv̄iūi
= wv̄iūi

+(wuv̄i−wvūi
) = d(u, ūi)−wvūi

= d(u, v)+wvūi
−wvūi

= d(u, v) .

For the second claim, we compare the length of the shortest path from q to
q̄j via v with the one via u. By studying Fig. 4, we obtain the following.

d(q, q̄j) = wqv̄i + wv̄iu + wuv̄j + wv̄j ūj − wq̄j ūj (1)

d(q, q̄j) = wq̄j ūj + wvūj + wvūi + wv̄iūi − wqv̄i (2)

We generate nutritious zeros from the identities wuv̄i = wvūi
, wuv̄j = wvūj

, and
wūiv̄i = d(u, v) = wūj v̄j . Rearranging terms yields the second claim, as

2wqv̄i = 2wqv̄i +

=0︷ ︸︸ ︷
wv̄iu − wvūi +

=0︷ ︸︸ ︷
wuv̄j − wvūj +

=0︷ ︸︸ ︷
wv̄j ūj − wv̄iūi +2(

=0︷ ︸︸ ︷
wq̄j ūj − wq̄j ūj)

(1)
= d(q, q̄j)−

[
wq̄j ūj

+ wvūj
+ wvūi

+ wv̄iūi
− wqv̄i

]
+ 2wq̄j ūj

(2)
= d(q, q̄j)− d(q, q̄j) + 2wq̄j ūj

= 2wq̄j ūj
. ut

6

u v

q̄j

q
v̄i

v̄j
ūj

ūi

Fig. 4. The positions of the points
along the cycle Pi ∪ Pj in Lemma 2.

Using Lemma 2, we interpret the searches
for q̄j on the sub-path from v̄j to ūj , as a
single search with a common key q̄ in mul-
tiple lists (the v̄i-ūi-sub-paths) of compara-
ble search keys (the vertices along these sub-
paths). Using O(n) time, we construct a frac-
tional cascading data structure [7] supporting
predecessor queries on the sub-paths from v̄j
to ūj for those paths Pj where wj = wp−1.6

We answer a farthest-point query from
q ∈ Pi as follows. If i 6= p, we locate and
report q̄p along Pp in O(log n) time. If i = p

or wp = wp−1, the remaining farthest points from q are the q̄j where j 6= i and
wj = wp−1; we report them in O(k + log n) time using the fractional cascading
data structure. This query might report a point on Pi, which would be q̄i for
queries from outside Pi. For queries from within Pi, we omit this artifact.

Theorem 1. Let N be a parallel-path network with n vertices. There is a data
structure with O(n) size and O(n) construction time supporting O(k+log n)-time
farthest-point queries on N , where k is the number of farthest points.

3 Bead-Chain Networks

a1

b1

a2

b2

a3
b3

a4

b4

Fig. 5. A bead-chain with four arcs
(colored) around its cycle (black).

A bead-chain network consists of a main cycle
with attached arcs so that each arc returns
to the cycle before the next one begins. An
example is depicted in Fig. 5. Bead-chains are
series-parallel networks where we first subdi-
vide a cycle using series operations, then we
apply at most one parallel operation to each
edge of this cycle followed by series operations
that further subdivide the arcs and cycle.

Consider a bead-chain network N with
main cycle C and arcs α1, . . . , αs. Let ai and
bi be the vertices connecting C with the i-th
arc. Without loss of generality, the path βi
from ai to bi along C is at most as long as αi.
Otherwise, we swap the roles of αi and βi.

We first study the shape of the function d̂i(x) that describes the farthest
distance from points along the main cycle to any point on the i-th arc, i.e.,
d̂i(x) = maxy∈αi d(x, y). When considering only the i-th arc, we have a parallel-
path network with three paths. Let x̄ denote the farthest point from x ∈ C on C
itself and let x̂i denote the farthest point from x on arc αi. From the analysis in
the previous section, we know that d̄i(x) has the shape depicted in Fig. 6.

6 We consider paths of length wp−1 instead of wp, because we treat Pp separately.

7

ai

bi

āi

b̄i

b̂i

âix

x̂i

(a) The main cycle with αi (blue).

ai bi āi b̄i
ai

d(ai, âi)

d(āi, b̂i)

(b) The distance to x̂i.

Fig. 6. The shape of the function d̂i(x) describing the distance from x ∈ C to the
farthest point x̂i from x among the points on the i-th arc αi.

When walking along the main cycle, we encounter ai, bi, āi, and b̄i in this
order or its reverse. From ai to bi, the point x̂i moves from âi to b̂i maintaining
a constant distance. From bi to āi, the point x̂i stays at b̂i increasing in distance.
From āi to b̄i, the point x̂i moves from b̂i back to âi, again, at a constant distance.
Finally, x̂i stays at âi with decreasing distance when x moves from b̄i to ai.

Since the farthest distance changes at the same rate when we move towards
or away from the current farthest-point, the increasing and decreasing segments
of any two functions d̂i and d̂j have the same slope except for their sign.

The height of the upper envelope D̂ of the functions d̂1, . . . , d̂s at q ∈ C
indicates the farthest distance from q to any point on the arcs and the i-th arc
contains a farthest point from q when d̂i coincides with D̂ at q. We construct D̂
in linear time using the shape of the functions d̂1, . . . , d̂s described above.

We need to consider an arc separately from the other arcs when it is too long.
We call an arc αi overlong when the path βi is longer then remainder γi of the
main cycle. Figure 7 illustrates an overlong arc αi with its function d̂i.

ai

bi

b̄i

āi

âi

b̂i

(a) An overlong arc (blue).

ai b̄i āi bi ai

d(ai, âi)

d(āi, b̂i)

(b) The farthest distance to an overlong arc.

Fig. 7. An overlong arc αi (blue) in a bead-chain network where βi (green) is longer
then the remaining cycle γi (orange). The shape of d̂i is the same as for non-overlong
arcs, but its high plateau may horizontally overlap with the high plateau of other arcs.

8

Lemma 3. Every bead-chain network N has at most one overlong arc and the
functions d̂1, . . . , d̂s of the remaining arcs α1, . . . , αs satisfy the following.

(i) The high plateaus of d̂1, . . . , d̂s appear in the order as their arcs α1, . . . , αs
appear along the cycle and no two high plateaus overlap horizontally.

(ii) The low plateaus of d̂1, . . . , d̂s appear in the order as their arcs α1, . . . , αs
appear along the cycle and no two low plateaus overlap horizontally.

Proof. The existence of two overlong arcs αi and αk leads to the contradiction
wβi

> wγi > wβk
> wγk > wβi

, since γi contains βk and γk contains βi.
Let α1, . . . , αs be the non-overlong arcs of N as they appear along the cycle.

For every arc αi, with i = 1, . . . , s, the farthest points āi and b̄i from the endpoints
ai and bi of αi appear along γi. Therefore, the points ā1, b̄1, ā2, b̄2, . . . , ās, and b̄s
appear in this order along the cycle C. Claim (i) follows, since the high plateau

of d̂i lies between āi and b̄i. Claim (ii) follows, since any non-overlong arc αi has
its low plateau along βi and since β1, . . . , βs are separate by definition. ut

As suggested by Lemma 3, we incrementally construct the upper envelope of
the functions d̂i corresponding to non-overlong arcs and treat a potential overlong
arc separately. When performing a farthest-point query from the cycle, we first
determine the farthest distance to the overlong arc and the farthest distance to
all other arcs. Depending on the answer we report farthest points accordingly.

Lemma 4. Let α1, . . . , αs be the arcs of a bead-chain that has no overlong arc.
Computing the upper envelope D̂ of d̂1, . . . , d̂s takes O(s) time.

Proof. We proceed in two passes: in the first pass, we consider only the high
plateaus and non-constant segments of d̂1, . . . , d̂s; the respective low plateaus are
replaced by extending the corresponding non-constant segments. In the second
pass, we traverse the partial upper envelope from the first pass again and compare
it with the previously omitted low plateaus, thereby constructing D̂.

Let d̂′i be the function resulting from replacing the low plateau of d̂i by

extending its non-constant segments and let D̂′i be the upper envelope of d̂′1, . . . , d̂
′
i.

In the first pass, we construct D̂′s incrementally. Assume we have D̂′i−1 and would

like to obtain D̂′i by inserting d̂′i into D̂′i−1, as illustrated in Fig. 8. We perform

this insertion by walking from āi—the left endpoint of the high plateau of d̂i—in
both directions updating the current upper envelope D̂i−1. Locating āi takes
constant time, since āi is the first bending point to the right of b̄i−1.

There is no more than one increasing segment of D̂′i−1 between āi and b̄i.
Assume, for a contradiction that there are two increasing segments s1 and s2

between āi and b̄i. Neither of them has their higher endpoint between āi and b̄i,
since there would be two horizontally overlapping high plateaus, otherwise. Since
s1 and s2 have the same slope, only one of them can be part of the upper envelope.7

Analogously, the same holds for decreasing segments. Therefore, inserting the
high plateau of d̂i into the upper envelope D̂′i−1 takes constant time.

7 When the segments s1 and s2 happen to overlap, we consider only the segment of
the arc distance function that was inserted first to be part of the upper envelope.

9

āi b̄i
ai bi

Fig. 8. An incremental step where we construct D̂′i from D̂′i−1 (black) and d̂′i (orange).

The treatment of the low plateau of d̂i (dashed) is deferred to the second pass.

If the decreasing segment of d̂′i appears along D̂′i at all, then it appears at b̄i.

We update the previous upper envelope D̂′i−1 by walking from b̄i towards ai until

the decreasing segment of d̂′i vanishes below D̂′i−1. We charge the costs for this

walk to the segments that are removed from the previous upper envelope D̂′i−1.

We proceed in the same fashion with the increasing segment of d̂′i by walking
from āi towards bi. Each non-constant segment appears at most once along any
intermediate upper envelope and is never considered again after its removal.
Therefore, the total cost for inserting all non-constant segments—and, thus, the
total cost of constructing D̂′s—amounts to O(s).

In the second pass, we construct the desired upper envelope D̂ from D̂′s. Since
no two low plateaus overlap horizontally, we simply walk along D̂′s comparing
its height to the height of the current low plateau, if any. This takes O(s) time,
since D̂′s has O(s) bending points and since there are s low plateaus. ut

To answer a farthest-point query from q ∈ C, we need to find its farthest arcs,
i.e., the arcs containing farthest points from q. Suppose each point along the main
cycle C has exactly one farthest arc. Then we could subdivide C depending on
which arc is farthest and answer a farthest-arc query by identifying the function
among d̂1, . . . , d̂s that defines the upper envelope D̂ on the sub-edge containing q.
On the other hand, there could be multiple farthest arcs when several functions
among d̂1, . . . , d̂s have overlapping increasing or decreasing segments. In this case,
we could store the at most two farthest arcs from plateaus directly with the
corresponding segments of D̂. However, storing the farthest arcs from increasing
and decreasing segments directly would lead to a quadratic construction time.
Instead, we rely on the following observation. An arc α is considered relevant
when there exists some point x ∈ C such that α is a farthest arc for x and α is
considered irrelevant when there is no such point on the main cycle.

10

Lemma 5. Let αi, αj, and αk be arcs that appear in this order in a bead-chain
without overlong arc. The arc αj is irrelevant when αi and αk are farthest arcs

from some query point q such that d̂i and d̂k are both decreasing/increasing at q.

Proof. As illustrated in Fig. 9, q lies between ai and b̄k, since d̂i and d̂k are both
decreasing at q. Hence, q lies between aj and b̄j , i.e., d̂j is decreasing at q, as well.

We show d̂j(x) < d̂i(x) for all x ∈ C, which implies that αj is irrelevant.

ai

bi
aj bj

ak

bk

q

b̄k

āk

b̄j
āj

b̄i

āi

αi

αj

αk

(a) The three arcs.

q ai bi aj bj āi b̄i āj b̄j
q

(b) The comparison of d̂i (blue) and d̂j (green).

Fig. 9. The constellation from Lemma 5, where αi and αk are farthest arcs from q where
the farthest distances decreases as q moves in clockwise direction (a). A comparison of
the arc distance functions d̂i and d̂j reveals that αj is irrelevant in this case (b).

Consider the difference ∆(x) := d̂i(x) − d̂j(x). We have ∆(ai) = ∆(q) > 0,

as d̂i and d̂j are decreasing with the same slope from q to ai. We observe that

∆(bi) = ∆(ai) + d(ai, bi), as d̂i remains constant from ai to bi while d̂j decreases.

We have ∆(aj) = ∆(bi)+2d(bi, aj), as d̂i increases from bi to aj while d̂j decreases.
We continue in this fashion and obtain the following description of ∆.

∆(ai) = ∆(q) ∆(āi) = ∆(bj)

∆(bi) = ∆(ai) + d(ai, bi) ∆(b̄i) = ∆(āi)− d(āi, b̄i)

∆(aj) = ∆(bi) + 2d(bi, aj) ∆(āj) = ∆(b̄i)− 2d(b̄i, āj)

∆(bj) = ∆(aj) + d(aj , bj) ∆(b̄j) = ∆(āj)− d(āj , b̄j)

The claim follows as the above implies ∆(x) ≥ ∆(q) > 0 for all x ∈ C, due to the
symmetries d(ai, bi) = d(āi, b̄i), d(bi, aj) = d(b̄i, āj), and d(aj , bj) = d(āj , b̄j). ut

Corollary 1. Let q be a point on the cycle of a bead-chain with no overlong arc.
The farthest arcs from q that correspond to decreasing/increasing segments of D̂
form one consecutive sub-list of the circular list of relevant arcs.

11

Using Corollary 1, we answer farthest-arc queries from the main cycle of a
bead-chain network without overlong arc as follows. When D̂ has a plateau at the
query point q, we report the at most two farthest arcs stored with this plateau.
When D̂ has an increasing/decreasing segment at q, we first report the farthest
arc α that is stored directly with this segment. We report the remaining farthest
arcs by cycling through the circular list of relevant arcs starting from α in both
directions until we reach a relevant arc that is no longer farthest from q.

Theorem 2. Let N be a bead-chain network with n vertices. There is a data
structure with O(n) size and O(n) construction time supporting O(k+log n)-time
farthest-point queries on N , where k is the number of farthest points.

Proof. Let N be a bead-chain network with main cycle C and arcs α, α1, . . . , αs
where only α may be overlong. Let N \α be the network obtained by the removing
the potentially overlong arc from N , i.e., N \ α := C ∪ α1 ∪ · · · ∪ αs.

We support queries from the main cycle C by constructing (i) a data structure
for queries in the parallel-path network α∪C and (ii) a data structure for queries
in the bead-chain network N \ α that has no overlong arc. This construction
takes linear time, due to Theorem 1 and Lemma 4. For a farthest-point query
from q ∈ C, we perform a farthest-distance query from q in α ∪ C and in N \ α.
Depending on which of these two queries reported the largest farthest distance,
we conduct the appropriate farthest-point queries in α ∪ C or in N \ α.

We support queries from arc αi (from α) by combining (i) a data structure for
farthest-point queries in the cycle αi ∪ βi (in α ∪C), with (ii) the data structure
supporting farthest-point queries in N from the cycle C described above, and
(iii) the partial upper envelope D̂′ from the proof of Lemma 4.8

We begin a query from q ∈ αi with the corresponding query from q in αi ∪ βi.
After that, we report any farthest points from q in N outside of αi based on the
position of q along αi: When q lies between ai and b̂i (left case), we report the
farthest points from q in N \ αi with a query from ai in N . When q lies between
âi and bi (right case), we report the farthest points from q in N \ αi with a

query from bi in N . When q lies between b̂i and âi (middle case), we attempt a

query from the unique point q′ on βi with d(b̂i, q) = d(ai, q). Since q′ preserves
the relative position from q on αi, the query from q′ yields the farthest points
from q in N outside of αi—except when q′ has only a single farthest point on αi.
This occurs when D̂ has the low plateau of d̂i at q′. Fortunately, we are able to
recover the correct answer, since the upper envelope of d̂1, . . . , d̂i−1, d̂i+1, . . . , d̂s
coincides at q′ with the partial upper envelope D̂′ from the proof of Lemma 4.

Our data structure has O(n) size and construction time, since each vertex
appears only in a constant number of sub-structures each of which have linear
construction time. Every farthest-point query takes O(k + log n) time, because
each query consists of a constant number of O(log n)-time farthest-distance
queries followed by a constant number of farthest point queries only in those
sub-structures that actually contain farthest points from the original query. ut
8 Recall that D̂′ was the upper envelope of the functions that result from replacing

the low plateaus of d̂1, . . . , d̂s by extending their increasing/decreasing segments.

12

4 Abacus Networks

An abacus is a network A consisting of a parallel-path network N with arcs
attached to its parallel paths, as illustrated in Fig. 10. Let P1, . . . , Pp be the
parallel paths of N and let Bi be the i-th parallel path with attached arcs.

u v

Fig. 10. An abacus with the arcs (colored) attached to its parallel-path network (black).

We split farthest-point queries in an abacus into an inward query and an
outward query : an inward query considers farthest points on the bead-chain
containing the query point; an outward query considers farthest points on the
remaining bead-chains. We first perform the farthest distance version of inward
and outward queries before reporting farthest points where appropriate. Figure 11
illustrates how we treat inward and outward queries in the following.

For an inward query from q on Bi, we construct the bead-chain network B′i
consisting of Bi with an additional edge from u to v of weight d(u, v), as illustrated
in Fig. 11a. Since B′i preserves distances from A, the farthest points from q ∈ B′i
are the farthest points from q among the points on Bi in A.

For outward queries in an abacus, we distinguish the same three cases as
for parallel-path networks: we are in the left case when every shortest path tree
reaches u before v, we are in the right case when every shortest path tree reaches
v before u, and we are in the middle case otherwise. Analogously to Lemma 1,
the left case applies when we are within distance d(u, v̄i) from u and the right
case applies when we are within distance d(v, ūi) from v.

For an outward query from q ∈ Bi in the left case, q has the same farthest
points as u outside of Bi. During the construction of the networks B′1, . . . , B

′
p

for inward queries, we determine a list Lj of the farthest points from u in B′j .
Similarly to our treatment of the left case for parallel-path networks, we only
keep the list achieving the highest farthest distance and the lists achieving the
second highest farthest distance. With this preparation, answering the query
for q amounts to reporting the entries of the appropriate lists Lj with j 6= i.

13

u

q
q̄

v

(a) An inward query.

u

v̄i
q

v

(b) The left case of an outward query.

u

ūi q

v

(c) The right case of an outward query.

u

q

v

(d) An outward query from an arc.

u

q

v

v̄ ūq̃

(e) Translating a query to the virtual edge.

u v

v̄ ūq̃

(f) Collapsing the chains.

Fig. 11. Inward (a) and outward (b–f) queries for the abacus network from Fig. 10.
Inward queries are answered in the bead-chain containing the query (a). Outward
queries in the side case are answered with queries form the terminals (b,c). Outward
queries in the middle case from arcs are translated to queries from the path (d) and
then to queries from a virtual edge (e). From the perspective of the virtual edge, we
conceptually collapse all bead-chains of the abacus to support virtual queries (f).

14

For middle case outward queries, we proceed along the following four steps:
First, we translate every outward query from an arc of Bi to an outward query
from the path Pi, i.e., we argue that it suffices to consider outward queries from
the parallel paths (Fig. 11d). Second, we translate outward queries from Pi to
outward queries from a virtual edge ẽ connecting the terminals (Fig. 11e). Third,
we speed up queries from the virtual edge by superimposing the data structures
for the bead-chains B1∪ ẽ, . . . , Bp∪ ẽ, i.e., by conceptually collapsing the parallel
chains (Fig. 11f). Finally, we recover the correct answer to the original outward
query from the answer obtained with an outward query from the virtual edge.

Lemma 6. Let α be an arc in an abacus and let β be the other path connecting
the endpoints of α. For every point q ∈ α in the middle case, there is a point
q′ ∈ β such that q′ has the same outward farthest points as q.

Proof. We continuously deform α to β maintaining the relative position of q to
the endpoints of α. The distance from q to all points in the network decreases at
the same rate, hence, the outward farthest points remain the same. ut

We introduce a virtual edge ẽ from u to v of length wp, i.e., the length of
the longest u-v-path Pp in the underlying parallel-path network, as illustrated
in Fig. 11e. Let ū be the farthest point from u on ẽ and let v̄ be the farthest
point from v on ẽ. From Lemma 2, we know that the sub-edge ūv̄ of ẽ has length
d(u, v) and, thus, the same length as the sub-path from ūi to v̄i on each parallel
path Pi. We translate an outward query from q ∈ Pi to a query from the unique
point q̃ on ẽ such that q̃ has the same distance to ū and to v̄ as q to ūi and to v̄i.

Lemma 7. For q ∈ Pi in the middle case, the farthest points from q in Pi ∪Bj
are the farthest points from q̃ in ẽ ∪Bj for every j 6= i.

Proof. We continuously elongate Pi to ẽ maintaining the relative position of q to
u and v and, thus, to v̄i and ūi. At the end of this process q coincides with q̃.
The distance from q to all points outside of Bi increases uniformly. Hence, the
outward farthest points remain the same throughout the deformation. ut

It would be too inefficient to inspect each bead-chain network Bj ∪ ẽ with
j 6= i to answer an outward query from q ∈ Pi. Instead, we first determine
the upper envelopes of the farthest-arc distances D̂1, . . . , D̂p along ẽ in each
B1 ∪ ẽ, . . . , Bp ∪ ẽ and then compute their upper envelope U1 as well as their
second level U2, i.e., the upper envelope of what remains when we remove the
segments of the upper envelope. Computing the upper envelope and the second
level takes O(n log p) time, e.g., using plane sweep. Using fractional cascading,
we support constant time jumps between corresponding segments of U1 and U2.
The resulting structure occupies O(n) space, since each of the O(n) arcs along
any bead-chain contributes at most four bending points to U1 and U2.

We answer an outward query from q ∈ Pi in the middle case by translating q
to q̃. When the segment defining U1 at q̃ is from some arc α of Bj with j 6= i,
then α contains an outward farthest point from q. When the segment defining
U1 at q̃ corresponds to an arc of Bi, then we jump down to U2, which leads us

15

to an arc containing an outward farthest point from q. We report the remaining
arcs with outward farthest points by walking q̃ along U1 and U2. In order to skip
long sequences of segments from Bi, we introduce pointers along U1 to the next
segment from another chain in either direction. Answering outward queries in
the middle case takes O(k + log n) time after O(n log p) construction time.

Theorem 3. Let N be an abacus with n vertices and p chains. There is a data
structure of size O(n) with O(n log p) construction time supporting farthest-point
queries on N in O(k + log n) time, where k is the number of farthest points.

5 Two-Terminal Series-Parallel Networks

Consider a two-terminal series-parallel network N . By undoing all possible series
operations and all possible parallel operations in alternating rounds, we reduce N
to an edge connecting its terminals and decompose N into paths that reflect its
creation history. The colors in Fig. 12 illustrate this decomposition.

Fig. 12. A two-terminal series-parallel network with colors indicating the parallel
operations in a potential creation history: starting with a single red edge, we create a
parallel yellow and a parallel blue edge. Then we subdivide the blue edge using series
operations until we create a parallel purple edge for one of the blue edges and so forth.

Lemma 8. Let N be a series-parallel network with parallelism p and serialism s.
Identifying the terminals of N and reconstructing its creation takes O(s+p) time.

Proof. Series-parallel networks are planar [8]. We maintain a series-parallel net-
work N together with its dual N∗ throughout the following reduction process
illustrated in Fig. 13. We keep two arrays d and d∗ with n entries each where d[i]
stores a list of the vertices of N with degree i and d∗[i] stores a list of the vertices
of N∗ (faces of N) with degree i. Each vertex of N and each face of N maintain
a pointers to their position in the lists to facilitate constant time deletions.

We proceed in alternating rounds where we either reverse as many series
operations or as many parallel operations as possible in each round. To reverse
series operations we delete all degree two vertices of N .

16

(a) Step 1: reverting series operations. (b) Step 2: reverting parallel operations.

(c) Step 3: reverting series operations. (d) Step 4: reverting parallel operations.

(e) Step 5: reverting series operations. (f) Step 6: reverting parallel operations.

Fig. 13. The reduction process for the two-terminal series-parallel network from Fig. 12.
In each step, we contract all degree two vertices in the primal network to revert series
operations or we contract all degree two vertices in the dual (blue) to revert parallel
operations. When reverting parallel operations, the colors indicate how we backtrack
the creation history in Fig. 12. For the sake of clarity, the dual vertex for the outer face
(blue square) is only shown in the last step where no further reduction is possible.

17

Each deletion changes the degree of two faces of N that were incident to the
removed vertex so we move these faces to their new positions in d∗. To reverse
parallel operations we proceed in the exact same fashion by removing all degree
two vertices of N∗ and updating d accordingly. We recover the creation history of
N by keeping track of when parallel edges were removed during the reversal of a
parallel operation. This reduces N to the edge connecting its terminals in O(s+p)
steps, since reversing each of the s+ p operations takes constant time. ut

Once we know the terminals u and v of N , we compute the shortest path
distances from u and from v in O(n log p) time.9 Consulting the creation history,
we determine a maximal parallel-path sub-network P of N with terminals u and
v. As illustrated in Figs. 14 and 15, every bi-connected component X of N that
is attached to some path of P between vertices a and b is again a two-terminal
series-parallel network with terminals a and b. We recurse on these bi-connected
components. When this recursion returns, we know a longest a-b-path in X and
attach an arc from a to b of this length to P . The resulting network is an abacus
A. The abaci created during the recursion form a tree T with root A. Alongside
with this decomposition we also create our data structures for the nested abaci.

The size of the resulting data structure remains O(n), since the data structure
for each nested abaci consumes space linear in the number of its vertices and
each vertex in any nested abaci can be charged to one of the series or parallel
operations required to generate the original network.

We translate a query q to a query in the abacus A; queries from a bi-connected
component X attached to P in N will be placed on the corresponding arc of
A. Whenever the query in A returns a farthest point on some arc, we cascade
the query into the corresponding nested data structure. We add shortcuts to
the abacus tree T in order to avoid cascading through too many levels of T
without encountering farthest-points from the original query. This way, answering
farthest-point queries in N takes O(k + log n) time in total.

Theorem 4. Let N be a two-terminal series-parallel network with n vertices and
parallelism p. There is a data structure of size O(n) with O(n log p) construction
time that supports O(k + log n)-time farthest-point queries from any point on N ,
where k is the number of farthest points.

6 Conclusion and Future Work

In previous work, we learned how to support farthest-point queries by exploiting
the treelike structure of cactus networks [5]. In this work, we extended the arsenal
by techniques for dealing with parallel structures, as well. In future work, we aim
to tackle more types of networks such as planar networks, k-almost trees [10],
or generalized series-parallel networks [13]. Moreover, we are also interested in
lower bounds on the construction time of data structures supporting efficient
farthest-point queries to guide our search for optimal data structures.

9 The priority queue in Dijkstra’s algorithm manages never more than p entries.

18

(a) A two-terminal series-parallel network.

(b)

(c) (d) (e)

(f) (g) (h) (i)

Fig. 14. Decomposing a two-terminal series-parallel network (a) into nested abaci. Each
involved network is two-terminal series-parallel and we mark the terminals with empty
circles. Replacing the nested structures in each involved network (b–g) yields the abacus
network shown to its right. Each colored cycle consists of the shortest path and the
longest path connecting the terminals of each nested structure X; their weighted lengths
determine the weight of the corresponding arc replacing X. This process terminates
when we reach an abacus (d, g, i), i.e., when there are no more nested structures.

19

Fig. 15. The tree of nested abaci for the two-terminal series-parallel network from
Fig. 14. The inner nodes of this tree correspond to two-terminal networks with nested
structures that are indicated with colors; the leaves correspond to abacus networks
without nested structures. A query would start at the root abacus and cascade into
nested structures when necessary. For instance, when a query at the root abacus yields
a farthest point on the blue arc and a farthest point on the red arc, we would perform
subsequent queries in the abaci stored in the left and middle child of the root.

20

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
Journal of Algorithms 12(2), 308–340 (1991)

2. Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient algorithms for center
problems in cactus networks. Theoretical Computer Science 378(3), 237 – 252 (2007)

3. Bern, M.W., Lawler, E.L., Wong, A.L.: Linear-time computation of optimal sub-
graphs of decomposable graphs. Journal of Algorithms 8(2), 216–235 (1987)

4. Bose, P., Dannies, K., De Carufel, J.L., Doell, C., Grimm, C., Maheshwari, A.,
Schirra, S., Smid, M.: Network farthest-point diagrams. Journal of Computational
Geometry 4(1), 182–211 (2013)

5. Bose, P., De Carufel, J.L., Grimm, C., Maheshwari, A., Smid, M.: Optimal data
structures for farthest-point queries in cactus networks. Journal of Graph Algorithms
and Applications 19(1), 11–41 (2015)

6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Applications, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA (1999)

7. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique.
Algorithmica 1(2), 133–162 (1986)

8. Duffin, R.J.: Topology of series-parallel networks. Journal of Mathematical Analysis
and Applications 10(2), 303–318 (1965)

9. Erwig, M.: The graph Voronoi diagram with applications. Networks 36(3), 156–163
(2000)

10. Gurevich, Y., Stockmeyer, L.J., Vishkin, U.: Solving NP-hard problems on graphs
that are almost trees and an application to facility location problems. Journal of
the ACM 31(3), 459–473 (1984)

11. Hakimi, S.L., Labbé, M., Schmeichel, E.: The Voronoi partition of a network and
its implications in location theory. ORSA Journal on Computing 4(4), 412–417
(1992)

12. Hansen, P., Labbé, M., Nicolas, B.: The continuous center set of a network. Discrete
Applied Mathematics 30(2-3), 181–195 (1991)

13. Korneyenko, N.M.: Combinatorial algorithms on a class of graphs. Discrete Applied
Mathematics 54(2-3), 215–217 (1994)

14. Okabe, A., Satoh, T., Furuta, T., Suzuki, A., Okano, K.: Generalized network
Voronoi diagrams: Concepts, computational methods, and applications. Interna-
tional Journal of Geographical Information Science 22(9), 965–994 (2008)

15. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial
problems on series-parallel graphs. Journal of the ACM 29(3), 623–641 (1982)

21

	Efficient Farthest-Point Queries in Two-Terminal Series-Parallel Networks

