
Triangulating planar graphs
while keeping the pathwidth small ?

Therese Biedl

David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario N2L 1A2, Canada. biedl@uwaterloo.ca

Abstract Any simple planar graph can be triangulated, i.e., we can
add edges to it, without adding multi-edges, such that the result is pla-
nar and all faces are triangles. In this paper, we study the problem of
triangulating a planar graph without increasing the pathwidth by much.
We show that if a planar graph has pathwidth k, then we can triangulate
it so that the resulting graph has pathwidth O(k) (where the factors are
1, 8 and 16 for 3-connected, 2-connected and arbitrary graphs). With
similar techniques, we also show that any outer-planar graph of path-
width k can be turned into a maximal outer-planar graph of pathwidth
at most 4k + 4. The previously best known result here was 16k + 15.

1 Introduction

Let G = (V,E) be an undirected simple graph that is planar, i.e., it has a
crossing-free drawing in the plane. G is called triangulated if all maximal regions
not containing the drawing are incident to three edges of G. (More detailed
definitions will be given in Section 2.) Any planar simple graph with n ≥ 3
vertices can be triangulated by adding edges without destroying planarity.

In this paper, we study the problem of triangulating a planar graph G such
that the pathwidth of the resulting graph is proportional to the pathwidth of G.
Here, the pathwidth pw(G) of a graphG is a well-known graph parameter (defined
formally in Section 2). Graphs of small pathwidth have many applications. Many
graph problems can be solved in polynomial time if the pathwidth is constant.
(See e.g. [7].) The pathwidth also serves as lower bound on the height of planar
graph drawings [9]. Vice versa, some planar graphs G can be drawn with height
O(pw(G)), notably trees [15] and 2-connected outer-planar graphs [3].

The latter paper raised the question whether any outer-planar graph can be
made 2-connected by adding edges without increasing the pathwidth much. (For
if so, then all outer-planar graphs can be drawn with height O(pw(G)).) This
question was answered in the affirmative by Babu et al. [1], who showed that
any outer-planar graph G can be made into a 2-connected outer-planar graph
G′ with pw(G′) ≤ 16pw(G) + 15.

? Research was supported by NSERC and done while visiting Universität Salzburg.
Many thanks to Jasine Babu for sharing her manuscript of what later became [1],
and the referees of an earlier version of this paper for helpful comments.

ar
X

iv
:1

50
5.

04
23

5v
1

 [
cs

.D
M

]
 1

6
M

ay
 2

01
5

Our results: In this paper, we improve on the result by Babu et al. and show
that we can add edges to any outer-planar graph G such that the result is a
2-connected outer-planar graph G′ with pw(G′) ≤ 4pw(G) + 1. But our tech-
nique is much more general. Rather than working with outer-planar graphs, we
prove that any planar 2-connected graph can be triangulated without increas-
ing the pathwidth if we allow multi-edges. We can also remove multi-edges; this
increases the pathwidth at most 8-fold. With much the same technique we can
also handle graphs with cut-vertices and make them 2-connected while increasing
the pathwidth (roughly) 16-fold. Outer-planar graphs can be handled as special
cases and give an even smaller increase in the pathwidth.

Related results: Many papers have dealt with how to triangulate a planar
graph under some additional constraint. For example, any 2-connected planar
graph can be triangulated so that the result is 4-connected (except for wheel-
graphs) [2]. Any k-outer-planar graph can be triangulated so that the result
is (k + 1)-outer-planar [4]. Any planar graph G with treewidth tw(G) can be
triangulated so that the result has treewidth max{3, tw(G)} [6]. Triangulating
planar graphs has also been studied while minimizing the maximum degree [13],
and relates to planar graph connectivity-augmentation problems (see e.g. [12]
and the references therein) since any triangulated graph is 3-connected.

2 Background

Let G = (V,E) be a graph with at least 3 vertices. G is called planar if it can
be drawn without crossing in the plane. A crossing-free drawing Γ of G defines
a cyclic order of edges at a vertex v by enumerating them in clockwise order
around v; we call such a set of orders a planar embedding of G. The maximal
regions of R2 − Γ are called faces of the drawing; they can be read from the
planar embedding by computing the facial circuit, i.e., the order of vertices and
edges encountered while walking around the face in clockwise order. A graph G
is called outer-planar if G ∪ {z∗} is planar, where z∗ is a newly-added universal
vertex adjacent to all vertices of G.

A loop is an edge (v, v) for some vertex. A multi-edge is an edge (v, w) with
multiplicity µ ≥ 2, i.e., there exist µ copies of (v, w). A graph is called simple if it
has neither loops nor multi-edges. All input graphs in this paper are required to
be simple, but we sometimes add multi-edges in intermediate steps. (We never
add loops.) A multi-graph is a graph without loops (but possibly with multi-
edges). The underlying simple graph of a multi-graph is obtained by deleting all
but one copy of each multi-edge.

Connectivity: A multi-graph G is called connected if we can go from any vertex
v to any vertex w while walking along edges of G. The connected components of
a multi-graph are the maximal subgraphs that are connected. A multi-graph G
is called k-connected if it remains connected even after deleting k − 1 arbitrary
vertices. If G is connected but not 2-connected, then G has a cut-vertex, i.e., a
vertex v such that G− v is not connected. A graph that is 2-connected, but not

3-connected, has a cutting pair, i.e., a pair of vertices v, w such that G− {v, w}
is not connected.

If S is a set of vertices, then let C ′1, . . . , C
′
L be the connected components of

G− S (L = 1 if S was not a cut-set). Define for i = 1, . . . , L the cut-component
Ci of S to consist of C ′i, the edges from C ′i to S, and a complete graph added
between the vertices of S. Define intCi := C ′i = Ci − S to be the interior of Ci.

Triangulating: A face (in a planar graph in some planar embedding) is called a
triangle if its facial circuit contains three edges. A multi-graph G is called multi-
triangulated if it has a planar embedding such that all faces of G are triangles.
Such a graph may well have multi-edges, but duplicate copies of an edge must
use different routes (no facial circuit may consist of two copies of the same
edge). A graph G is called triangulated if it is multi-triangulated and simple. A
triangulated graph is 3-connected (and hence has a unique planar embedding,
up to reversal of all edge orders). A multi-triangulated graph G need not be 3-
connected, but it is 2-connected since n ≥ 3 and G has no loops. One can show
(see [5]) that the cutting pairs of G correspond to multi-edges as follows: {u, v}
is a cutting pair that has L cut-components if and only if (u, v) is a multi-edge
with multiplicity L. Further, G has at least one edge that is not a multi-edge.

The idea of triangulating is to add edges to a graph until it is triangulated.
More formally, multi-triangulating a planar multi-graph G means adding edges
to G so that the result is multi-triangulated. Triangulating a planar multi-graph
G means to add edges to the underlying simple graph of G such that the result is
triangulated. In particular, this operation is allowed to delete copies of a multi-
edge from G.

Pathwidth: Let G be a multi-graph. Let X1, . . . , XN be sets of vertices of G;
we call these bags. We say that X1, . . . , XN is a path decomposition P of G if

– every vertex appears in at least one bag,
– for every edge (u, v) in G, at least one bag Xi contains both u and v, and
– for every vertex v inG, the bags containing v form an interval. Put differently,

if v ∈ Xi1 and v ∈ Xi2 then also v ∈ Xi for all i1 < i < i2.

Bags naturally imply an order; we write Xi � Xj if i ≤ j and Xi ≺ Xj if i < j.
The bag-size of such a path decomposition is max |Xi|. The width of such a path
decomposition is max |Xi| − 1. A graph is said to have pathwidth at most k if it
has a path decomposition of width k.

3 3-connected graphs

We first show how to multi-triangulate 2-connected graphs (which also triangu-
lates 3-connected graphs).

Lemma 1. Let G be a planar 2-connected multi-graph with a planar embedding
for which any facial circuit has at least 3 edges. Then we can multi-triangulate
G without increasing the pathwidth and without changing the planar embedding.

Proof. 1 Fix a path decomposition P of G that has width pw(G). Let G+ be
the graph induced by P, i.e., G+ has the same vertices as G, but an edge (v, w)
for any pair of vertices that occur in a common bag. By properties of a path
decomposition G+ is an interval-graph, therefore chordal, therefore any simple
cycle C of length ≥ 4 has a chord (an edge between two non-consecutive vertices
of C). See Golumbic [11] for details of these concepts.

Let f be any facial circuit of G with 4 or more edges on it. By 2-connectivity
f is a simple cycle, and hence G+ contains a chord of C. Add this chord to G,
routing it inside f . The resulting graph is still planar and 2-connected and all
facial circuits have at least 3 edges, so repeat until G is multi-triangulated. ut

Our problem was motivated by planar graph drawing applications, where
often one starts by triangulating the planar graph (or adding edges to the outer-
planar graph to make it maximal outer-planar). For these applications, multi-
edges are a problem. For example usually one triangulates so that one can use
the canonical ordering [10] or a Schnyder wood [14], and these only exist for
simple triangulated planar graphs. Hence one wonders whether the same lemma
holds without allowing multi-edges. Thus, given a planar 2-connected graph, can
we triangulate it without increasing the pathwidth? This turns out to be false.
Consider a 4-cycle, which has pathwidth 2. The only way to triangulate a 4-cycle
without multi-edges is to turn it in K4, which has pathwidth 3. However, if G
was already 3-connected, then no multi-edges will happen.

Corollary 1. Let G be a 3-connected simple planar graph with n ≥ 3. Then we
can triangulate G without increasing the pathwidth.

Proof. Since G is simple, any face has at least 3 edges. Apply the previous lemma
to get G′. Adding edges cannot decrease connectivity, so G′ has no cutting pairs.
Since multi-edges in multi-triangulated graphs correspond to cutting pairs, hence
G′ is simple. ut

4 2-connected graphs

We already know how to multi-triangulate 2-connected planar graphs with Lemma 1.
The hard part, done in this section, is how to convert such a multi-triangulated
graph into a triangulated one (i.e., remove the multi-edges and replace them
with others) without increasing the pathwidth much. We state the required in-
crease in terms of another parameter, c, because this will help to obtain a smaller
bound for outer-planar graphs later.

Lemma 2. Any multi-triangulated graph G can be triangulated, after possibly
changing the planar embedding, such that the resulting graph G′ has pathwidth
pw(G′) ≤ 2pw(G) + 1 + 2c.

Here c is the maximum number of cutting pairs that can exist in one bag, i.e.,
for any path decomposition P of width pw(G) and any bag Xi of P there are at
most c cutting pairs {u1, v1}, . . . , {uc, vc} such that {u1, v1, . . . , uc, vc} ⊆ Xi.

1 Babu et al. published a similar proof in an early version of [1], but omitted it in [1].

The rest of this section is devoted to the proof of this lemma. We first give
an outline of the proof. We add |Xi|+2c “tokens” to each bag Xi of P; these are
place-holders for vertices that need to be added to bags later when adding edges.
These tokens are then redistributed so that in each bag Xi we have 2 tokens per
cutting pair {u, v} ⊆ Xi, and one token for each cut-component of {u, v} that
“intersects” Xi in some sense. We then can read from the path-decomposition
how to re-arrange the planar embedding such that we can replace a copy of a
multi-edge by a new edge in such a way that we use up only “few” tokens. In
particular, the above invariant on what tokens exist in bags continues to hold.
Repeating this until no multi-edges are left then gives the desired graph G′.
Since we had |Xi|+ 2c tokens, the new bag-size is at most 2|Xi|+ 2c, and hence
pw(G′) ≤ (2(pw(G) + 1) + 2c)− 1 = 2pw(G) + 1 + 2c.

For the detailed proof, fix one planar embedding of G such that all faces
are triangles. (We later change this embedding, but all faces will continue to be
triangles.) Fix one path decomposition P of G of width pw(G).

Assigning tokens: We assign tokens to a bag Xi of P as follows: (1) Add
one token to Xi for each vertex v in Xi; this is the vertex-token of v. (2) Add
two tokens to Xi for every cutting pair {u, v} with {u, v} ⊆ Xi; these are the
cutting-pair tokens, or the tokens of {u, v}.
Peripheral pairs: Let {u, v} be a cutting pair, and let C0, . . . , CL be its cut
components. One can show [5] that for i ∈ {0, . . . , L} the edges from v to intCi
occur consecutively in the clockwise order of edges around v, surrounded by two
copies of edge (u, v). See Figure 1 for an illustration. Let b`i and bri be the first
and last neighbor of v within this interval of edges to int (Ci). We call {b`i , bri }
the peripheral pair of cut-component Ci. Notice that b`i = bri if deg(b`i) = 2 or
(b`i , v) is a multi-edge, but we use the term “pair” even then for ease of wording.

b`0

br0

C4

C3

br3

b`3

b`2 = br2
b`1 = br1

u

v

C2

b`0

br0

C4

C3

br3

b`3
b`1 = br1 b`2

C2

Figure 1. A multi-triangulated graph with a cutting pair {u, v} that has four cut-
components. Dotted red lines are paths assigned to peripheral pairs as in Lemma 3.
We can add edge (br1, b

r
3) if we swap C2 and C3 and reverse C3.

Observation 1 Let G be a multi-triangulated graph that has a cutting pair
{u, v}. Let Ci and Cj be two different cut-components of {u, v}. For any choice

of α, β ∈ {`, r}, deleting one copy of (u, v) and adding (bαi , b
β
j) results in a multi-

triangulated graph (after possibly changing the planar embedding).

Proof. This follows from the results in [8]. In a nutshell, we can reverse and swap

cut-components until bαi and bβj both face one copy of (u, v). Deleting this copy

gives a face with 4 edges; inserting edge (bαi , b
β
j) into this face gives a planar

graph where all faces are triangles. ut

Bag-intervals: Let {b`i , bri } be the peripheral-pair of a cut-component Ci of
a cutting pair {u, v}. Since G is multi-triangulated, {u, v, bαi } forms a triangle
for α ∈ {`, r}. By the properties of the path decomposition there must exist
at least one bag that contains all three vertices. Thus let X(bαi) be a bag con-
taining {u, v, bαi }; choose an arbitrary one if there is more than one. So far the
superscripts ` and r for {b`i , bri } effectively meant “one” and “the other”, since
we can reverse the planar embedding of cut-component Ci. We now fix the su-
perscripts such that X(b`i) � X(bri), i.e., the bag of b`i is left of the bag of bri .
The left-open set of bags (X(b`i), X(bri)] := {X : X(b`i) ≺ X � X(bri)} is called
the bag-interval of peripheral pair {b`i , bri }. Notice that the bag-interval is empty
if X(b`i) = X(bri); this will not pose problems.

Child-peripheral-pairs: So far all cut-components at a cutting pair have been
treated equally. For token-accounting-purposes, we introduce a hierarchy among
them. Fix one edge e of G that is not a multi-edge. For each cutting pair {u, v}
with cut-components C0, . . . , CL, the parent-component of {u, v} is the one that
contains edge e, while all other cut-components are called child-components.
Correspondingly we call a peripheral-pair of {u, v} a child-peripheral-pair if it
belongs to a child-component of {u, v}.
Redistributing tokens: Let B be the union, over all cutting pairs {u, v}, of
all the child-peripheral-pairs of {u, v}. We want to redistribute vertex-tokens to
child-peripheral-pairs, and for this we need an observation.

Lemma 3. Let B be the set of all child-peripheral pairs in G. There exists a set
of vertex-disjoint paths P1, . . . , P|B| in G such that for any child-peripheral-pair

{b`, br} in B, one of the paths connects b` with br.

Proof. (Sketch) Consider any child-peripheral-pair {b`i , bri }, say at cut-component
Ci of cutting pair {u, v}. Observe that there are three vertex-disjoint paths from
b`i to bri : one via u, one via v, and one within int (Ci) = Ci−{u, v} since the latter
is connected by definition of cut-components. Since (u, v) is an edge, therefore
{u, v, b`i , bri } must all belong to one triconnected component, call it D. Since D
is 3-connected, there must exist a path in D − {u, v} connecting b`i and bri . One
can now show (see [5]) that choosing this path for peripheral pair {b`i , bri } will
assign vertex-disjoint paths to all child-peripheral pairs. ut

We now redistribute vertex-tokens to child-peripheral pairs as follows. For
every child-peripheral-pair {b`, br}, find the path P connecting b` and br from
Lemma 3. For every vertex w ∈ P , declare the vertex-token of w to belong
to the child-peripheral-pair {b`, br}; we now call it a child-peripheral-pair token
and say that it belongs to {b`, br}. Since the paths of child-peripheral-pairs are
vertex-disjoint, every vertex-token is used at most once.

By properties of a path decomposition, the set of bags XP = {X : X contains
a vertex of P} forms an interval of bags since P is connected. Each bag in XP
obtains at least one token of {b`, br}. Since X(b`), X(br) ∈ XP , we therefore
have:

Invariant 1 (1) For every child-peripheral-pair {b`, br}, every bag X in the bag-
interval (X(b`), X(br)] contains at least one token of {b`, br}. (2) For every cut-
ting pair {u, v}, every bag containing both u and v contains two tokens of {u, v}.

Adding edges: We now repeatedly delete one copy of a multi-edge (u, v)

and replace it with some edge (bαi , b
β
j) between two different cut-components

of {u, v}. Notice that no such edge can have existed before, so the sum of the
multiplicities of multi-edges decreases. By Observation 1, adding these edges
maintains a multi-triangulation. After repeated applications we hence end with
a simple graph. Throughout these edge additions, we maintain a valid path
decomposition for the graph by adding vertices to bags, if needed. This uses up
some tokens, but we do it in such a way that Invariant 1 is maintained and hence
the pathwidth is at most 2pw(G) + 1 + 2c.

So let {u, v} be a cutting pair. Let C0, . . . , CL be the cut components of
{u, v}, with C0 the parent-component. For each component Ci, let {b`i , bri } be
the peripheral-pair of Ci. We distinguish cases.

1. There exists some i 6= j, i > 0, j > 0 such that X(b`i) ≺ X(b`j) ≺ X(bri) ≺
X(brj). Put differently, there are two child components Ci and Cj whose
bag-intervals intersect, but neither one contains the other. See also Figure 2.
Add an edge (b`j , b

r
i). Since both Ci and Cj are child-components, by the

invariant each bag X with X(b`j) ≺ X � X(bri) contains one token of {b`j , brj}
and one token of {b`i , bri }. We use one of them to add b`j to all these bags; then

b`j and bri share a bag, the bags containing b`j continue to form an interval,
and we hence have a valid path decomposition for the new graph.
Adding the edge combines child-components Ci and Cj into one new child-
component C ′ with peripheral-pair {b`i , brj}. Since we used only one token in

each bag, all bags X with X(b`i) ≺ X � X(brj) have a peripheral-pair-token
left, which we now assign to C ′. So the invariant holds.

2. There exists some i 6= j, i > 0, j > 0, such that X(b`i) � X(b`j) � X(brj) �
X(bri). Put differently, there are two child components Ci and Cj whose
bag-intervals intersect, and one is inside the other. See also Figure 2.
Add an edge (b`i , b

`
j). Each bag X with X(b`i) ≺ X � X(b`j) contains a token

of {b`i , bri }. We use this to add b`i to all these bags; then b`i and b`j share a

bag and the bags containing b`i are consecutive, hence we have a valid path
decomposition of the new graph.
Adding the edge combines components Ci and Cj into one new component
C ′ with peripheral-pair {bri , brj}. Since we used only tokens in bags farther to

the left, all bags X with X(brj) ≺ X � X(bri) still have the token of {b`i , bri },
and we assign these to the new peripheral-pair. So the invariant holds.

u, v

b`i

X(b`i)

u, v
∗

u, v
∗

u, v
∗

u, v
∗
∗

X(b`j)

u, v
∗
∗ u, v

∗
∗ u, v∗

X(bri)

u, v∗ u, v∗
X(brj)

replace by b`j

u, v
∗
b`j brj

bri

u, v

b`i

X(b`i)

u, v
∗

u, v
∗

u, v
∗

u, v
∗
∗

X(b`j)

u, v
∗
∗ u, v

∗
∗ u, v

X(bri)

u, v u, v

X(brj)replace by b`i

u, v
∗
b`j brj

u, v
∗

u, v
∗

u, v
∗
bri

Figure 2. Bag-intervals with peripheral-pair-tokens (shown with ∗). (Top) The bag-
intervals intersect, but neither contains the other. (Bottom) One bag-interval is a subset
of the other.

3. No two bag-intervals of two child-components intersect. After possible re-
naming of the child components C1, . . . , CL, we may hence assume that
X(b`1) � X(br1) � X(b`2) � X(br2) � · · · � X(b`L) � X(brL). (The bag-interval
of the parent-component may be anywhere in this order.) See also Figure 3.

u, v

b`1

X(b`1)

u, v

X(b`0)

u, v u, v u, v u, v

X(br0)
replace by b`1

u, v

b`0 br0

br1

X(br1) X(b`2)X(br2)

u, v u, v

X(b`3)

b`3b`2 br2

u, v
◦

u, v◦
◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

replace by br1 replace by br2

X(br3)

u, v

br3

u, v
◦
◦u, vu, v

◦
◦

Figure 3. Replacing cutting-pair-tokens (shown with ◦) to combine all remaining cut-
components of cutting pair {u, v}.

We will combine all cut components into one at once. Add edges (br1, b
`
2),

(br2, b
`
3), . . . , (brL−1, b

`
L). To create a path decomposition for this, add bri to

all bags X with X(bri) ≺ X � X(b`i+1), for i = 1, . . . , L − 1. Pay for these
additions with the first token of (u, v). We know that each of these bag has
such a token, since X(b`1) and X(brL) contain {u, v} by definition, and the
bags between must contain {u, v} by properties of a path decomposition.
Finally add edge (b`1, b

r
0). Create a path decomposition for this by adding b`1

to all bags from X(b`1) to X(br0), and pay for it with the second cutting-pair-
token of (u, v).

Observation 1 applies to all added edges, since the ends of each edge are
peripheral-vertices of two different cut-components, even after considering
that previous edge-additions merged some them. Hence the resulting graph
is a multi-triangulation after we deleted L+ 1 copies of multi-edge (u, v).
Since {u, v} ceases to be a cutting pair after adding these edges, the invariant
holds again since we only used tokens of {u, v}.

After repeatedly applying the above edge-additions to all cutting pairs, we hence
end with a triangulated graph and a path decomposition of width at most
2pw(G) + 1 + 2c as desired. This proves Lemma 2.

Lemma 4. Let G be a 2-connected planar graph with n ≥ 3 vertices. Then we
can triangulate G, after possibly changing the planar embedding, such that the
result has pathwidth at most 8pw(G)− 5.

Proof. By Lemma 1 we ca multi-triangulate G without increasing the pathwidth.
Call the result G1. By Lemma 2 we can triangulate G1 such that the resulting
graph G2 has pw(G2) ≤ 2pw(G) + 1 + 2c.

It remains to bound c. Recall that this is the maximum number of cutting
pairs ofG1 for which all vertices occur in one bagXi (of some path decomposition
P of width pw(G1)). Each such cutting pair corresponds to a multi-edge in
G1. Let G[Xi] be the graph induced by Xi and Gs be its underlying simple
graph. Each such cutting pair hence corresponds to an edge in Gs. Since Gs is
planar and simple and has |Xi| vertices, it has at most 3|Xi| − 6 ≤ 3(pw(G) +
1) − 6 = 3pw(G) − 3 edges if |Xi| ≥ 3. If |Xi| ≤ 2, then Gs has at most
1 ≤ 3pw(G) − 3 edges since pw(G) ≥ 2 (a graph of pathwidth 1 is a forest and
cannot be 2-connected). Thus either way Gs has at most 3pw(G)−3 edges, hence
c ≤ 3pw(G)− 3 and pw(G2) ≤ 2pw(G) + 1 + 2c ≤ 8pw(G)− 5 as desired. ut

5 2-connecting an outer-planar graph

Recall that one motivation for this paper was the question how to make an outer-
planar graph 2-connected by adding edges without increasing the pathwidth
much. A maximal outer-planar graph is a simple outer-planar graph to which
we cannot add edges without violating planarity, simplicity, or outer-planarity.
Such a graph is 2-connected.

Theorem 1. Let G be a simple connected outer-planar graph. Then we can add
edges to G, after possibly changing the planar embedding, to obtain a maximal
outer-planar graph G′ with pw(G′) ≤ 4pw(G) + 4.

Proof. If n = 1 then G is already maximal outer-planar, so assume n ≥ 2. Add
a universal vertex z∗ to G and call the result G1; we know that G1 is planar
and pw(G1) = pw(G) + 1 since we can add z∗ to all bags. Observe that G1 − v
is connected for any v 6= z∗ since z∗ is adjacent to all vertices. Therefore G1 is
2-connected and any cutting pair of G1 must include z∗.

Use Lemma 1 to multi-triangulate G1 without increasing pathwidth, and call
the result G2; we have pw(G2) = pw(G)+1. Now use Lemma 2 to triangulate G2,
and call the result G3. We have pw(G3) ≤ 2pw(G2) + 1 + 2c ≤ 2pw(G) + 3 + 2c.

Since any cutting pair includes z∗, we can get an improved bound for c as
follows. Let P2 be any path decomposition of G2 of width pw(G2) and let Xi

be any bag of P2; we have |Xi| ≤ pw(G2) + 1 = pw(G) + 2. If Xi contains
cutting pairs, then it must contain z∗. Each such cutting pair uses z∗ and one
other vertex in Xi, so there are at most |Xi| − 1 cutting pairs with both ends
in Xi, and c ≤ |Xi| − 1 ≤ pw(G) + 1. Putting it all together, we have pw(G3) ≤
2pw(G) + 3 + 2(pw(G) + 1) = 4pw(G) + 5.

Finally delete the added vertex z∗ to obtain G4, which has the same vertices
as G. Since z∗ was universal and G3 was triangulated, G4 is maximal outer-
planar. Since z∗ was universal, pw(G4) = pw(G3) − 1 ≤ 4pw(G) + 4 and hence
G4 satisfies all conditions on G′. ut

We note here that the bound can be improved to 4pw(G) + 3 by delving into
the proofs of Lemma 2 and Lemma 3 and observing that the vertex-token of z∗

will never be used as child-peripheral-pair-token, since z∗ is in all cutting pairs.
We leave the details to the reader.

6 All graphs

We now show how to handle cutvertices and disconnected graphs.

Lemma 5. Any simple connected planar graph G with n ≥ 3 can be triangulated,
after possibly changing the planar embedding, so that the result has pathwidth at
most 16pw(G) + 3.

Proof. Let v1 be a cut-vertex of G. Add a new vertex z1 as follows.

v1

z1

Let C0, . . . , CL be the cut-components of v1.
Rearrange the planar embedding at v1 such
that for each Cj the edges from v1 to Cj
are consecutive at v1. In consequence, there
now exists a face f1 that is incident to all
cut-components of v1. Insert a new vertex
z1 in face f1, and make it adjacent to v1
and to all neighbors x of v1 that are on f1.
Afterwards v1 is no longer a cut-vertex, and
z1 is also not a cut-vertex.

We can obtain a path decomposition ofG∪{z1} by taking one ofG and adding
z1 to all bags that contains v1. This covers all new edges since all neighbors of
z1 are neighbors of v1.

Repeat the process in the resulting graph until there are no cut-vertices left.
Call the final graph G1. Since none of the new vertices were cut-vertices, we
added at most |Xi| new vertices to each bag Xi of a path decomposition of G.
Hence the bag-size at most doubles and pw(G1) ≤ 2pw(G) + 1.

Now multi-triangulate G1 with Lemma 1 and call the result G2. We have
pw(G2) = pw(G1) ≤ 2pw(G) + 1. Now triangulate G2 with Lemma 4 and call
the resultG3. We have pw(G3) ≤ 8pw(G2)−5 ≤ 8(2pw(G)+1)−5 = 16pw(G)+3.

Now we must remove the added vertices while keeping a triangulated graph,
and do this by contracting each into a suitable neighbor. Observe that the neigh-
bors of z1 form a simple cycle since G3 is triangulated. Hence these neighbors
induce a simple outer-planar 2-connected graph. It is well-known that every such
graph has a vertex of degree 2. Therefore z1 has a neighbor y1 such that y1 and
z1 have exactly two common neighbors (which are the third vertices on the faces
incident to edge (z1, y1)). Contract edge (z1, y1), i.e., delete z1 and re-route every
incident edge of z1 to end at y1 instead. Delete resulting loops and multi-edges.
Because z1 and y1 had exactly two neighbors in common, the resulting graph is
again triangulated. Repeat the process for the other added vertices.

At the end the graph G4 that results has the same vertices as G. It is well-
known that contraction of an edge does not increase pathwidth, so pw(G4) ≤
pw(G3) ≤ 16pw(G) + 3 as desired. ut

As for disconnected graphs, one can easily show the following [5]:

Lemma 6. Let G be a planar graph. Then we can add edges to G so that the
resulting graph G′ is planar, connected, and pw(G′) = max{1, pw(G)}.

Hence we can triangulate G by first creating G′ and then triangulating G′.

7 Conclusion

In this paper, we studied how to add edges to a planar graph without increasing
the pathwidth much. We summarize all our results with the following:

Theorem 2. Let G be a simple planar graph with at least 3 vertices. Then we
can triangulate G such that the result G′ has

– pw(G′) = pw(G) if G is 3-connected,
– pw(G′) ≤ 8pw(G)− 5 if G is 2-connected,
– pw(G′) ≤ 16pw(G) + 3 otherwise.

It may also be of interest to observe that our construction does not change
a given path decomposition of the graph other than by adding more vertices
to some bags. On the other hand, our construction often changes the planar
embedding. Is it possible to triangulate a graph without increasing the pathwidth
much and without changing the planar embedding?

Following the steps of the proof, one can see that the triangulation can be
found in linear time, presuming that we are given a path decomposition of width
pw(G) in the form of the index of the first and last bag containing v for every
vertex v. There is no need to compute triconnected components: One can find
child-components via multi-edges, and the paths in Lemma 3 are only needed
for accounting purposes and need not be computed.

The obvious open problem is to improve the factors, especially for 2-connected
graphs. Can every planar graph G be triangulated so that the result has path-
width at most max{3, pw(G)}?

It would also be of interest to study other width-parameters (such as the
carving width, bandwidth, clique-width, etc.) and ask whether planar graphs
can be triangulated while keeping the width-parameter asymptotically the same.

References

1. J. Babu, M. Basavaraju, L. Sunil Chandran, and D. Rajendraprasad. 2-connecting
outerplanar graphs without blowing up the pathwidth. Theor. Comput. Sci.,
554:119–134, 2014.

2. T. Biedl, G. Kant, and M. Kaufmann. On triangulating planar graphs under the
four-connectivity constraint. Algorithmica, 19(4):427–446, 1997.

3. T. Biedl. A 4-approximation algorithm for the height of drawing 2-connected outer-
planar graph. In Workshop on Approximation and Online Algorithms (WAOA’12),
volume 7846 of Lecture Notes in Computer Science, pages 272–285. Springer-
Verlag, 2013.

4. T. Biedl. On triangulating k-outerplanar graphs. Discrete Applied Mathematics,
181:275–279, 2015.

5. T. Biedl. Triangulating planar graphs while keeping the pathwidth small. Technical
report, ArXiV, 2015. To appear.

6. T. Biedl and L.E. Ruiz Velázquez. Drawing planar 3-trees with given face areas.
Computational Geometry: Theory and Applications, 46(3):276–285, 2013.

7. H. Bodlaender. Treewidth: algorithmic techniques and results. In Mathematical
Foundations of Computer Science (MFCS 1997), volume 1295 of Lecture Notes in
Computer Science, pages 19–36. Springer-Verlag, 1997.

8. G. Di Battista and R. Tamassia. On-line planarity testing. SIAM J. Computing,
25(5), 1996.

9. S. Felsner, G. Liotta, and S. Wismath. Straight-line drawings on restricted integer
grids in two and three dimensions. Journal of Graph Algorithms and Applications,
7(4):335–362, 2003.

10. H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41–51, 1990.

11. M. C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
New York, 1st edition, 1980.

12. C. Gutwenger, P. Mutzel, and B. Zey. On the hardness and approximability
of planar biconnectivity augmentation. In Computing and Combinatorics (CO-
COON’09), volume 5609 of LNCS, pages 249–257. Springer, 2009.

13. G. Kant and H. Bodlaender. Triangulating planar graphs while minimizing the
maximum degree. In Scandinavian Workshop on Algorithm Theory (SWAT’92),
volume 621 of LNCS, pages 258–271. Springer, 1992.

14. W. Schnyder. Embedding planar graphs on the grid. In ACM-SIAM Symposium
on Discrete Algorithms (SODA ’90), pages 138–148, 1990.

15. M. Suderman. Pathwidth and layered drawings of trees. International Journal of
Computational Geometry and Applications, 14(3):203–225, 2004.

A Missing details

A.1 Properties of multi-triangulated graphs

Lemma 7. Let G be a multi-triangulated planar graph with n ≥ 3 vertices. Fix
an arbitrary planar embedding for which all faces are triangles. The following
holds:

1. G is 2-connected.
2. Any cutting pair {u, v} gives rise to a multi-edge (u, v).
3. For any multi-edge (u, v), {u, v} is a cutting pair, and the number of its

cut-components equals the multiplicity of the multi-edge.
4. For any cutting pair {u, v} with a cut-component C in the order of edges

around u the edges to int (C) appear consecutively, and are preceded and
succeeded by copies of (u, v).

Proof. Let S be a cut-set (i.e., either cut-vertex or cutting pair). Consider a
vertex v ∈ S. Assume for contradiction that in the clockwise order around v
there are two consecutive neighbors w1, w2 with w1 ∈ int (C1) and w2 ∈ int (C2)
for two different cut-components C1, C2 of S. Consider the face f that is be-
tween edges (v, w1), (v, w2) at v. Since w1, w2 are in the interior of different
cut-components, we cannot have an edge (w1, w2). We must have w1 6= v 6= w2,
since otherwise there would be a loop. Therefore face f is incident to at least 4
edges. Contradiction.

Thus for any two cut-components of S, edges from v to the inside of the cut-
component cannot be consecutive. Thus, there must an edge between any two
cut-components (in the clockwise order around v) for which the other endpoint
is also in S. If |S| = 1 then such an edge would be a loop, a contradiction.
Therefore no cut-set can have size 1 and G is 2-connected; this proves (1).

If |S| = 2, say S is the cutting pair {u, v}, then the cut-components are
separated by copies of edge (u, v). If there are L cut-components C1, . . . , CL for
L ≥ 2, then there are at least L places in the clockwise order around v where
we switch from one cut-component to the next one, so we must have at least L
copies of (u, v). This proves (2).

Let e0, . . . , e`−1 be the copies of (u, v), enumerated in the clockwise order
around v. We have just shown ` ≥ L. For i = 1, . . . , `, edges ei−1 and ei cannot
be consecutive at v (where indices are modulo L), otherwise there would be a
face of degree 2. So there must be vertices other than u between ei−1 and ei.
Further, the cycle formed by ei−1 and ei separates everything on one side from
everything on the other side. So the subgraph between ei−1 and ei contains at
least one cut-component of {u, v}. It follows that ` ≤ L, and so ` = L. This
proves (3).

Since ` = L, the subgraph between ei−1 and ei must contain exactly one cut-
component of {u, v}. Therefore in the cyclic order around v we alternate between
a copy of (u, v) and all edges to exactly one cut-component. This proves (4). ut
Lemma 8. Every multi-triangulated graph has at least one edge that is not a
multiple edge.

Proof. Fix one arbitrary planar drawing Γ of G for which all facial circuits have
three edges. Nothing is to show if G is simple, so assume G has multi-edges. If
e1, e2 are two copies of a multi-edge, then their drawing defines a closed curve C.
This curve cannot be the boundary of a face since facial circuits have three edges.
In consequence, at least one vertex must be inside any closed curve defined by
two copies of a multi-edge.

Assume that e1, e2 has been chosen such that their closed curve encloses the
minimum possible number of vertices among all such pairs. Let v be a vertex
inside that curve, and let e be an edge incident to v. Then e must be simple by
choice of e1, e2. ut

A.2 Finding paths for child-peripheral pairs

This section gives the proof of Lemma 3, which states the following:

Let B be the set of all child-peripheral pairs in G. There exists a set of
vertex-disjoint paths P1, . . . , P|B| in G such that for any child-peripheral-

pair {b`, br} in B, one of the paths connects b` with br.

Consider any child-peripheral-pair {b`i , bri }, say at cut-component Ci of cutting
pair {u, v}. As argued in the main part of the paper, then {u, v, b`i , bri } must all
belong to one triconnected component, call it D. Since D is 3-connected, there
must exist a path P from b`i to bri within D − {u, v}, and this is the path that
we use for this child-peripheral pair.

It remains to argue that these paths are disjoint. Let {b′, b′′} be some other
child-peripheral-pair, say at cutting pair {u′, v′}, such that {b′, b′′, u′, v′} belong
to triconnected component D′ and we assigned a path P ′ in D′−{u′, v′} to this
child-peripheral pair.

Recall that cutting pair {u, v} splits the graph into multiple cut-components.
One of those is Ci, the child-component that contained b`i and bri and therefore
also the triconnected component D and the path P . We now distinguish cases
depending on which of the cut-components contains D′:

– D′ is part of a child-component of {u, v} other than Ci.
We know that child-cut-components are vertex-disjoint except for {u, v}.
Therefore D and D′ are vertex-disjoint except for perhaps {u, v}. Hence P
and P ′ are vertex-disjoint.

– D′ is part of the parent-component of {u, v}.
As before, since cut-components are vertex-disjoint except for {u, v}, this
implies that P and P ′ are vertex-disjoint.

– D′ is part of the child-component Cj of {u, v}.
This implies that {u, v} 6= {u′, v′}, since for each cutting pair, each cut-
component gets only one peripheral pair. (u = u′ or v = v′ is possible, but
not both.) Changing the point of view, now consider the cut-components of
{u′, v′}. Here D′ belongs to a child-component (because {b′, b′′} is a child-
peripheral-pair), but D belongs to the parent-component (since D′ belongs
to a child-component of {u, v}). Exchanging the roles of the two cutting pairs
hence shows as in the previous case that P and P ′ are vertex-disjoint. ut

A.3 Making graphs connected

In this section, we give a proof of Lemma 6, which states:

Let G be a planar graph. Then we can add edges to G so that the
resulting graph G′ is planar, connected, and pw(G′) = max{1, pw(G)}.

Let C1, . . . , CL be the connected components of G. Each of them has path-
width at most pw(G) since they are subgraphs of G; let Pi be a path decompo-
sition of Ci of width at most pw(G). Start with path decomposition P1. Append
one new bag, into which we insert one arbitrary vertex v1 from the last bag of P1

and one arbitrary vertex u2 from the first bag of P2. Then append P2. Repeat
with the remaining components: insert a new bag after the last bag of Pi, give
it one vertex vi from the last bag of Pi and one vertex ui+1 from the first bag
of Pi+1, and then append Pi+1. Clearly we get a path decomposition P of G of
width max{1, pw(G)}.

Define G′ to be the graph obtained by adding (ui, vi+1) to G, for i =
1, . . . , L − 1. Clearly P is also a path decomposition of G′, since we created
bags for each of these new edges. Also G′ is planar since adding an edge between
two vertices in different connected components cannot destroy planarity. This
shows the result. ut

	 Triangulating planar graphs while keeping the pathwidth small

