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The Stable Roommates problem with short lists

Ágnes Cseh1?, Robert W. Irving2, and David F. Manlove2??

1 School of Computer Science, Reykjavik University, e-mail: cseh@ru.is
2 School of Computing Science, University of Glasgow,
e-mail: {Rob.Irving,David.Manlove}@glasgow.ac.uk

Abstract. We consider two variants of the classical Stable Roommates
problem with Incomplete (but strictly ordered) preference lists (sri) that
are degree constrained, i.e., preference lists are of bounded length. The
first variant, egal d-sri, involves finding an egalitarian stable matching
in solvable instances of sri with preference lists of length at most d. We
show that this problem is NP-hard even if d = 3. On the positive side
we give a 2d+3

7 -approximation algorithm for d ∈ {3, 4, 5} which improves
on the known bound of 2 for the unbounded preference list case. In the
second variant of sri, called d-srti, preference lists can include ties and
are of length at most d. We show that the problem of deciding whether
an instance of d-srti admits a stable matching is NP-complete even if
d = 3. We also consider the “most stable” version of this problem and
prove a strong inapproximability bound for the d = 3 case. However for
d = 2 we show that the latter problem can be solved in polynomial time.

1 Introduction

In the Stable Roommates problem with Incomplete lists (sri), a graph G = (A,E)
and a set of preference lists O are given, where the vertices A = {a1, . . . , an}
correspond to agents, and O = {≺1, . . . ,≺n}, where ≺i is a linear order on the
vertices adjacent to ai in G (1 ≤ i ≤ n). We refer to ≺i as ai’s preference list.
The agents that are adjacent to ai in G are said to be acceptable to ai. If aj and
ak are two acceptable agents for ai where aj ≺i ak then we say that ai prefers
aj to ak.

Let M be a matching in G. If aiaj ∈ M then we let M(ai) denote aj . An
edge aiaj /∈ M blocks M , or forms a blocking edge of M , if ai is unmatched or
prefers aj to M(ai), and similarly aj is unmatched or prefers ai to M(aj). A
matching is called stable if no edge blocks it. Denote by sr the special case of
sri in which G = Kn. Gale and Shapley [8] observed that an instance of sr
need not admit a stable matching. Irving [13] gave a linear-time algorithm to
find a stable matching or report that none exists, given an instance of sr. The
? Supported by Icelandic Research Fund grant no. 152679-051, the Hungarian
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straightforward modification of this algorithm to the sri case is described in [10].
We call an sri instance solvable if it admits a stable matching.

In practice agents may find it difficult to rank a large number of alternatives
in strict order of preference. One natural assumption, therefore, is that preference
lists are short, which corresponds to the graph being of bounded degree. Given
an integer d ≥ 1, we define d-sri to be the restriction of sri in which G is of
bounded degree d. This special case of sri problem has potential applications
in organising tournaments. As already pointed out in a paper of Kujansuu et
al. [16], sri can model a pairing process similar to the Swiss system, which is used
in large-scale chess competitions. The assumption on short lists is reasonable,
because according to the Swiss system, players can be matched only to other
players with approximately the same score.

A second variant of sri, which can be motivated in a similar fashion, arises
if we allow ties in the preference lists, i.e., ≺i is now a strict weak ordering3

(1 ≤ i ≤ n). We refer to this problem as the Stable Roommates problem with
Ties and Incomplete lists (srti) [15]. As in the sri case, define d-srti to be the
restriction of srti in which G is of bounded degree d. Denote by srt the special
case of srti in which G = Kn. In the context of the motivating application of
chess tournament construction as mentioned in the previous paragraph, d-srti
is naturally obtained if a chess player has several potential partners of the same
score and match history in the tournament.

In the srti context, ties correspond to indifference in the preference lists.
In particular, if aiaj ∈ E and aiak ∈ E where aj 6≺i ak and ak 6≺i aj then ai

is said to be indifferent between aj and ak. Thus preference in the sri context
corresponds to strict preference in the case of srti. Relative to the strict weak
orders in O, we can define stability in srti instances in exactly the same way
as for sri. This means, for example, that if aiaj ∈ M for some matching M ,
and ai is indifferent between aj and some agent ak, then aiak cannot block M .
The term solvable can be defined in the srti context in an analogous fashion to
sri. Using a highly technical reduction from a restriction of 3-sat, Ronn [20]
proved that the problem of deciding whether a given srt instance is solvable is
NP-complete. A simpler reduction was given by Irving and Manlove [15].

For solvable instances of sri there can be many stable matchings. Often it
is beneficial to work with a stable matching that is fair to all agents in a precise
sense [9,14]. One such fairness concept can be defined as follows. Given two
agents ai, aj in an instance I of sri, where aiaj ∈ E, let rank(ai, aj) denote the
rank of aj in ai’s preference list (that is, 1 plus the number of agents that ai

prefers to aj). Let AM denote the set of agents who are matched in a given stable
matching M . (Note that this set depends only on I and is independent of M by
[10, Theorem 4.5.2].) Define c(M) =

∑
ai∈AM

rank(ai,M(ai)) to be the cost of
M . An egalitarian stable matching is a stable matching M that minimises c(M)
over the set of stable matchings in I. Finding an egalitarian stable matching in
sr was shown to be NP-hard by Feder [6]. Feder [6,7] also gave a 2-approximation
algorithm for this problem in the sri setting. He also showed that an egalitarian
3 That is, ≺i is a strict partial order in which incomparability is transitive.
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stable matching in sr can be approximated within a factor of α of the optimum
if and only if Minimum Vertex Cover can be approximated within the same
factor α. Is was proved later that, assuming the Unique Games Conjecture,
Minimum Vertex Cover cannot be approximated within 2− ε for any ε > 0 [17].

Given an unsolvable instance I of sri or srti, a natural approximation to
a stable matching is a most-stable matching [1]. Relative to a matching M in
I, define bp(M) to be the set of blocking edges of M and let bp(I) denote the
minimum value of |bp(M ′)|, taken over all matchings M ′ in I. Then M is a most-
stable matching in I if |bp(M)| = bp(I). The problem of finding a most-stable
matching was shown to be NP-hard and not approximable within nk−ε, for any
ε > 0, unless P = NP, where k = 1

2 if I is an instance of sr and k = 1 if I is an
instance of srt [1].

To the best of our knowledge, there has not been any previous work published
on either the problem of finding an egalitarian stable matching in a solvable
instance of sri with bounded-length preference lists or the solvability of srti
with bounded-length preference lists. This paper provides contributions in both
of these directions, focusing on instances of d-sri and d-srti for d ≥ 2, with the
aim of drawing the line between polynomial-time solvability and NP-hardness
for the associated problems in terms of d.

Our contribution. In Section 2 we study the problem of finding an egalitarian
stable matching in an instance of d-sri. We show that this problem is NP-hard
if d = 3, whilst there is a straightforward algorithm for the case that d = 2.
We then consider the approximability of this problem for the case that d ≥ 3.
We give an approximation algorithm with a performance guarantee of 9

7 for the
case that d = 3, 11

7 if d = 4 and 13
7 if d = 5. These performance guarantees

improve on Feder’s 2-approximation algorithm for the general sri case [6,7]. In
Section 3 we turn to d-srti and prove that the problem of deciding whether an
instance of 3-srti is solvable is NP-complete. We then show that the problem of
finding a most-stable matching in an instance of d-srti is solvable in polynomial
time if d = 2, whilst for d = 3 we show that this problem is NP-hard and
not approximable within n1−ε, for any ε > 0, unless P = NP. Due to various
complications, as explained in Appendix A of the full version of this paper [5],
we do not attempt to define and study egalitarian stable matchings in instances
of srti. A structured overview of previous results and our results (marked by *)
for d-sri and d-srti is contained in Table 1. All missing proofs are contained in
Appendix B of the full version of this paper [5].

Related work. Degree-bounded graphs, most-stable matchings and egalitarian
stable matchings are widely studied concepts in the literature on matching under
preferences [18]. As already mentioned, the problem of finding a most-stable
matching has been studied previously in the context of sri [1]. In addition to
the results surveyed already, the authors of [1] gave an O(mk+1) algorithm to
find a matching M with |bp(M)| ≤ k or report that no such matching exists,
where m = |E| and k ≥ 1 is any integer. Most-stable matchings have also been
considered in the context of d-sri [3]. The authors showed that, if d = 3, there is
some constant c > 1 such that the problem of finding a most-stable matching is
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finding a stable matching finding an egalitarian stable matching

d-sri in P [13,10]

in P for d = 2 (*)
NP-hard even for d = 3 (*)

2d+3
7 -approximation for d ∈ {3, 4, 5} (*)

2-approximation for d ≥ 6 [6,7]

d-srti in P for d = 2 (*)
NP-hard even for d = 3 (*) not well-defined (see [5, Appendix A])

Table 1. Summary of results for d-sri and d-srti.

not approximable within c unless P = NP. On the other hand, they proved that
the problem is solvable in polynomial time for d ≤ 2. The authors also gave a
(2d−3)-approximation algorithm for the problem for fixed d ≥ 3. This bound was
improved to 2d−4 if the given instance satisfies an additional condition (namely
the absence of a structure called an elitist odd party). Most-stable matchings have
also been studied in the bipartite restriction of sri called the Stable Marriage
problem with Incomplete lists (smi) [12,4]. Since every instance of smi admits a
stable matching M (and hence bp(M) = ∅), the focus in [12,4] was on finding
maximum cardinality matchings with the minimum number of blocking edges.

Regarding the problem of finding an egalitarian stable matching in an in-
stance of sri, as already mentioned Feder [6,7] showed that this problem is NP-
hard, though approximable within a factor of 2. A 2-approximation algorithm
for this problem was also given independently by Gusfield and Pitt [11], and by
Teo and Sethuraman [23]. These approximation algorithms can also be extended
to the more general setting where we are given a weight function on the edges,
and we seek a stable matching of minimum weight. Feder’s 2-approximation
algorithm requires monotone, non-negative and integral edge weights, whereas
with the help of LP techniques [22,23], the integrality constraint can be dropped,
while the monotonicity constraint can be partially relaxed.

2 The Egalitarian Stable Roommates problem

In this section we consider the complexity and approximability of the problem
of computing an egalitarian stable matching in instances of d-sri. We begin by
defining the following problems.

Problem 1. egal d-sri
Input: A solvable instance I = 〈G,O〉 of d-sri, where G is a graph and O is a
set of preference lists, each of length at most d.
Output: An egalitarian stable matching M in I.

The decision version of egal d-sri is defined as follows:

Problem 2. egal d-sri dec
Input: I = 〈G,O,K ′〉, where 〈G,O〉 is a solvable instance I ′ of d-sri and K ′ is
an integer.
Question: Does I ′ admit a stable matching M with c(M) ≤ K ′?



5

In [5, Appendix B] we give a reduction from the NP-complete decision version
of Minimum Vertex Cover in cubic graphs to egal 3-sri dec, deriving the
hardness of the latter problem.

Theorem 1. egal 3-sri dec is NP-complete.

Theorem 1 immediately implies the following result.

Corollary 2. egal 3-sri is NP-hard.

We remark that egal 2-sri is trivially solvable in polynomial time: the
components of the graph are paths and cycles in this case, and the cost of a
stable matching selected in one component is not affected by the matching edges
chosen in another component. Therefore we can deal with each path and cycle
separately, minimising the cost of a stable matching in each. Paths and odd cycles
admit exactly one stable matching (recall that (i) the instance is assumed to be
solvable, and (ii) the set of matched agents is the same in all stable matchings
[10, Theorem 4.5.2]), whilst even cycles admit at most two stable matchings (to
find them, just pick the two perfect matchings and test each for stability) – we
can just pick the stable matching with lower cost in such a case. The following
result is therefore immediate.

Proposition 3. egal 2-sri admits a linear-time algorithm.

Corollary 2 naturally leads to the question of the approximabilty of egal
d-sri. As mentioned in the Introduction, Feder [6,7] provided a 2-approximation
algorithm for the problem of finding an egalitarian stable matching in an instance
of sri. As Theorems 4, 6 and 7 show, this bound can be improved for instances
with bounded-length preference lists.

Theorem 4. egal 3-sri is approximable within 9/7.

Proof. Let I be an instance of 3-sri and let Megal denote an egalitarian sta-
ble matching in I. First we show that any stable matching in I is a 4/3-
approximation to Megal. We then focus on the worst-case scenario when this
ratio 4/3 is in fact realised. Then we design a weight function on the edges of
the graph and apply Teo and Sethuraman’s 2-approximation algorithm [22,23]
to find an approximate solution M ′ to a minimum weight stable matching Mopt

for this weight function. This weight function helps M ′ to avoid the worst case
for the 4/3-approximation for a significant amount of the matching edges. We
will ultimately show that M ′ is in fact a 9/7-approximation to Megal.

Claim 5. In an instance of egal 3-sri, any stable matching approximates
c(Megal) within a factor of 4/3.

Proof. Let M be an arbitrary stable matching in I. Call an edge uv an (i, j)-pair
(i ≤ j) if v is u’s ith choice and u is v’s jth choice. By Theorem 4.5.2 of [10], the
set of agents matched in Megal is identical to the set of agents matched in M . We
will now study the worst approximation ratios in all cases of (i, j)-pairs, given
that 1 ≤ i ≤ j ≤ 3 in 3-sri.
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• If uv ∈Megal is a (1, 1)-pair then u and v contribute 2 to c(Megal) and also
2 to c(M) since they must be also be matched in M (and in every stable
matching).

• If uv ∈ Megal is a (1, 2)-pair then u and v contribute 3 to c(Megal) and at
most 4 to c(M). Since, if uv /∈M , then v must be matched to his 1st choice
and u to his 2nd or 3rd, because one of u and v must be better off and the
other must be worse off in M than in Megal.

• If uv ∈ Megal is a (1, 3)-pair then u and v contribute 4 to c(Megal) and at
most 5 to c(M). Since, if uv /∈M , then v must be matched to his 1st or 2nd
choice and u to his 2nd or 3rd.

• If uv ∈ Megal is a (2, 2)-pair then u and v contribute 4 to c(Megal) and at
most 4 to c(M). Since, if uv /∈ M , then one must be matched to his 1st
choice and the other to his 3rd.

• If uv ∈ Megal is a (2, 3)-pair then u and v contribute 5 to c(Megal) and at
most 5 to c(M). Since, if uv /∈M , then v must be matched to his 1st or 2nd
choice and u to his 3rd.

• If uv ∈ Megal is a (3,3)-pair then u and v contribute 6 to c(Megal) and also
6 to c(M) since they must be also be matched in M (and in every stable
matching – this follows by [10, Lemma 4.3.9]).

It follows that, for every pair uv ∈Megal,

rank(u,M(u)) + rank(v,M(v))
rank(u,Megal(u)) + rank(v,Megal(v)) = rank(u,M(u)) + rank(v,M(v))

rank(u, v) + rank(v, u) ≤ 4/3.

Hence c(M)/c(Megal) ≤ 4/3 and Claim 5 is proved.

As shown in Claim 5, the only case when the approximation ratio 4/3 is
reached is where Megal consists of (1,2)-pairs exclusively, while the stable match-
ing output by the approximation algorithm contains (1,3)-pairs only. We will now
present an algorithm that either delivers a stable solution M ′ containing at least
a significant amount of the (1,2)-pairs in Megal or a certificate that Megal contains
only a few (1,2)-pairs and thus any stable solution is a good approximation.

To simplify our proof, we execute some basic pre-processing of the input
graph. If there are any (1,1)-pairs in G, then these can be fixed, because they
occur in every stable matching and thus can only lower the approximation ratio.
Similarly, if an arbitrary stable matching contains a (3,3)-pair, then this edge
appears in all stable matchings and thus we can fix it. Those (3,3)-pairs that
do not belong to the set of stable edges can be deleted from the graph. From
this point on, we assume that no edge is ranked first or last by both of its end
vertices in G and prove the approximation ratio for such graphs.

Take the following weight function on all uv ∈ E:

w(uv) =
{

0 if uv is a (1,2)-pair,
1 otherwise.
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We designed w(uv) to fit the necessary U-shaped condition of Teo and Sethu-
raman’s 2-approximation algorithm [22,23]. This condition on the weight func-
tion is as follows. We are given a function fp on the neighbouring edges of a
vertex p. Function fp is U-shaped if it is non-negative and there is a neighbour q
of p so that fp is monotone decreasing on neighbours in order of p’s preference
until q, and fp is monotone increasing on neighbours in order of p’s preference
after q. The approximation guarantee of Teo and Sethuraman’s algorithm holds
for an edge weight function w(uv) if for every edge uv ∈ E, w(uv) can be written
as w(uv) = fu(uv) + fv(uv), where fu and fv are U-shaped functions.

Our w(uv) function is clearly U-shaped, because at each vertex the sequence
of edges in order of preference is either monotone increasing or it is (1, 0, 1).
Since w itself is U-shaped, it is easy to decompose it into a sum of U-shaped fv

functions, for example by setting fv(uv) = fu(uv) = w(uv)
2 for every edge uv.

Let M denote an arbitrary stable matching and M (1,2) be the set of (1,2)-
pairs in a matching M and Mopt be a minimum weight stable matching with
respect to the weight function w(uv). Since Mopt is by definition the stable
matching with the largest number of (1,2)-pairs, |M (1,2)

opt | ≥ |M
(1,2)
egal |. We also

know that w(M) = |M | − |M (1,2)| for every stable matching M .
Due to Teo and Sethuraman’s approximation algorithm [22,23], it is possible

to find a stable matching M ′ whose weight approximates w(Mopt) within a factor
of 2. Formally,

|M | − |M ′(1,2)| = w(M ′) ≤ 2w(Mopt) = 2|M | − 2|M (1,2)
opt |.

This gives us a lower bound on |M ′(1,2)|.

|M ′(1,2)| ≥ 2|M (1,2)
opt | − |M | ≥ 2|M (1,2)

egal | − |M | (1)

We distinguish two cases from here on, depending on the sign of the term on
the right. In both cases, we establish a lower bound on c(Megal) and an upper
bound on c(M ′). These will give the desired upper bound of 9/7 on c(M ′)

c(Megal) .

1) 2|M (1,2)
egal | − |M | ≤ 0

The derived lower bound for |M ′(1,2)| is negative or zero in this case. Yet we
know that at most half of the edges in Megal are (1,2)-pairs, and c(e) ≥ 4 for
the rest of the edges in Megal. Let us denote |M | − 2|M (1,2)

egal | ≥ 0 by x. Thus,
|M (1,2)

egal | =
|M |−x

2 .

c(Megal) ≥
|M | − x

2 · 3 + |M |+ x

2 · 4 = 3.5|M |+ 0.5x (2)

We use our arguments in the proof of Claim 5 to derive that an arbitrary
stable matching approximates c(Megal) on the |M |−x

2 (1,2)-edges within a
ratio of 4

3 , while its cost on the remaining |M |+x
2 edges is at most 5. These

imply the following inequalities for an arbitrary stable matching M .

c(M) ≤ |M | − x2 · 3 · 4
3 + |M |+ x

2 · 5 = 4.5|M |+ 0.5x (3)
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We now combine (2) and (3). The last inequality holds for all x ≥ 0.

c(M)
c(Megal)

≤ 4.5|M |+ 0.5x
3.5|M |+ 0.5x ≤

9
7

2) 2|M (1,2)
egal | − |M | > 0

Let us denote 2|M (1,2)
egal | − |M | by x̂. Notice that |M (1,2)

egal | = x̂+|M |
2 . We can

now express now the number of edges with cost 3, and at least 4 in Megal.

c(Megal) ≥ 3 · x̂+ |M |
2 + 4 ·

(
|M | − x̂+ |M |

2

)
= 3.5|M | − 0.5x̂ (4)

Let |M ′(1,2)| = z1. Then exactly z1 edges in M ′ have cost 3. It follows from
(1) that z1 ≥ x̂. Suppose that z2 ≤ z1 edges in M ′(1,2) correspond to edges
in M

(1,2)
egal . Recall that |M (1,2)

egal | = x̂+|M |
2 . The remaining |M |+x̂

2 − z2 edges in
M

(1,2)
egal have cost at most 4 in M ′. This leaves |M | − |M (1,2)

egal | − (z1 − z2) =
|M |−x̂

2 − z1 + z2 edges in Megal that are as yet unaccounted for; these have
cost at most 5 in both Megal and M ′. We thus obtain:

c(M ′) ≤ 3z1 + 4
(
|M |+ x̂

2 − z2

)
+ 5

(
|M | − x̂

2 − z1 + z2

)
= 4.5|M | − 0.5x̂− 2z1 + z2

≤ 4.5|M | − 1.5x̂ (5)

Combining (4) and (5) delivers the following bound.

c(M ′)
c(Megal)

≤ 4.5|M | − 1.5x̂
3.5|M | − 0.5x̂ <

9
7

The last inequality holds for every x̂ > 0.

We derived that M ′, the 2-approximate solution with respect to the weight
function w(uv) delivers a 9

7 -approximation in both cases.

Using analogous techniques we can establish similar approximation bounds
for egal 4-sri and egal 5-sri, as follows.

Theorem 6. egal 4-sri is approximable within 11/7.

Theorem 7. egal 5-sri is approximable within 13/7.

Using a similar reasoning for each d ≥ 6, our approach gives a cd-approximation
algorithm for egal d-sri where cd > 2. In these cases the 2-approximation al-
gorithm of Feder [6,7] should be used instead.
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3 Solvability and most-stable matchings in d-srti

In this section we study the complexity and approximability of the problem
of deciding whether an instance of d-srti admits a stable matching, and the
problem of finding a most-stable matching given an instance of d-srti.

We begin by defining two problems that we will be studying in this section
from the point of view of complexity and approximability.

Problem 3. solvable d-srti
Input: I = 〈G,O〉, where G is a graph and O is a set of preference lists, each of
length at most d, possibly involving ties.
Question: Is I solvable?

Problem 4. min bp d-srti
Input: An instance I of d-srti.
Output: A matching M in I such that |bp(M)| = bp(I).

We will show that solvable 3-srti is NP-complete and min bp 3-srti is hard
to approximate. In both cases we will use a reduction from the following satisfi-
ability problem:

Problem 5. (2,2)-e3-sat
Input: I = B, where B is a Boolean formula in CNF, in which each clause
comprises exactly 3 literals and each variable appears exactly twice in unnegated
and exactly twice in negated form.
Question: Is there a truth assignment satisfying B?

(2,2)-e3-sat is NP-complete, as shown by Berman et al. [2]. We begin with the
hardness of solvable 3-srti.

Theorem 8. solvable 3-srti is NP-complete.

Proof. Clearly solvable 3-srti belongs to NP. To show NP-hardness, we re-
duce from (2,2)-e3-sat as defined in Problem 5. Let B be a given instance
of (2,2)-e3-sat, where X = {x1, x2, . . . , xn} is the set of variables and C =
{c1, c2, . . . , cm} is the set of clauses. We form an instance I = (G,O) of 3-srti
as follows. Graph G consists of a variable gadget for each xi (1 ≤ i ≤ n), a clause
gadget for each cj (1 ≤ j ≤ m) and a set of interconnecting edges between them;
these different parts of the construction, together with the preference orderings
that constitute O, are shown in Figure 1 and will be described in more detail
below.

When constructing G, we will keep track of the order of the three literals in
each clause of B and the order of the two unnegated and two negated occur-
rences of each variable in B. Each of these four occurrences of each variable is
represented by an interconnecting edge.

A variable gadget for a variable xi (1 ≤ i ≤ n) of B comprises the 4-cycle
〈v1

i , v
2
i , v

3
i , v

4
i 〉 with cyclic preferences. Each of these four vertices is incident to

an interconnecting edge. These edges end at specific vertices of clause gadgets.
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Fig. 1. Clause and variable gadgets for 3-srti. The dotted edges are the interconnecting
edges. The notation used for edge a1

j v4
i implies that the first literal of the corresponding

clause cj is the second occurrence of the corresponding variable xi in negated form.

The clause gadget for a clause cj (1 ≤ j ≤ m) contains 20 vertices, three of
which correspond to the literals in cj ; these vertices are also incident to an
interconnecting edge.

Due to the properties of (2,2)-e3-sat, xi occurs twice in unnegated form, say
in clauses cj and ck of B. Its first appearance, as the rth literal of cj (1 ≤ r ≤ 3),
is represented by the interconnecting edge between vertex v1

i in the variable
gadget corresponding to xi and vertex ar

j in the clause gadget corresponding
to cj . Similarly the second occurrence of xi, say as the sth literal of ck (1 ≤ s ≤ 3)
is represented by the interconnecting edge between v3

i and as
k. The same variable

xi also appears twice in negated form. Appropriate a-vertices in the gadgets
representing those clauses are connected to v2

i and v4
i . We remark that this

construction involves a gadget similar to one presented by Biró et al. [3] in their
proof of the NP-hardness of min bp 3-sri.

In [5, Appendix B] we prove that there is a truth assignment satisfying B if
and only if there is a stable matching M in I.

Our construction shows that the complexity result holds even if the preference
lists are either strictly ordered or consist of a single tie of length two. Moreover,
Theorem 8 also immediately implies the following result.

Corollary 9. min bp 3-srti is NP-hard.

The following result strengthens Corollary 9.

Theorem 10. min bp 3-srti is not approximable within n1−ε, for any ε > 0,
unless P = NP, where n is the number of agents.
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Proof (sketch). The core idea of our proof is to gather several copies of the
3-srti instance created in the proof of Theorem 8, together with a small un-
solvable 3-srti instance. By doing so, we create a min bp 3-srti instance I in
which bp(I) is large if the Boolean formula B (originally given as an instance of
(2,2)-e3-sat) is not satisfiable, and bp(I) = 1 otherwise. Therefore, finding a
good approximation for I will imply a polynomial-time algorithm to decide the
satisfiability of B.

To complete the study of cases of min bp d-srti, we establish a positive
result for instances with degree at most 2.

Theorem 11. min bp 2-srti is solvable in O(|V |) time.

Proof. For an instance I of min bp 2-srti, clearly every component of the
underlying graph G is a path or cycle. We claim that bp(I) equals the number
of odd parties in G, where an odd party is a cycle C = 〈v1, v2, ..., vk〉 of odd
length, such that vi strictly prefers vi+1 to vi−1 (addition and subtraction are
taken modulo k).

Since an odd party never admits a stable matching, bp(I) is bounded below
by the number of odd parties [21]. This bound is tight: by taking an arbitrary
maximum matching in an odd party component, a most-stable matching is al-
ready reached. Now we show that a stable matching M can be constructed in
all other components.

Each component that is not an odd cycle is therefore a bipartite subgraph
(indeed either a path or an even cycle). Such a subgraph therefore gives rise to the
restriction of srti called the Stable Marriage problem with Ties and Incomplete
lists (smti). An instance of smti always admits a stable solution and it can be
found in linear time [19]. Thus these components contribute no blocking edge.

Regarding odd-length cycles that are not odd parties, we will show that there
is at least one vertex not strictly preferred by either of its adjacent vertices.
Leaving this vertex uncovered and adding a perfect matching in the rest of the
cycle results in a stable matching.

Assume that every vertex along a cycle Ck (where k is an odd number) is
strictly preferred by at least one of its neighbours. Since each of the k vertices is
strictly preferred by at least one vertex, and a vertex v can prefer at most one
other vertex strictly, every vertex along Ck has a strictly ordered preference list.
Now every vertex can point at its unique first-choice neighbour. To avoid an odd
cycle, there must be a vertex pointed at by both of its neighbours. This implies
that there is also a vertex v pointed at by no neighbour, and v is hence ranked
second by both of its neighbours.

Open questions. Theorems 4, 6 and 7 improve on the best known approximation
factor for egal d-sri for small d. It remains open to come up with an even
better approximation or to establish an inapproximability bound matching our
algorithm’s guarantee. A more general direction is to investigate whether the
problem of finding a minimum weight stable matching can be approximated
within a factor less than 2 for instances of d-sri for small d.
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