Triangulating planar graphs while keeping the pathwidth small *

Therese Biedl
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 1A2, Canada. biedl@uwaterloo.ca

Abstract

Any simple planar graph can be triangulated, i.e., we can add edges to it, without adding multi-edges, such that the result is planar and all faces are triangles. In this paper, we study the problem of triangulating a planar graph without increasing the pathwidth by much. We show that if a planar graph has pathwidth k, then we can triangulate it so that the resulting graph has pathwidth $O(k)$ (where the factors are 1,8 and 16 for 3 -connected, 2 -connected and arbitrary graphs). With similar techniques, we also show that any outer-planar graph of pathwidth k can be turned into a maximal outer-planar graph of pathwidth at most $4 k+4$. The previously best known result here was $16 k+15$.

1 Introduction

Let $G=(V, E)$ be an undirected simple graph that is planar, i.e., it has a crossing-free drawing in the plane. G is called triangulated if all maximal regions not containing the drawing are incident to three edges of G. (More detailed definitions will be given in Section 2, Any planar simple graph with $n \geq 3$ vertices can be triangulated by adding edges without destroying planarity.

In this paper, we study the problem of triangulating a planar graph G such that the pathwidth of the resulting graph is proportional to the pathwidth of G. Here, the pathwidth $p w(G)$ of a graph G is a well-known graph parameter (defined formally in Section 2). Graphs of small pathwidth have many applications. Many graph problems can be solved in polynomial time if the pathwidth is constant. (See e.g. 7].) The pathwidth also serves as lower bound on the height of planar graph drawings [9. Vice versa, some planar graphs G can be drawn with height $O(p w(G))$, notably trees [15] and 2-connected outer-planar graphs [3].

The latter paper raised the question whether any outer-planar graph can be made 2-connected by adding edges without increasing the pathwidth much. (For if so, then all outer-planar graphs can be drawn with height $O(p w(G))$.) This question was answered in the affirmative by Babu et al. 1], who showed that any outer-planar graph G can be made into a 2-connected outer-planar graph G^{\prime} with $p w\left(G^{\prime}\right) \leq 16 p w(G)+15$.

[^0]Our results: In this paper, we improve on the result by Babu et al. and show that we can add edges to any outer-planar graph G such that the result is a 2-connected outer-planar graph G^{\prime} with $p w\left(G^{\prime}\right) \leq 4 p w(G)+1$. But our technique is much more general. Rather than working with outer-planar graphs, we prove that any planar 2-connected graph can be triangulated without increasing the pathwidth if we allow multi-edges. We can also remove multi-edges; this increases the pathwidth at most 8 -fold. With much the same technique we can also handle graphs with cut-vertices and make them 2-connected while increasing the pathwidth (roughly) 16 -fold. Outer-planar graphs can be handled as special cases and give an even smaller increase in the pathwidth.
Related results: Many papers have dealt with how to triangulate a planar graph under some additional constraint. For example, any 2-connected planar graph can be triangulated so that the result is 4 -connected (except for wheelgraphs) [2]. Any k-outer-planar graph can be triangulated so that the result is $(k+1)$-outer-planar 4]. Any planar graph G with treewidth $t w(G)$ can be triangulated so that the result has treewidth $\max \{3, t w(G)\}$ 6]. Triangulating planar graphs has also been studied while minimizing the maximum degree [13], and relates to planar graph connectivity-augmentation problems (see e.g. [12] and the references therein) since any triangulated graph is 3-connected.

2 Background

Let $G=(V, E)$ be a graph with at least 3 vertices. G is called planar if it can be drawn without crossing in the plane. A crossing-free drawing Γ of G defines a cyclic order of edges at a vertex v by enumerating them in clockwise order around v; we call such a set of orders a planar embedding of G. The maximal regions of $\mathbb{R}^{2}-\Gamma$ are called faces of the drawing; they can be read from the planar embedding by computing the facial circuit, i.e., the order of vertices and edges encountered while walking around the face in clockwise order. A graph G is called outer-planar if $G \cup\left\{z^{*}\right\}$ is planar, where z^{*} is a newly-added universal vertex adjacent to all vertices of G.

A loop is an edge (v, v) for some vertex. A multi-edge is an edge (v, w) with multiplicity $\mu \geq 2$, i.e., there exist μ copies of (v, w). A graph is called simple if it has neither loops nor multi-edges. All input graphs in this paper are required to be simple, but we sometimes add multi-edges in intermediate steps. (We never add loops.) A multi-graph is a graph without loops (but possibly with multiedges). The underlying simple graph of a multi-graph is obtained by deleting all but one copy of each multi-edge.
Connectivity: A multi-graph G is called connected if we can go from any vertex v to any vertex w while walking along edges of G. The connected components of a multi-graph are the maximal subgraphs that are connected. A multi-graph G is called k-connected if it remains connected even after deleting $k-1$ arbitrary vertices. If G is connected but not 2 -connected, then G has a cut-vertex, i.e., a vertex v such that $G-v$ is not connected. A graph that is 2 -connected, but not

3-connected, has a cutting pair, i.e., a pair of vertices v, w such that $G-\{v, w\}$ is not connected.

If S is a set of vertices, then let $C_{1}^{\prime}, \ldots, C_{L}^{\prime}$ be the connected components of $G-S(L=1$ if S was not a cut-set). Define for $i=1, \ldots, L$ the cut-component C_{i} of S to consist of C_{i}^{\prime}, the edges from C_{i}^{\prime} to S, and a complete graph added between the vertices of S. Define int $C_{i}:=C_{i}^{\prime}=C_{i}-S$ to be the interior of C_{i}.
Triangulating: A face (in a planar graph in some planar embedding) is called a triangle if its facial circuit contains three edges. A multi-graph G is called multitriangulated if it has a planar embedding such that all faces of G are triangles. Such a graph may well have multi-edges, but duplicate copies of an edge must use different routes (no facial circuit may consist of two copies of the same edge). A graph G is called triangulated if it is multi-triangulated and simple. A triangulated graph is 3 -connected (and hence has a unique planar embedding, up to reversal of all edge orders). A multi-triangulated graph G need not be 3connected, but it is 2-connected since $n \geq 3$ and G has no loops. One can show (see [5]) that the cutting pairs of G correspond to multi-edges as follows: $\{u, v\}$ is a cutting pair that has L cut-components if and only if (u, v) is a multi-edge with multiplicity L. Further, G has at least one edge that is not a multi-edge.

The idea of triangulating is to add edges to a graph until it is triangulated. More formally, multi-triangulating a planar multi-graph G means adding edges to G so that the result is multi-triangulated. Triangulating a planar multi-graph G means to add edges to the underlying simple graph of G such that the result is triangulated. In particular, this operation is allowed to delete copies of a multiedge from G.
Pathwidth: Let G be a multi-graph. Let X_{1}, \ldots, X_{N} be sets of vertices of G; we call these bags. We say that X_{1}, \ldots, X_{N} is a path decomposition \mathcal{P} of G if

- every vertex appears in at least one bag,
- for every edge (u, v) in G, at least one bag X_{i} contains both u and v, and
- for every vertex v in G, the bags containing v form an interval. Put differently, if $v \in X_{i_{1}}$ and $v \in X_{i_{2}}$ then also $v \in X_{i}$ for all $i_{1}<i<i_{2}$.

Bags naturally imply an order; we write $X_{i} \preceq X_{j}$ if $i \leq j$ and $X_{i} \prec X_{j}$ if $i<j$. The bag-size of such a path decomposition is $\max \left|X_{i}\right|$. The width of such a path decomposition is max $\left|X_{i}\right|-1$. A graph is said to have pathwidth at most k if it has a path decomposition of width k.

3 3-connected graphs

We first show how to multi-triangulate 2-connected graphs (which also triangulates 3 -connected graphs).

Lemma 1. Let G be a planar 2-connected multi-graph with a planar embedding for which any facial circuit has at least 3 edges. Then we can multi-triangulate
G without increasing the pathwidth and without changing the planar embedding.

Proof. ${ }^{1}$ Fix a path decomposition \mathcal{P} of G that has width $p w(G)$. Let G^{+}be the graph induced by \mathcal{P}, i.e., G^{+}has the same vertices as G, but an edge (v, w) for any pair of vertices that occur in a common bag. By properties of a path decomposition G^{+}is an interval-graph, therefore chordal, therefore any simple cycle C of length ≥ 4 has a chord (an edge between two non-consecutive vertices of C). See Golumbic 11 for details of these concepts.

Let f be any facial circuit of G with 4 or more edges on it. By 2-connectivity f is a simple cycle, and hence G^{+}contains a chord of C. Add this chord to G, routing it inside f. The resulting graph is still planar and 2 -connected and all facial circuits have at least 3 edges, so repeat until G is multi-triangulated.

Our problem was motivated by planar graph drawing applications, where often one starts by triangulating the planar graph (or adding edges to the outerplanar graph to make it maximal outer-planar). For these applications, multiedges are a problem. For example usually one triangulates so that one can use the canonical ordering [10] or a Schnyder wood [14], and these only exist for simple triangulated planar graphs. Hence one wonders whether the same lemma holds without allowing multi-edges. Thus, given a planar 2-connected graph, can we triangulate it without increasing the pathwidth? This turns out to be false. Consider a 4-cycle, which has pathwidth 2 . The only way to triangulate a 4 -cycle without multi-edges is to turn it in K_{4}, which has pathwidth 3 . However, if G was already 3 -connected, then no multi-edges will happen.

Corollary 1. Let G be a 3-connected simple planar graph with $n \geq 3$. Then we can triangulate G without increasing the pathwidth.

Proof. Since G is simple, any face has at least 3 edges. Apply the previous lemma to get G^{\prime}. Adding edges cannot decrease connectivity, so G^{\prime} has no cutting pairs. Since multi-edges in multi-triangulated graphs correspond to cutting pairs, hence G^{\prime} is simple.

4 2-connected graphs

We already know how to multi-triangulate 2-connected planar graphs with Lemma 1 . The hard part, done in this section, is how to convert such a multi-triangulated graph into a triangulated one (i.e., remove the multi-edges and replace them with others) without increasing the pathwidth much. We state the required increase in terms of another parameter, c, because this will help to obtain a smaller bound for outer-planar graphs later.

Lemma 2. Any multi-triangulated graph G can be triangulated, after possibly changing the planar embedding, such that the resulting graph G^{\prime} has pathwidth $p w\left(G^{\prime}\right) \leq 2 p w(G)+1+2 c$.

Here c is the maximum number of cutting pairs that can exist in one bag, i.e., for any path decomposition \mathcal{P} of width $p w(G)$ and any bag X_{i} of \mathcal{P} there are at most c cutting pairs $\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{c}, v_{c}\right\}$ such that $\left\{u_{1}, v_{1}, \ldots, u_{c}, v_{c}\right\} \subseteq X_{i}$.

[^1]The rest of this section is devoted to the proof of this lemma. We first give an outline of the proof. We add $\left|X_{i}\right|+2 c$ "tokens" to each bag X_{i} of \mathcal{P}; these are place-holders for vertices that need to be added to bags later when adding edges. These tokens are then redistributed so that in each bag X_{i} we have 2 tokens per cutting pair $\{u, v\} \subseteq X_{i}$, and one token for each cut-component of $\{u, v\}$ that "intersects" X_{i} in some sense. We then can read from the path-decomposition how to re-arrange the planar embedding such that we can replace a copy of a multi-edge by a new edge in such a way that we use up only "few" tokens. In particular, the above invariant on what tokens exist in bags continues to hold. Repeating this until no multi-edges are left then gives the desired graph G^{\prime}. Since we had $\left|X_{i}\right|+2 c$ tokens, the new bag-size is at most $2\left|X_{i}\right|+2 c$, and hence $p w\left(G^{\prime}\right) \leq(2(p w(G)+1)+2 c)-1=2 p w(G)+1+2 c$.

For the detailed proof, fix one planar embedding of G such that all faces are triangles. (We later change this embedding, but all faces will continue to be triangles.) Fix one path decomposition \mathcal{P} of G of width $p w(G)$.
Assigning tokens: We assign tokens to a bag X_{i} of \mathcal{P} as follows: (1) Add one token to X_{i} for each vertex v in X_{i}; this is the vertex-token of v. (2) Add two tokens to X_{i} for every cutting pair $\{u, v\}$ with $\{u, v\} \subseteq X_{i}$; these are the cutting-pair tokens, or the tokens of $\{u, v\}$.
Peripheral pairs: Let $\{u, v\}$ be a cutting pair, and let C_{0}, \ldots, C_{L} be its cut components. One can show [5] that for $i \in\{0, \ldots, L\}$ the edges from v to int C_{i} occur consecutively in the clockwise order of edges around v, surrounded by two copies of edge (u, v). See Figure 1 for an illustration. Let b_{i}^{ℓ} and b_{i}^{r} be the first and last neighbor of v within this interval of edges to $\operatorname{int}\left(C_{i}\right)$. We call $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$ the peripheral pair of cut-component C_{i}. Notice that $b_{i}^{\ell}=b_{i}^{r}$ if $\operatorname{deg}\left(b_{i}^{\ell}\right)=2$ or $\left(b_{i}^{\ell}, v\right)$ is a multi-edge, but we use the term "pair" even then for ease of wording.

Figure 1. A multi-triangulated graph with a cutting pair $\{u, v\}$ that has four cutcomponents. Dotted red lines are paths assigned to peripheral pairs as in Lemma 3 We can add edge $\left(b_{1}^{r}, b_{3}^{r}\right)$ if we swap C_{2} and C_{3} and reverse C_{3}.

Observation 1 Let G be a multi-triangulated graph that has a cutting pair $\{u, v\}$. Let C_{i} and C_{j} be two different cut-components of $\{u, v\}$. For any choice of $\alpha, \beta \in\{\ell, r\}$, deleting one copy of (u, v) and adding $\left(b_{i}^{\alpha}, b_{j}^{\beta}\right)$ results in a multitriangulated graph (after possibly changing the planar embedding).

Proof. This follows from the results in [8]. In a nutshell, we can reverse and swap cut-components until b_{i}^{α} and b_{j}^{β} both face one copy of (u, v). Deleting this copy gives a face with 4 edges; inserting edge $\left(b_{i}^{\alpha}, b_{j}^{\beta}\right)$ into this face gives a planar graph where all faces are triangles.

Bag-intervals: Let $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$ be the peripheral-pair of a cut-component C_{i} of a cutting pair $\{u, v\}$. Since G is multi-triangulated, $\left\{u, v, b_{i}^{\alpha}\right\}$ forms a triangle for $\alpha \in\{\ell, r\}$. By the properties of the path decomposition there must exist at least one bag that contains all three vertices. Thus let $X\left(b_{i}^{\alpha}\right)$ be a bag containing $\left\{u, v, b_{i}^{\alpha}\right\}$; choose an arbitrary one if there is more than one. So far the superscripts ℓ and r for $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$ effectively meant "one" and "the other", since we can reverse the planar embedding of cut-component C_{i}. We now fix the superscripts such that $X\left(b_{i}^{\ell}\right) \preceq X\left(b_{i}^{r}\right)$, i.e., the bag of b_{i}^{ℓ} is left of the bag of b_{i}^{r}. The left-open set of bags $\left(X\left(b_{i}^{\ell}\right), X\left(b_{i}^{r}\right)\right]:=\left\{X: X\left(b_{i}^{\ell}\right) \prec X \preceq X\left(b_{i}^{r}\right)\right\}$ is called the bag-interval of peripheral pair $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$. Notice that the bag-interval is empty if $X\left(b_{i}^{\ell}\right)=X\left(b_{i}^{r}\right)$; this will not pose problems.
Child-peripheral-pairs: So far all cut-components at a cutting pair have been treated equally. For token-accounting-purposes, we introduce a hierarchy among them. Fix one edge e of G that is not a multi-edge. For each cutting pair $\{u, v\}$ with cut-components C_{0}, \ldots, C_{L}, the parent-component of $\{u, v\}$ is the one that contains edge e, while all other cut-components are called child-components. Correspondingly we call a peripheral-pair of $\{u, v\}$ a child-peripheral-pair if it belongs to a child-component of $\{u, v\}$.
Redistributing tokens: Let \mathcal{B} be the union, over all cutting pairs $\{u, v\}$, of all the child-peripheral-pairs of $\{u, v\}$. We want to redistribute vertex-tokens to child-peripheral-pairs, and for this we need an observation.

Lemma 3. Let \mathcal{B} be the set of all child-peripheral pairs in G. There exists a set of vertex-disjoint paths $P_{1}, \ldots, P_{|\mathcal{B}|}$ in G such that for any child-peripheral-pair $\left\{b^{\ell}, b^{r}\right\}$ in \mathcal{B}, one of the paths connects b^{ℓ} with b^{r}.

Proof. (Sketch) Consider any child-peripheral-pair $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$, say at cut-component C_{i} of cutting pair $\{u, v\}$. Observe that there are three vertex-disjoint paths from b_{i}^{ℓ} to b_{i}^{r} : one via u, one via v, and one within int $\left(C_{i}\right)=C_{i}-\{u, v\}$ since the latter is connected by definition of cut-components. Since (u, v) is an edge, therefore $\left\{u, v, b_{i}^{\ell}, b_{i}^{r}\right\}$ must all belong to one triconnected component, call it D. Since D is 3-connected, there must exist a path in $D-\{u, v\}$ connecting b_{i}^{ℓ} and b_{i}^{r}. One can now show (see [5]) that choosing this path for peripheral pair $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$ will assign vertex-disjoint paths to all child-peripheral pairs.

We now redistribute vertex-tokens to child-peripheral pairs as follows. For every child-peripheral-pair $\left\{b^{\ell}, b^{r}\right\}$, find the path P connecting b^{ℓ} and b^{r} from Lemma 3. For every vertex $w \in P$, declare the vertex-token of w to belong to the child-peripheral-pair $\left\{b^{\ell}, b^{r}\right\}$; we now call it a child-peripheral-pair token and say that it belongs to $\left\{b^{\ell}, b^{r}\right\}$. Since the paths of child-peripheral-pairs are vertex-disjoint, every vertex-token is used at most once.

By properties of a path decomposition, the set of bags $\mathcal{X}_{P}=\{X: X$ contains a vertex of $P\}$ forms an interval of bags since P is connected. Each bag in \mathcal{X}_{P} obtains at least one token of $\left\{b^{\ell}, b^{r}\right\}$. Since $X\left(b^{\ell}\right), X\left(b^{r}\right) \in \mathcal{X}_{P}$, we therefore have:

Invariant 1 (1) For every child-peripheral-pair $\left\{b^{\ell}, b^{r}\right\}$, every bag X in the baginterval $\left(X\left(b^{\ell}\right), X\left(b^{r}\right)\right]$ contains at least one token of $\left\{b^{\ell}, b^{r}\right\}$. (2) For every cutting pair $\{u, v\}$, every bag containing both u and v contains two tokens of $\{u, v\}$.

Adding edges: We now repeatedly delete one copy of a multi-edge (u, v) and replace it with some edge $\left(b_{i}^{\alpha}, b_{j}^{\beta}\right)$ between two different cut-components of $\{u, v\}$. Notice that no such edge can have existed before, so the sum of the multiplicities of multi-edges decreases. By Observation 1, adding these edges maintains a multi-triangulation. After repeated applications we hence end with a simple graph. Throughout these edge additions, we maintain a valid path decomposition for the graph by adding vertices to bags, if needed. This uses up some tokens, but we do it in such a way that Invariant 1 is maintained and hence the pathwidth is at most $2 p w(G)+1+2 c$.

So let $\{u, v\}$ be a cutting pair. Let C_{0}, \ldots, C_{L} be the cut components of $\{u, v\}$, with C_{0} the parent-component. For each component C_{i}, let $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$ be the peripheral-pair of C_{i}. We distinguish cases.

1. There exists some $i \neq j, i>0, j>0$ such that $X\left(b_{i}^{\ell}\right) \prec X\left(b_{j}^{\ell}\right) \prec X\left(b_{i}^{r}\right) \prec$ $X\left(b_{j}^{r}\right)$. Put differently, there are two child components C_{i} and C_{j} whose bag-intervals intersect, but neither one contains the other. See also Figure 2 , Add an edge $\left(b_{j}^{\ell}, b_{i}^{r}\right)$. Since both C_{i} and C_{j} are child-components, by the invariant each bag X with $X\left(b_{j}^{\ell}\right) \prec X \preceq X\left(b_{i}^{r}\right)$ contains one token of $\left\{b_{j}^{\ell}, b_{j}^{r}\right\}$ and one token of $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$. We use one of them to add b_{j}^{ℓ} to all these bags; then b_{j}^{ℓ} and b_{i}^{r} share a bag, the bags containing b_{j}^{ℓ} continue to form an interval, and we hence have a valid path decomposition for the new graph.
Adding the edge combines child-components C_{i} and C_{j} into one new childcomponent C^{\prime} with peripheral-pair $\left\{b_{i}^{\ell}, b_{j}^{r}\right\}$. Since we used only one token in each bag, all bags X with $X\left(b_{i}^{\ell}\right) \prec X \preceq X\left(b_{j}^{r}\right)$ have a peripheral-pair-token left, which we now assign to C^{\prime}. So the invariant holds.
2. There exists some $i \neq j, i>0, j>0$, such that $X\left(b_{i}^{\ell}\right) \preceq X\left(b_{j}^{\ell}\right) \preceq X\left(b_{j}^{r}\right) \preceq$ $X\left(b_{i}^{r}\right)$. Put differently, there are two child components C_{i} and C_{j} whose bag-intervals intersect, and one is inside the other. See also Figure 2 , Add an edge $\left(b_{i}^{\ell}, b_{j}^{\ell}\right)$. Each bag X with $X\left(b_{i}^{\ell}\right) \prec X \preceq X\left(b_{j}^{\ell}\right)$ contains a token of $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$. We use this to add b_{i}^{ℓ} to all these bags; then b_{i}^{ℓ} and b_{j}^{ℓ} share a bag and the bags containing b_{i}^{ℓ} are consecutive, hence we have a valid path decomposition of the new graph.
Adding the edge combines components C_{i} and C_{j} into one new component C^{\prime} with peripheral-pair $\left\{b_{i}^{r}, b_{j}^{r}\right\}$. Since we used only tokens in bags farther to the left, all bags X with $X\left(b_{j}^{r}\right) \prec X \preceq X\left(b_{i}^{r}\right)$ still have the token of $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$, and we assign these to the new peripheral-pair. So the invariant holds.

Figure 2. Bag-intervals with peripheral-pair-tokens (shown with *). (Top) The bagintervals intersect, but neither contains the other. (Bottom) One bag-interval is a subset of the other.
3. No two bag-intervals of two child-components intersect. After possible renaming of the child components C_{1}, \ldots, C_{L}, we may hence assume that $X\left(b_{1}^{\ell}\right) \preceq X\left(b_{1}^{r}\right) \preceq X\left(b_{2}^{\ell}\right) \preceq X\left(b_{2}^{r}\right) \preceq \cdots \preceq X\left(b_{L}^{\ell}\right) \preceq X\left(b_{L}^{r}\right)$. (The bag-interval of the parent-component may be anywhere in this order.) See also Figure 3 .

Figure 3. Replacing cutting-pair-tokens (shown with \circ) to combine all remaining cutcomponents of cutting pair $\{u, v\}$.

We will combine all cut components into one at once. Add edges $\left(b_{1}^{r}, b_{2}^{\ell}\right)$, $\left(b_{2}^{r}, b_{3}^{\ell}\right), \ldots,\left(b_{L-1}^{r}, b_{L}^{\ell}\right)$. To create a path decomposition for this, add b_{i}^{r} to all bags X with $X\left(b_{i}^{r}\right) \prec X \preceq X\left(b_{i+1}^{\ell}\right)$, for $i=1, \ldots, L-1$. Pay for these additions with the first token of (u, v). We know that each of these bag has such a token, since $X\left(b_{1}^{\ell}\right)$ and $X\left(b_{L}^{r}\right)$ contain $\{u, v\}$ by definition, and the bags between must contain $\{u, v\}$ by properties of a path decomposition.
Finally add edge $\left(b_{1}^{\ell}, b_{0}^{r}\right)$. Create a path decomposition for this by adding b_{1}^{ℓ} to all bags from $X\left(b_{1}^{\ell}\right)$ to $X\left(b_{0}^{r}\right)$, and pay for it with the second cutting-pairtoken of (u, v).

Observation 1 applies to all added edges, since the ends of each edge are peripheral-vertices of two different cut-components, even after considering that previous edge-additions merged some them. Hence the resulting graph is a multi-triangulation after we deleted $L+1$ copies of multi-edge (u, v). Since $\{u, v\}$ ceases to be a cutting pair after adding these edges, the invariant holds again since we only used tokens of $\{u, v\}$.

After repeatedly applying the above edge-additions to all cutting pairs, we hence end with a triangulated graph and a path decomposition of width at most $2 p w(G)+1+2 c$ as desired. This proves Lemma 2 .

Lemma 4. Let G be a 2-connected planar graph with $n \geq 3$ vertices. Then we can triangulate G, after possibly changing the planar embedding, such that the result has pathwidth at most $8 p w(G)-5$.

Proof. By Lemma 1 we ca multi-triangulate G without increasing the pathwidth. Call the result G_{1}. By Lemma 2 we can triangulate G_{1} such that the resulting graph G_{2} has $p w\left(G_{2}\right) \leq 2 p w(G)+1+2 c$.

It remains to bound c. Recall that this is the maximum number of cutting pairs of G_{1} for which all vertices occur in one bag X_{i} (of some path decomposition \mathcal{P} of width $\left.p w\left(G_{1}\right)\right)$. Each such cutting pair corresponds to a multi-edge in G_{1}. Let $G\left[X_{i}\right]$ be the graph induced by X_{i} and G_{s} be its underlying simple graph. Each such cutting pair hence corresponds to an edge in G_{s}. Since G_{s} is planar and simple and has $\left|X_{i}\right|$ vertices, it has at most $3\left|X_{i}\right|-6 \leq 3(p w(G)+$ 1) $-6=3 p w(G)-3$ edges if $\left|X_{i}\right| \geq 3$. If $\left|X_{i}\right| \leq 2$, then G_{s} has at most $1 \leq 3 p w(G)-3$ edges since $p w(G) \geq 2$ (a graph of pathwidth 1 is a forest and cannot be 2 -connected). Thus either way G_{s} has at most $3 p w(G)-3$ edges, hence $c \leq 3 p w(G)-3$ and $p w\left(G_{2}\right) \leq 2 p w(G)+1+2 c \leq 8 p w(G)-5$ as desired.

5 2-connecting an outer-planar graph

Recall that one motivation for this paper was the question how to make an outerplanar graph 2-connected by adding edges without increasing the pathwidth much. A maximal outer-planar graph is a simple outer-planar graph to which we cannot add edges without violating planarity, simplicity, or outer-planarity. Such a graph is 2-connected.

Theorem 1. Let G be a simple connected outer-planar graph. Then we can add edges to G, after possibly changing the planar embedding, to obtain a maximal outer-planar graph G^{\prime} with $p w\left(G^{\prime}\right) \leq 4 p w(G)+4$.

Proof. If $n=1$ then G is already maximal outer-planar, so assume $n \geq 2$. Add a universal vertex z^{*} to G and call the result G_{1}; we know that G_{1} is planar and $p w\left(G_{1}\right)=p w(G)+1$ since we can add z^{*} to all bags. Observe that $G_{1}-v$ is connected for any $v \neq z^{*}$ since z^{*} is adjacent to all vertices. Therefore G_{1} is 2 -connected and any cutting pair of G_{1} must include z^{*}.

Use Lemma 1 to multi-triangulate G_{1} without increasing pathwidth, and call the result G_{2}; we have $p w\left(G_{2}\right)=p w(G)+1$. Now use Lemma 2 to triangulate G_{2}, and call the result G_{3}. We have $p w\left(G_{3}\right) \leq 2 p w\left(G_{2}\right)+1+2 c \leq 2 p w(G)+3+2 c$.

Since any cutting pair includes z^{*}, we can get an improved bound for c as follows. Let \mathcal{P}_{2} be any path decomposition of G_{2} of width $p w\left(G_{2}\right)$ and let X_{i} be any bag of \mathcal{P}_{2}; we have $\left|X_{i}\right| \leq p w\left(G_{2}\right)+1=p w(G)+2$. If X_{i} contains cutting pairs, then it must contain z^{*}. Each such cutting pair uses z^{*} and one other vertex in X_{i}, so there are at most $\left|X_{i}\right|-1$ cutting pairs with both ends in X_{i}, and $c \leq\left|X_{i}\right|-1 \leq p w(G)+1$. Putting it all together, we have $p w\left(G_{3}\right) \leq$ $2 p w(G)+3+2(p w(G)+1)=4 p w(G)+5$.

Finally delete the added vertex z^{*} to obtain G_{4}, which has the same vertices as G. Since z^{*} was universal and G_{3} was triangulated, G_{4} is maximal outerplanar. Since z^{*} was universal, $p w\left(G_{4}\right)=p w\left(G_{3}\right)-1 \leq 4 p w(G)+4$ and hence G_{4} satisfies all conditions on G^{\prime}.

We note here that the bound can be improved to $4 p w(G)+3$ by delving into the proofs of Lemma 2 and Lemma 3 and observing that the vertex-token of z^{*} will never be used as child-peripheral-pair-token, since z^{*} is in all cutting pairs. We leave the details to the reader.

6 All graphs

We now show how to handle cutvertices and disconnected graphs.
Lemma 5. Any simple connected planar graph G with $n \geq 3$ can be triangulated, after possibly changing the planar embedding, so that the result has pathwidth at most $16 p w(G)+3$.

Proof. Let v_{1} be a cut-vertex of G. Add a new vertex z_{1} as follows.
Let C_{0}, \ldots, C_{L} be the cut-components of v_{1}. Rearrange the planar embedding at v_{1} such
 that for each C_{j} the edges from v_{1} to C_{j} are consecutive at v_{1}. In consequence, there now exists a face f_{1} that is incident to all cut-components of v_{1}. Insert a new vertex z_{1} in face f_{1}, and make it adjacent to v_{1} and to all neighbors x of v_{1} that are on f_{1}. Afterwards v_{1} is no longer a cut-vertex, and z_{1} is also not a cut-vertex.
We can obtain a path decomposition of $G \cup\left\{z_{1}\right\}$ by taking one of G and adding z_{1} to all bags that contains v_{1}. This covers all new edges since all neighbors of z_{1} are neighbors of v_{1}.

Repeat the process in the resulting graph until there are no cut-vertices left. Call the final graph G_{1}. Since none of the new vertices were cut-vertices, we added at most $\left|X_{i}\right|$ new vertices to each bag X_{i} of a path decomposition of G. Hence the bag-size at most doubles and $p w\left(G_{1}\right) \leq 2 p w(G)+1$.

Now multi-triangulate G_{1} with Lemma 1 and call the result G_{2}. We have $p w\left(G_{2}\right)=p w\left(G_{1}\right) \leq 2 p w(G)+1$. Now triangulate G_{2} with Lemma 4 and call the result G_{3}. We have $p w\left(G_{3}\right) \leq 8 p w\left(G_{2}\right)-5 \leq 8(2 p w(G)+1)-5=16 p w(G)+3$.

Now we must remove the added vertices while keeping a triangulated graph, and do this by contracting each into a suitable neighbor. Observe that the neighbors of z_{1} form a simple cycle since G_{3} is triangulated. Hence these neighbors induce a simple outer-planar 2 -connected graph. It is well-known that every such graph has a vertex of degree 2 . Therefore z_{1} has a neighbor y_{1} such that y_{1} and z_{1} have exactly two common neighbors (which are the third vertices on the faces incident to edge $\left.\left(z_{1}, y_{1}\right)\right)$. Contract edge $\left(z_{1}, y_{1}\right)$, i.e., delete z_{1} and re-route every incident edge of z_{1} to end at y_{1} instead. Delete resulting loops and multi-edges. Because z_{1} and y_{1} had exactly two neighbors in common, the resulting graph is again triangulated. Repeat the process for the other added vertices.

At the end the graph G_{4} that results has the same vertices as G. It is wellknown that contraction of an edge does not increase pathwidth, so $p w\left(G_{4}\right) \leq$ $p w\left(G_{3}\right) \leq 16 p w(G)+3$ as desired.

As for disconnected graphs, one can easily show the following [5]:
Lemma 6. Let G be a planar graph. Then we can add edges to G so that the resulting graph G^{\prime} is planar, connected, and $p w\left(G^{\prime}\right)=\max \{1, p w(G)\}$.

Hence we can triangulate G by first creating G^{\prime} and then triangulating G^{\prime}.

7 Conclusion

In this paper, we studied how to add edges to a planar graph without increasing the pathwidth much. We summarize all our results with the following:

Theorem 2. Let G be a simple planar graph with at least 3 vertices. Then we can triangulate G such that the result G^{\prime} has
$-p w\left(G^{\prime}\right)=p w(G)$ if G is 3-connected,

- pw $\left(G^{\prime}\right) \leq 8 p w(G)-5$ if G is 2-connected,
$-p w\left(G^{\prime}\right) \leq 16 p w(G)+3$ otherwise.
It may also be of interest to observe that our construction does not change a given path decomposition of the graph other than by adding more vertices to some bags. On the other hand, our construction often changes the planar embedding. Is it possible to triangulate a graph without increasing the pathwidth much and without changing the planar embedding?

Following the steps of the proof, one can see that the triangulation can be found in linear time, presuming that we are given a path decomposition of width $p w(G)$ in the form of the index of the first and last bag containing v for every vertex v. There is no need to compute triconnected components: One can find child-components via multi-edges, and the paths in Lemma 3 are only needed for accounting purposes and need not be computed.

The obvious open problem is to improve the factors, especially for 2-connected graphs. Can every planar graph G be triangulated so that the result has pathwidth at most $\max \{3, p w(G)\}$?

It would also be of interest to study other width-parameters (such as the carving width, bandwidth, clique-width, etc.) and ask whether planar graphs can be triangulated while keeping the width-parameter asymptotically the same.

References

1. J. Babu, M. Basavaraju, L. Sunil Chandran, and D. Rajendraprasad. 2-connecting outerplanar graphs without blowing up the pathwidth. Theor. Comput. Sci., 554:119-134, 2014.
2. T. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs under the four-connectivity constraint. Algorithmica, 19(4):427-446, 1997.
3. T. Biedl. A 4-approximation algorithm for the height of drawing 2-connected outerplanar graph. In Workshop on Approximation and Online Algorithms (WAOA'12), volume 7846 of Lecture Notes in Computer Science, pages 272-285. SpringerVerlag, 2013.
4. T. Biedl. On triangulating k-outerplanar graphs. Discrete Applied Mathematics, 181:275-279, 2015.
5. T. Biedl. Triangulating planar graphs while keeping the pathwidth small. Technical report, ArXiV, 2015. To appear.
6. T. Biedl and L.E. Ruiz Velázquez. Drawing planar 3-trees with given face areas. Computational Geometry: Theory and Applications, 46(3):276-285, 2013.
7. H. Bodlaender. Treewidth: algorithmic techniques and results. In Mathematical Foundations of Computer Science (MFCS 1997), volume 1295 of Lecture Notes in Computer Science, pages 19-36. Springer-Verlag, 1997.
8. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Computing, 25(5), 1996.
9. S. Felsner, G. Liotta, and S. Wismath. Straight-line drawings on restricted integer grids in two and three dimensions. Journal of Graph Algorithms and Applications, 7(4):335-362, 2003.
10. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica, 10:41-51, 1990.
11. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press, New York, 1st edition, 1980.
12. C. Gutwenger, P. Mutzel, and B. Zey. On the hardness and approximability of planar biconnectivity augmentation. In Computing and Combinatorics (CO COON'09), volume 5609 of $L N C S$, pages 249-257. Springer, 2009.
13. G. Kant and H. Bodlaender. Triangulating planar graphs while minimizing the maximum degree. In Scandinavian Workshop on Algorithm Theory (SWAT'92), volume 621 of $L N C S$, pages 258-271. Springer, 1992.
14. W. Schnyder. Embedding planar graphs on the grid. In ACM-SIAM Symposium on Discrete Algorithms (SODA '90), pages 138-148, 1990.
15. M. Suderman. Pathwidth and layered drawings of trees. International Journal of Computational Geometry and Applications, 14(3):203-225, 2004.

A Missing details

A. 1 Properties of multi-triangulated graphs

Lemma 7. Let G be a multi-triangulated planar graph with $n \geq 3$ vertices. Fix an arbitrary planar embedding for which all faces are triangles. The following holds:

1. G is 2-connected.
2. Any cutting pair $\{u, v\}$ gives rise to a multi-edge (u, v).
3. For any multi-edge $(u, v),\{u, v\}$ is a cutting pair, and the number of its cut-components equals the multiplicity of the multi-edge.
4. For any cutting pair $\{u, v\}$ with a cut-component C in the order of edges around u the edges to $\operatorname{int}(C)$ appear consecutively, and are preceded and succeeded by copies of (u, v).

Proof. Let S be a cut-set (i.e., either cut-vertex or cutting pair). Consider a vertex $v \in S$. Assume for contradiction that in the clockwise order around v there are two consecutive neighbors w_{1}, w_{2} with $w_{1} \in \operatorname{int}\left(C_{1}\right)$ and $w_{2} \in \operatorname{int}\left(C_{2}\right)$ for two different cut-components C_{1}, C_{2} of S. Consider the face f that is between edges $\left(v, w_{1}\right),\left(v, w_{2}\right)$ at v. Since w_{1}, w_{2} are in the interior of different cut-components, we cannot have an edge (w_{1}, w_{2}). We must have $w_{1} \neq v \neq w_{2}$, since otherwise there would be a loop. Therefore face f is incident to at least 4 edges. Contradiction.

Thus for any two cut-components of S, edges from v to the inside of the cutcomponent cannot be consecutive. Thus, there must an edge between any two cut-components (in the clockwise order around v) for which the other endpoint is also in S. If $|S|=1$ then such an edge would be a loop, a contradiction. Therefore no cut-set can have size 1 and G is 2 -connected; this proves (1).

If $|S|=2$, say S is the cutting pair $\{u, v\}$, then the cut-components are separated by copies of edge (u, v). If there are L cut-components C_{1}, \ldots, C_{L} for $L \geq 2$, then there are at least L places in the clockwise order around v where we switch from one cut-component to the next one, so we must have at least L copies of (u, v). This proves (2).

Let $e_{0}, \ldots, e_{\ell-1}$ be the copies of (u, v), enumerated in the clockwise order around v. We have just shown $\ell \geq L$. For $i=1, \ldots, \ell$, edges e_{i-1} and e_{i} cannot be consecutive at v (where indices are modulo L), otherwise there would be a face of degree 2. So there must be vertices other than u between e_{i-1} and e_{i}. Further, the cycle formed by e_{i-1} and e_{i} separates everything on one side from everything on the other side. So the subgraph between e_{i-1} and e_{i} contains at least one cut-component of $\{u, v\}$. It follows that $\ell \leq L$, and so $\ell=L$. This proves (3).

Since $\ell=L$, the subgraph between e_{i-1} and e_{i} must contain exactly one cutcomponent of $\{u, v\}$. Therefore in the cyclic order around v we alternate between a copy of (u, v) and all edges to exactly one cut-component. This proves (4).

Lemma 8. Every multi-triangulated graph has at least one edge that is not a multiple edge.

Proof. Fix one arbitrary planar drawing Γ of G for which all facial circuits have three edges. Nothing is to show if G is simple, so assume G has multi-edges. If e_{1}, e_{2} are two copies of a multi-edge, then their drawing defines a closed curve C. This curve cannot be the boundary of a face since facial circuits have three edges. In consequence, at least one vertex must be inside any closed curve defined by two copies of a multi-edge.

Assume that e_{1}, e_{2} has been chosen such that their closed curve encloses the minimum possible number of vertices among all such pairs. Let v be a vertex inside that curve, and let e be an edge incident to v. Then e must be simple by choice of e_{1}, e_{2}.

A. 2 Finding paths for child-peripheral pairs

This section gives the proof of Lemma 3, which states the following:
Let \mathcal{B} be the set of all child-peripheral pairs in G. There exists a set of vertex-disjoint paths $P_{1}, \ldots, P_{|\mathcal{B}|}$ in G such that for any child-peripheralpair $\left\{b^{\ell}, b^{r}\right\}$ in \mathcal{B}, one of the paths connects b^{ℓ} with b^{r}.
Consider any child-peripheral-pair $\left\{b_{i}^{\ell}, b_{i}^{r}\right\}$, say at cut-component C_{i} of cutting pair $\{u, v\}$. As argued in the main part of the paper, then $\left\{u, v, b_{i}^{\ell}, b_{i}^{r}\right\}$ must all belong to one triconnected component, call it D. Since D is 3 -connected, there must exist a path P from b_{i}^{ℓ} to b_{i}^{r} within $D-\{u, v\}$, and this is the path that we use for this child-peripheral pair.

It remains to argue that these paths are disjoint. Let $\left\{b^{\prime}, b^{\prime \prime}\right\}$ be some other child-peripheral-pair, say at cutting pair $\left\{u^{\prime}, v^{\prime}\right\}$, such that $\left\{b^{\prime}, b^{\prime \prime}, u^{\prime}, v^{\prime}\right\}$ belong to triconnected component D^{\prime} and we assigned a path P^{\prime} in $D^{\prime}-\left\{u^{\prime}, v^{\prime}\right\}$ to this child-peripheral pair.

Recall that cutting pair $\{u, v\}$ splits the graph into multiple cut-components. One of those is C_{i}, the child-component that contained b_{i}^{ℓ} and b_{i}^{r} and therefore also the triconnected component D and the path P. We now distinguish cases depending on which of the cut-components contains D^{\prime} :

- D^{\prime} is part of a child-component of $\{u, v\}$ other than C_{i}.

We know that child-cut-components are vertex-disjoint except for $\{u, v\}$. Therefore D and D^{\prime} are vertex-disjoint except for perhaps $\{u, v\}$. Hence P and P^{\prime} are vertex-disjoint.
$-D^{\prime}$ is part of the parent-component of $\{u, v\}$.
As before, since cut-components are vertex-disjoint except for $\{u, v\}$, this implies that P and P^{\prime} are vertex-disjoint.
$-D^{\prime}$ is part of the child-component C_{j} of $\{u, v\}$.
This implies that $\{u, v\} \neq\left\{u^{\prime}, v^{\prime}\right\}$, since for each cutting pair, each cutcomponent gets only one peripheral pair. ($u=u^{\prime}$ or $v=v^{\prime}$ is possible, but not both.) Changing the point of view, now consider the cut-components of $\left\{u^{\prime}, v^{\prime}\right\}$. Here D^{\prime} belongs to a child-component (because $\left\{b^{\prime}, b^{\prime \prime}\right\}$ is a child-peripheral-pair), but D belongs to the parent-component (since D^{\prime} belongs to a child-component of $\{u, v\})$. Exchanging the roles of the two cutting pairs hence shows as in the previous case that P and P^{\prime} are vertex-disjoint.

A. 3 Making graphs connected

In this section, we give a proof of Lemma 6, which states:
Let G be a planar graph. Then we can add edges to G so that the resulting graph G^{\prime} is planar, connected, and $p w\left(G^{\prime}\right)=\max \{1, p w(G)\}$.

Let C_{1}, \ldots, C_{L} be the connected components of G. Each of them has pathwidth at most $p w(G)$ since they are subgraphs of G; let \mathcal{P}_{i} be a path decomposition of C_{i} of width at most $p w(G)$. Start with path decomposition \mathcal{P}_{1}. Append one new bag, into which we insert one arbitrary vertex v_{1} from the last bag of \mathcal{P}_{1} and one arbitrary vertex u_{2} from the first bag of \mathcal{P}_{2}. Then append \mathcal{P}_{2}. Repeat with the remaining components: insert a new bag after the last bag of \mathcal{P}_{i}, give it one vertex v_{i} from the last bag of \mathcal{P}_{i} and one vertex u_{i+1} from the first bag of \mathcal{P}_{i+1}, and then append \mathcal{P}_{i+1}. Clearly we get a path decomposition \mathcal{P} of G of width $\max \{1, p w(G)\}$.

Define G^{\prime} to be the graph obtained by adding $\left(u_{i}, v_{i+1}\right)$ to G, for $i=$ $1, \ldots, L-1$. Clearly \mathcal{P} is also a path decomposition of G^{\prime}, since we created bags for each of these new edges. Also G^{\prime} is planar since adding an edge between two vertices in different connected components cannot destroy planarity. This shows the result.

[^0]: * Research was supported by NSERC and done while visiting Universität Salzburg. Many thanks to Jasine Babu for sharing her manuscript of what later became [1, and the referees of an earlier version of this paper for helpful comments.

[^1]: ${ }^{1}$ Babu et al. published a similar proof in an early version of [1] but omitted it in [1].

