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Abstract

Supermodular games find significant applications in a warmétmodels, especially in operations
research and economic applications of noncooperative gjaeoey, and feature pure strategy Nash equi-
libria characterized as fixed points of multivalued funei@n complete lattices. Pure strategy Nash equi-
libria of supermodular games are here approximated bytirgdp the theory of abstract interpretation,
a well established and known framework used for designiaticsanalyses of programming languages.
This is obtained by extending the theory of abstract inttgiion in order to handle approximations
of multivalued functions and by providing some methods fosteacting supermodular games, in order
to obtain approximate Nash equilibria which are shown to dreect within the abstract interpretation
framework.

1 Introduction

Motivations. Games may have strategic complementarities, which meanghly speaking, that best
responses of players have monotonic reactions, reflectiognglementarity relationship between own
actions and rivals’ actions. Games with strategic complearéies occur in a large array of models, espe-
cially in operations research and economic applicatiom®atooperative game theory, a significant sample
of them is described by Topkis’ bodk [17]. Pionereed by TsfkE], this class of games is formalized by
supermodular games, where the payoff functions of eacleplagve the lattice-theoretical properties of
supermodularity and increasing differences. In a supeutaodjame, the strategy space of every player
is partially ordered and is assumed to be a complete lattibde the utility in playing a higher strategy
increases when the opponents also play higher stratedi¢éstns out that pure strategy Nash equilibria
of supermodular games exist and form a complete latticé whe ordering relation of the strategy space,
thus exhibiting the least and greatest Nash equilibriathieumore, since the best response correspondence
of a supermodular game satisfies a monotonicity hypothigsikgast and greatest equilibria can be char-
acterized and, under some assumptions of finiteness, atdduhs least and greatest fixed points by the
well-known lattice-theoretical Knaster-Tarski fixed pioiheorem, which provides the theoretical basis for
the Robinson-Topkis algorithr [117].

Since the breakthrough on the PPAD-completeness of findirgdNash equilibrial[7], the question
of approximating Nash equilibria emerged as a key problemgorithmic game theory [8, 11]. In this
context, approximate equilibrium refersdapproximation, withe > 0, meaning that, for each player, all
the strategies have a payoff which is at mostore (or less) than the precise payoff of the given strategy.
It is well known that the notion of correct (a.k.a. sound) Epmation is fundamental in static program
analysis, one major research area in programming langumgeyt and design. Static program analysis
derives some partial but correct information of the runetiprogram behavior without actually executing
programs. Prominent examples of static analysis inclutifldav analysis used in program compilers, type
systems for inferring program types, model checking foigpam verification, and abstract interpretation
used to design abstract interpreters of programs. In péatiche abstract interpretation approach to static
analysis[[2] 3] relies on a lattice-theoretical model of ioéion of approximation. Program properties are
modelled by a domai@’ endowed with a partial ordet which plays the role of approximation relation,
wherez < y intuitively means that the propertyis an approximation of the property or, equivalently,
that the property: is logically stronger thay. The key principle in static analysis by abstract interpret
tion is to provide an approximate interpretation, a.k.aabstract interpretation, of a program for a given
abstraction of the properties of its concrete semantici [€hds to the idea of abstract domain, which is an
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ordered collection of abstract program properties whiaghloainferred by static analysis, where approxi-
mation is again modeled by the ordering relation. The ataséntroductory example of program abstract
interpretation is sign analysis. Given an arithmetic ietegxpressiore, one tries to bound its sign—
negative, zero or positive—without actually computing he idea is that one can prove that 3 x —2is
negative without actually computing thaevaluates te-6. If S = {—, 0, +} then abstract integers i are
defined as subsets of these sign§jme., A = o(S). Here, A is ordered by inclusion which encodes the
approximation relation: for examplé+} C {0, +} encodes that being positive is a stronger property than
being nonnegative, so that nonnegative is an approximafipositive. Then, any set of integer numbers
S € p(Z) can be abstractly represented by its most precise absmanti through an abstraction function
a: p(Z) — A. Hence, a set of integefsis correctly approximated by an abstract integer A precisely
whena(S) C a holds. In turn, one can define abstract additioand multiplication® on abstract integers
in A: forexample{—,0} ® {-} = {-}and{-}® {+} = {—,0,+}, while {-} ® {+,0} = {—,0} and
{—,+}®{0} = {0}. Hence, in order to analyze the expression—2 we convertit tox({3}) @ a({—2})

to infer {—}. Of course, it may well happen that the abstract domain doesarry enough precision to
compute the most precise information theoretically atéélan A: for the expression-2 + 2, we have that
a({—-2}) ® a({2}) = {—,0,+} althougha({—2 + 2}) = {0} € a({—2}) ® a({2}). In such cases, the
output of the static analysis is “I don’t know”. In the termiogy of abstract interpretatior; and® are
correct approximations of concrete integer addition andtiplication. Program semantics are typically
formalized using fixed points of functions for modelling fand recursive procedures. A basic result of
abstract interpretation tells us that correctness is preddor least and greatest fixed points: if a concrete
monotone functiory : C — C is correctly approximated by an abstract monotone function A — A

on an abstractionl of C then the least (or greatest) fixed pdifit(f) € C of f is correctly approximated
by the least (or greatest) fixed poitip(f*) € A of f*, i.e., a(ifp(f)) <a Ufp(f*). For example, the
concrete output of the prograf = = := 3;while (z < 13) doz := 2 * x is {24}, while its abstract
interpretation is derived as the least fixed point which Eaggr than or equal to the initial abstract value
a({3}) = {+} for the functionf* : A — A defined byf*(a) = a({2}) ® a, so that this least fixed point
islfps (43 (f*) = {+}, and in this case we have that{24}) = lfp (, (f*).

Goal. The similarities between supermodular games and forma@rpro semantics should be therefore
clear, since they both rely on order-theoretical models@ndomputing extremal fixed points of suitable
functions on lattices. However, while the order theorydabapproximation of program semantics by static
analysis is a traditional and well-established area in agempscience since forty years, to the best of
our knowledge, no attempt has been made to apply some teswmigsed in static program analysis for
defining a corresponding notion of approximation in supetutar games. The overall goal of this paper
is to investigate whether and how abstract interpretateontie used to define and calculate approximate
Nash equilibria of supermodular games, where the key naifoapproximation will be modeled by a
partial ordering relation similarly to what happens in istgrogram analysis. This appears to be the first
contribution to make use of an order-theoretical notionmgraximation for equilibria of supermodular
games, in particular by resorting to the abstract integpiat technique ordinarily used in static program
analysis.

Contributions.  As sketched above, abstract interpretation essentidigsren: (1) abstract domaing
which encode approximate properties; (2) abstract funstfd which must correctly approximate ot

the behavior of some concrete operatighg3) results of correctness for the abstract interpretergud
and f*, for example the correctness of extremal fixed points ofrabsfunctions, e.glfp(f*) correctly
approximatesfp(f); (4) so-called widening/narrowing operators tailored tioe abstract domaind to
ensure and/or accelerate the convergence in iterative fiaied computations of abstract functiofis We
contribute to set up a general framework for designing absinterpretations of supermodular games which
basically encompasses the above points (1)-(3), while mifndgnarrowing operators are not taken into
account since their definition is closely related to soméviddal abstract domain. Our main contributions
can be summarized as follows.

¢ In supermodular games, a strategy spégcéor the playeri is assumed to be a complete lattice and
best response correspondences are (multivalued) fusdalieimed over a produgt x --- x Sy of
complete lattices which plays the role of concrete domalusy as a preliminary step, we show how
abstractions of strategy spaces can be composed in ordefit@ @n abstract domain of the product



S1 x---x Sy, and, on the other hand, an abstraction of the proflugt: - - x Sy can be decomposed
into abstract domains of the individu&|'s.

e Abstract interpretation is commonly used for approximgtiingle-valued functions on complete
lattices. For supermodular games, best responses araelindggvalued functions3 : S; x --- x
Sy — (51 x -+ x Sy) that we expect to approximate. Thus, we first provide shadtdirect
constructive proofs ensuring the existence of fixed poimtsrfultivalued functions. Then, we show
how abstract interpretation can be generalized to handlévadued functions, first by defining a
parametric notion of correct approximation for multivadifenctions, and then by proving that these
correct abstract multivalued functions preserve theiraziness for their fixed points.

e We investigate how to define an “abstract interpreter” of pesmodular game. The first approach
consists in defining a supermodular game on an abstracgyrapace. Given a ganhewith strategy
spacesS; and utility functionsu; : S; x --- x Sy — R, this means that we assume a family of
abstractionsi;, one for eactt;, that gives rise to an abstract strategy spdce A; x --- x Ay, and
a suitable abstract restriction of the utility functiom$ : A; x --- x Ay — R. This defines what
we call an abstract ganie*, which, under some conditions, has abstract equilibriactvicbrrectly
approximate the equilibria df. Obviously, the fixed point computations ovérfor the abstract
gamel” should be more efficient than in. This abstraction technique provides a generalization
of the efficient algorithm by Echeniquel [9] for finding all élijoria in a finite game with strategic
complementarities.

e On the other hand, we put forward a second notion of abstaoegvhere the strategy spaces are
subject to a kind of partial approximation, meaning that, doy utility function, we consider ap-
proximations of the strategy spaces of the “other playeéss., correct approximations over abstract
domainsA; of the functionsu;(s;, ) : S1 X ---S;—1 X S;+1 x -+ x Sy — R, for any given strategy
s; € S;. This abstraction technique gives rise to games having aimaath best response correspon-
dence. This approach is inspired and somehow generaligésfiicit methodology of approximate
computation of equilibria considered by Carl and HeikkllaChapter 8].

Our results are illustrated on some examples of supermogdataes, in particular a couple of examples of
Bertrand oligopoly models are taken from Carl and HeiKkitiook [1].

2 Background

2.1 Order-Theoretical Notions

Given a functionf : X — Y and a subse§ C X thenf(S) = {f(s) € Y | s € S} denotes the image of
fonSandf®: p(X) — p(Y) denotes the corresponding standard powerset lifting ¢iiat is, f(S) =
f(S). Given a family of N > 0 sets(S;)Y,, x2S, denotes their Cartesian product.iIE [1, N] and
ERS vazlSl- thenS,i = Sy XX 81 % Si+1 x-Sy, Wh”eS,i £ (81, ey Si 1y Sidly e SN) € S_;.
Also, (RY, <) denotes the standard product poset of real numbers, whesetfe RY, s < ¢ iff for any
i € [1,N], s; <t;, whiles+t=(s; + t;)Y,. A multivalued function, also called correspondence, is a
mappingf : X — p(X). An elementr € X is a fixed point off whenz € f(z), whereFix(f) = {x €
X |z e f(x)}

Let (C,<,A,V, L, T) be a complete lattice, compactly denoted(By <). A nonempty subset C C
is a subcomplete sublattice ©fif for all its nonempty subset® C S, AX € SandvX € S. Letusrecall
the following relations on the powersgtC): forany X, Y € o(C),

A
(Smythpreorder) X <g5Y < WeYIreX.x<y
Hoare preorder) X <y Y é Vee XdyeY.x <y
Y
(Egli-Milner preorder) X <pny Y é X=<sY & X =gY
(Veinottrelation) X <y Y £ v eXWweYanyeX &aVvyeY

Smyth, Hoare and Egli-Milner relations are preorders,(i&flexive and transitive), while Veinott relation
(also called strong set relation) is transitive and antisyamic. A multivalued functiory : C — p(C) is



S-monotone if for anyr, y € C, x < y implies f(z) <5 f(y). H-, EM- andV-monotonicity are defined
analogously. We also use the following notations:

P (C) 2 {X ep(O)| AX eX}  p"(C)2{X ep(0)| VX € X}
©°(0) £ pN(C) N p¥(0) SL(C) £ {X € p(C) | X # @, X subcomplete sublattice 6t}

Observe that ifX,Y € p*(C) thenX <g Y < AX < AY. Similarly, if X,V € pv(C) then
X=2pY & vX <VvYandifX)Y € p°(C)thenX =g Y & AX < AY & VX < VY.

The pointwise ordering relation between two functiong, g : X — C whose rang€’ is a complete
lattice, is defined byf C g if forany z € X, f(z) <¢ g(z). A function f : C — D between complete
lattices is additive (co-additive) whefipreserves arbitrary lub’s (glb’s). Given a functign C — C on
a complete lattice”, Fix(f) = {z € C | » = f(x)} denotes the set of fixed points ¢f while Ifp(f)
andgfp(f) denote, respectively, the least and greatest fixed poinfswhen they exist. Let us recall that
least and greatest fixed points always exist for monotonetiums. If f : C — C then for any ordinal
a € O, thea-power f¢ : C — C'is defined by transfinite induction as follows: for anyc C, (1) if
a=0thenf(z) £ x; (2)if a = B+ 1thenfP+(z) 2 f(f%(2)); B)ifa= V{3 € 0| B < a}then
fa(x) 2 \/ﬁ<a fB(w)

A mapp : C — C, with C complete lattice, is a (topological) closure operator wh@nz < y =
p(x) < p(y); (i) z < p(x); (iii) p(p(x)) = p(x). We denote byico((C, <)) the set of all closure operators
on the complete lattic€'. A closure operatos € uco(C) is uniquely determined by its imagéC'), which
coincides with its set of fixed poini8ix(p), as follows: for anye € C, p(c) = Ac{z € p(C) | ¢ < z}.
Also, a subsefS C C is the image of a closure operatog € uco(C) iff S is meet-closed, i.e§ =
{NcX € C'| X C S};inthis caseps(c) = Ac{z € S| ¢ < z}.

Supermodularity. Given a complete lattic€’, a functionu : C — RY is a supermodular if for any
c1,c2 € Cyuler Vea) +u(er Aca) > u(er) + ulee), while w is quasisupermodular if for any, ¢ € C,
u(er Acg) < uler) = u(ez2) < uler Vez) andu(er Aea) < u(er) = ulea) < u(er Vea). Clearly,
supermodularity implies quasisupermodularity (while tbaverse is not true). Recall thatif: C — RV
is quasisupermodular themgmax(f) £ {z € C' | Vy € C. f(y) < f(z)} is a sublattice of’.

A functionu : C; x Cy — RY has increasing differences when for anyy) < (2/,y'), u(a’,y) —
u(z,y) < ula’,y") — u(z,y’), or, equivalently, the functions(z’, -) — u(z,-) andu(-,y') — u(-,y) are
monotone. A function: : C; x Cy — R¥ has the single crossing property when for gayy) < (2/,y'),
u(z,y) <wu(r,y) = ulz,y) <u(@,y) andu(z,y) < u(z',y) = ulz,y’) < u(a’,y’). Clearly, ifu
has increasing differences themas the single crossing property, while the converse dogsahd.

Supermodularity on product complete lattices and increpdifferences are related as follows: a func-
tionu : C; x Cy — RY is supermodular if and only if has increasing differences and, for agy= C;,
u(ey, ) : Cy — RN andu(-, ¢2) : C; — RY are supermodular.

2.2 Noncooperative Games

In our model, a noncooperative garffie= (S;, u;)?_, for playersi = 1,...,n consists of a family of
feasible strategy spacés;, <;)I_, which are assumed to be complete lattices, so that the gyrafsmce

S £ xn S, is a complete lattice for the componentwise orderand of a family of utility (or payoff)
functionsu; : S — RYi, with N; > 1. Thei-th best response correspondefge S_; — o(S;) is defined
asBi(s_;) = {x; € S; | Vs; € S;i. ui(si,s—;) < iz, 5_;)}, while the best response correspondence
B : S — p(9) is defined byB(sy, ..., s,) = x_, Bi(s_;). A strategys € S is a pure Nash equilibrium
for ' whens is a fixed point ofB, i.e., s € B(s), meaning that ins there is no feasible way for any
player to strictly improve its utility if the strategies off ¢he other players remain unchanged. We denote
by Eq(T") € p(S) the set of Nash equilibria fdr, so thatEq(T") = Fix(B).

2.2.1 (Quasi)Supermodular Games

A noncooperativ@ = (S;, u;)?"_, is supermodulawhen:

(1) for anyi, foranys_; € S_;, u;(-,s_;) : S; — R is supermodular;
(2) for anyi, u;(-,-) : S; x S_; — R has increasing differences.



(815 ey 8n) = (L1, oo, L) //{81, 00 8n) = (T 1, o, To);
do {(t1,...,tn) := (S1,..., 5n);
S1 = /\131(8_1); //81 = \/131(8_1);

Sp 1= /\an(an); //51 = \/an(an);
while = ((s1, ..., sp) = (t1, ..., tn))
Figure 1: Robinson-Topkis (RT) algorithm.

On the other hand; is quasisupermodulafor, with strategic complementarities) when:

(1) for anyi, foranys_; € S_;, u;(-, s_;) : S; — Ri is quasisupermodular;
(2) for anyi, u;(-,-) : S; x S_; — R has the single crossing property.

In these cases, it turns out (cf. [17, Theorems 2.8.1 an@]2 Bat thei-th best response correspondence
B;: S_; — p(S;) is EM-monotone, as well as the best response correspondenée— o(S).

Let us recall that, given a complete latti€e a functionf : C — R” is order upper semicontinuous if
for any chainy” C C,

limsup f(z) < f(vC) and limsup f(z) < f(AC).

zeY,z—VY zeY,z—AY

It turns out (cf. [17, Lemma 4.2.2]) that if eaeh(-,s_;) : S; — R is order upper semicontinuous
then, for eacts € S, B;(s—;) € SL(S;), i.e., Bi(s—;) is a nonempty subcomplete sublattice%f so
that B(s) € SL(S) also holds. In particular, we have thatB;(s_;), V;Bi(s—i) € Bi(s—;) as well as
AB(s),VB(s) € B(s), namely,B;(s_;) € °(S;) andB(s) € °(S). It also turns out[18, Theorem 2]
that (Eq(T"), <) is a complete lattice—although, in general, it is not a sufglete sublattice of—and
thereforel admits the least and greatest Nash equilibria, which aretddnrespectively, bieq(T") and
geq(T"). It should be remarked that the hypothesis of upper semimaty for u;(-, s—;) holds for any
finite-strategy game, namely for those games where eadegyrapaces; is finite. In the following, we
will consider (quasi)supermodular games which satisfy klyipothesis of upper semicontinuity.

If, given anys; € S;, the functionu;(s;,-) : S_; — R is monotone then it turns outl[1, Proposi-
tions 8.23 and 8.51] thafeq(T") majorizes all equilibria, i.e., for allands € Eq(T'), u;(geq(I')) > u;(s),
while leq(I") minimizes all equilibria.

2.3 Computing Game Equilibria

Consider a (quasi)supermodular gathe= (S;, u;)? ; and define the functionB,, By : S — S as fol-
lows: B,(s) = AB(s) andBy(s) 2 VB(s). As recalled in Section 2.2.1, we have thit(s), By (s) €
B(s). When the image of the strategy spatdor B, turns out to be finite, the standard algoritim][17,
Algorithm 4.3.2] for computindeq(T") consists in applying the constructive Knaster-Tarski figetht the-
orem to the functiorB, so thatleq(I') = \/,~, B¥(Ls). Dually, we have thageq(I') = A, B%(Ts).
In particular, this procedure can be always used for finitagm The application of the so-called chaotic
iteration in this fixed point computation provides the Raagin-Topkis (RT) algorithm [17, Algorithm 4.3.1]
in Figure[2.38, also called round-robin optimization, whislpresented in its version for least fixed points,
while the statements in comments provide the version fautaling greatest fixed points.

Let us provide a running example of supermodular finite game.

Example 2.1. Consider a two players finite ganierepresented in normal form by the following double-
entry payoff matrix:



1 2 3 4 5 6
-1,-3 | -1,-1 2,4 5,6 6,5 6,5
0,0 0,2 3,4 6,6 7,5 6,5
3,1 3,3 3,5 5,6 55 4,4
2,2 2,4 2,6 4,5 4,4 3,2
6,4 6,6 6,7 6,4 52 4,-1
6,4 5,6 5,6 4,2 3,0 2,-3

PN W S~ oo

Here, S; and S, are both the finite chain of intege€s = ({1,2,3,4,5,6}, <) andui(z,y), uz(z,y) :
S1 x S2 — R are, respectively, the first and second entry in the matameht determined by row and
columny. It turns out that bothi; andu, have increasing differences, so that, sisgeand.S, are finite
chains[ is a finite supermodular game. The two best response conidepoes3,, B, : C — SL(C) are
as follows:

Bl(l) = {LQ}? 31(2) = {Q}a 31(3) = {Q}a 31(4) = {2a5}7 31(5) = {5}a 31(6) = {576}§
By(1) ={2,3}, B2(2)={3}, B2(3)={3}, Ba2(4)={4}, Ba(5)=1{4}, B:(6)={4}.

Thus,Eq(I") = {(2,3),(5,4)}, since this is the sefix(B) of fixed points of the best response corre-
spondence3 = B; x Bs. We also notice that (-, s2),ua2(s1,-) : C — R are neither monotone nor
antimonotone. The fixed point computations of the least aeatgst equilibria through the above RT
algorithm proceed as follows:

(1,1) = (AB1(1,1),1) = (1,1) = (1,AB2(1,1)) = (1,2) = (2,2) — (2,3) — (2,3) = (2,3) (Ifp)
(6,6) — (VB1(6,6),6) = (6,6) — (6,VB2(6,6)) = (6,4) — (5,4) — (5,4) — (5,4) (gfp) O

2.4 Abstract Interpretation

Static program analysis relies on correct (a.k.a. sound)camputable semantic approximations. A pro-
gramP is modeled by some semanti8sm[P] and a static analysis d? is designed as an approximate
semanticSem?[ P] which must be correct w.r.8em[P]. This may be called global correctness of static
analysis. Any (finite) progran® is a suitable composition of a number of constituents sujmarasc;
and this is reflected on its global semantiesa[P] which is commonly defined by some combinations of
the semanticSem|[c;] of its components. Thus, global correctness of a staticyaisabf P is typically
derived from local correctness of static analyses for itmponents:;. This global vs. local picture of static
analysis correctness is very common, independently ofitiet &f programs (imperative, functional, reac-
tive, etc.), of static analysis techniques (model checkéhgtract interpretation, logical deductive systems,
type systems, etc.), of program properties under analgsi®ty, liveness, numerical properties, pointer
aliasing, type safety, etc.). A basic and rough proof pglecin static analysis is that global correctness is
derived from local correctness. In particular this appi@estatic program analyses that are designed using
some form of abstract interpretation. Let us consider a Ifiiegh but recurrent scenario, wheem[P] is
defined as least (or greatest) fixed pdiip{ /) of a monotone functiorf on some domaii@' of program
properties, which is endowed with a partial order that eesdtie relative precision of properties. In ab-
stract interpretation, a static analysis is then specifeedraabstract fixed point computation which must
be correct folfp(f). This is routinely defined through an ordered abstract domaof properties and an
abstract semantic functioff : A — A that give rise to a fixed point-based static analygi¢f*) (whose
decidability and/or practical scalability is usually erediby chain conditions od, widenings/narrowings
operators, interpolations, etc.). Correctness relieseoding approximation through a concretization map
~ : A — C and/or an abstraction map: C — A: the approximation of some valughrough an abstract
propertya is encoded a&(c) <4 a or — equivalently, whem/~ form a Galois connection —e <¢ v(a).
Hence, global correctness translates{tfp(f)) < lfp(f*), local correctness meanso f C f* o a, and
the well-known “fixed point approximation lemma’ |2, 3] tellis that local implies global correctness.

In standard abstract interpretation [2, 3], abstract domaalso called abstractions, are specified by
Galois connections/insertions (GCs/Gls for short). Cetecand abstract domaing;, <) and(A4, <4),
are assumed to be complete lattices which are related byaatieh and concretization maps: C — A
andy : A — C that give rise to a GQa, C, A, v), that is, foralla € A andc € C, a(c) <4 a < ¢ <¢
~v(a). AGCis a Gl wherx o v = id. A GC is (finitely) disjunctive wheny preserves all (finite) lubs. We



useAbs(C') to denote all the possible abstractionggfwhereA € Abs(C) means thatd is an abstract
domain ofC' specified by some GC/GI. Let us recall some well known progedf a GC(a, C, A, ~):
(1) « is additive; (2)y is co-additive; (3)yo o : C — C'is a closure operator; (4) if : C — C'is a closure
operator therip, C, p(C),id) is a Gl; (5)(«, C, A, ) is a GC iff y(A) is the image of a closure operator
onC; (6) a GC(a, C, A, ) is (finitely) disjunctive iffy(A) is (finitely) meet- and join-closed.

Example 2.2. Let us consider a concrete domdifi, <) which is a finite chain. Then, it turns out that
(a, C, A, ) is a GC iff y(A) is the image of a closure operator 6hiff v(A) is a any subset of' which
containsT ¢. As an example, for the ganiein Example 211, wheré); is the chain of integerf, 6], we
have thatd; = {3,5,6} andA; = {2, 6} are two abstractions af. O

Example 2.3. Let us consider the ceil function on real numbgfs: R — R, thatis,[z] is the smallest
integer not less than. Let us observe thdt] is a closure operator ofR, <) because: (1} <y = [z] <
[y]; 2z < [z]; B) [[x]] = [«]. Therefore, the ceil function allows us to view integer nemsz = [R]
as an abstraction of real numbers. The ceil function can hergéized to any finite fractional part of real

numbers: given any integer numh¥&r > 0, cly : R — R is defined as followstly (z) = “100—7@. For
N =0, cly(z) = [z], while for N > 0, cly(z) is the smallest rational number with at mdétfractional
digits not less tham. For example, ifr € R and1l < = < 1.01 thencly(z) = 1.01. Clearly, it turns out
thatcly is a closure operator which permits to cast rational numbvéghsat mostN fractional digits as an

abstraction of real numbers. O

Let f : C — C be some concrete monotone function—to keep notation simydeconsider 1-ary
functions—and letf? : A — A be a corresponding monotone abstract function defined o stsirac-
tion A specified by a GQa, C, A,~). Then, f* is a correct (or sound) approximation $fon A when
fo~vyC o ffholds. If f# is a correct approximation of then we also have fixed point correctness, that
is, Ifp(f) <c¢ v(fp(f¥)) andgfp(f) <c ~(gfp(f*)). The abstract functioff4 £ ao foy: A — Ais
called the best correct approximation pbn A, because any abstract functighis correct iff f4 T f*.
Hence,f4 plays the role of the best possible approximatiorf @i the abstractior.

3 Abstractions on Product Domains

Let us show how abstractions of different concrete doméipnsan be composed in order to define an
abstract domain of the product domainC;, and, on the other hand, an abstraction of a prodyc¢t; can

be decomposed into abstract domains of the component deiaitn the following, we consider a finite
family of complete latticesC;, <;)_,, while product domains are considered with the componesetwi
ordering relation.

Product Composition of Abstractions. This method has been introduced by Cousot and Couspt in [6,
Section 4.4]. Given a family of GC&v;, C;, A;,v:)_,, one can easily define a componentwise abstrac-
tion (o, xI_, C;, x_, A;, v) of the product complete lattice’_, C;, wherex?_,C; andx?_, A; are both
complete lattices w.r.t. the componentwise partial oraek far anyc € x?_,C; anda € X}, A4,

a(c) £ (ai(e))iy, v(a) £ (vi(ai))iss-
For anyi, we also use the functiop_,; : A_; — C_; to denotey_;(a—;) = v(a)—i = (vj(a;)) -

Lemma 3.1. (a, x_,C;, x™_; A;,v) is a GC. Moreover, if eackw;, C;, A;, ;) is a (finitely) disjunctive
GC then(a, x*_,C;, X, A;, ) is a (finitely) disjunctive GC.

In static program analysige, x*_,C;, X, A;,) is called a nonrelational abstraction since, intuitively,
the product abstractior}_; A; does not take into account any relationship between therdift concrete
domaingC;.

Decomposition of Product Abstractions. Let us show that any GQCx, x_,C;, A,~) for the concrete
product domain<_, C; induces corresponding abstractidns, C;, A4, ;) of C; as follows:

- A; 2 {c;€Ci|3ac Ar(a); = ¢;} C C;, endowed with the partial ordet; of C;;



— foranyc; € Gy, ai(c;) = y(alei, L_4))i;
— for anyz; € A;, 'Yi(xi) = Xi.

Lemma 3.2. (o, C;, A;, ;) is a GC. Moreover, this GC is (finitely) disjunctive when x_, C;, A,v) is
(finitely) disjunctive.

Proof. Let us show thatd; C C; is meet-closed. IfX C A; then for anyx € X there exists some
a, € A such thaty(a,); = . Then, leta £ As{a, € A|x € X} € A. Sincey preserves arbitrary
meets, we have that(a) = Ac{v(az) € C | z € X}, so thaty(a); = Ac, X, thatis,Ac, X € A;.
Hence, sinced; is a Moore-family ofC;, we have that; = id : A; — C; preserves arbitrary meets and
therefore is a concretization function. Let us check thats the left adjoint ofy;, i.e., for anye; € C;,
ai(ci) = 'Y(Q(Ciyj——i))i = N¢; {Jll € A, | ¢ <; J}l} On the one hand, Sin({ei,L_i) < 'y(oz(ci, l_i)),
we have that; < v(a(c;, L_;)):, sothatsince(a(c;, L—;)); € A;, we conclude thatc, {z; € A; | ¢; <;
x;} <i v(ale;, L-;));. Onthe other hand, if; € A; and¢; <; z; thenz; = ~(a); for somea € A,
so that we have thate;, L_;) < ~v(a), thereforey(a(c;, L—;)) < y(a(y(a))) = ~(a), and, in turn,
'y(a(ci,i_-))i < 'y(a)i = x;, which ImplleS thaty(a(ci,i_-))i < /\ci{xi e A; | ¢ < Jll} FinaIIy,
let us observe that i is (finitely) additive andX C A; so that for anyr € X there exists some, € A
such thaty(a;); = xz theny(Va{a, € A |z € X}) = V{y(az) € x,C; | x € X}, so thaty(Va{a, €
Alz e X});, = Viv(az); = V; X, namely,v,; X € A;, meaning that; = id is (finitely) additive. O

A GC (a, xI,C;, A, ) is callednonrelationalwhen it is isomorphic to the product composition, ac-
cording to Lemm&_3]1, of its components obtained by Lefnmla@fZourse, the product composition by
Lemme3.1 of abstract domains is trivially nonrelationah@wise («, X, C;, A, v) is calledrelational.

It is worth remarking that ifA is relational thend cannot be obtained as a product of abstractions .of
As a consequence, the relationality of an abstractigmevents the definition of a standard noncooperative
game over the strategy spadesince A cannot be obtained as a product domain.

Example 3.3. Let us consider the ganie in Example 2.1l whose finite strategy spac&is< C, where
C = {1,2,3,4,5,6} is a chain. Consider the subsétC C x C as depicted by the following diagram
where the ordering is induced fro x C"

(6,6)

(2,2)

Since A is meet- and join-closed and includes the greatest elef@efiy of C' x C, we have that4 is
a disjunctive abstraction af' x C, wherea : C x C — A is the closure operator induced Byand
~: A — C x Cis the identity. Observe that is relational since its decomposition by Lemmd 3.2 provides
Ay ={2,3,4,6}andAs = {2,4,5,6}, and the product compositiofy x As by Lemmd3.1 yields a more
expressive abstraction thah for exampleg(2,4) € (4; x Ay) N A.

On the other hand, for the abstractiofis= {3, 5,6} andA; = {2,6} of Exampld2.R, by Lemn{a3.1,
the product domaiml; x A, is a nonrelational abstraction 6f x C. O

4 Approximation of Multivalued Functions

Let us show how abstract interpretation can be applied tooxppate least and greatest fixed points of
multivalued functions.



4.1 Constructive Results for Fixed Points of Multivalued Functions

Let C be a complete lattice, : C — p(C) be a multivalued function anfl, f, : C — C be the functions
defined as:f.(c) £ Af(c) andf,(c) = Vf(c). The following constructive result ensuring the existence
of least fixed points for a multivalued function is given [irf[1Propositions 3.10 and 3.24]. We provide
here a shorter and more direct constructive proof than_ihytich is based on the constructive version of
Tarski's fixed point theorem given by Cousot and Cousbt [4].

Lemma4.l.If f: C — p~(C) is S-monotone therf has the least fixed poitfp( /). Moreoverlfp(f) =
Vae([)) f/\a(J*)'

Proof. By hypothesisf(z) € p"(C), so thatf,(z) € f(z). If z,y € C andz < y then, by hypothesis,
f(z) =5 f(y), therefore, sincd,(y) € f(y), there exists some € f(z) such thatz < f,(y), and,
in turn, f.(z) < z < f.(y). Hence, sincef, is a monotone function on a complete lattice, by Tarski’s
theorem, its least fixed poinfp(f,) € C exists. Furthermore, by the constructive version of Téski
theorem[[4, Theorem 5.11p(f.) = Voo [3(L). We have thatfp(f.) = f.(Ifp(f.)) € f(fp(f.)),
hencelfp(f,) € Fix(f). Consider any € Fix(f). We prove by transfinite induction that for anye O,
feL) <z lfa=0thenfO(Ll) = L <z Ifa =B+ 1thenfe(L) = f.(f7(L)), and, since, by
inductive hypothesisf?(L) < z, then, by monotonicity off,, £.(f?(L1)) < f.(z) = Af(z) < 2. If
a=V{B € 0|p < a}isalimitordinal thenf*(L) = Vs, fP(L); since, by inductive hypothesis,
fB(L) < zforanys < a, we obtain thaff® (L) < z. This therefore shows thgthas the least fixed point
lip(f) = lip(f.)- .

By duality, as consequences of the above result, we obta&irfallowing characterizations, where
point (3) coincides with Zhou’s theorem (séel[18, Theorerarid [15, Proposition 3.15]), which is used
for showing that pure Nash equilibria of a supermodular géorma a complete lattice.

Corollary 4.2.

(DIf f: C — p¥(C) is H-monotone therf has the greatest fixed poigfp(f) = A co f2(T).

@) If f: C = p°(C)is EM-monotone therf has the least and greatest fixed points, whépéf) =
Voo £2(L) andgtp(f) = Ageo £2(T).

(3)If f: C — SL(C) is EM-monotone theiiFix(f), <) is a complete lattice.

4)If f,g: C — SL(C) are EM-monotone and, foranyc C, f(c¢) <mum g(c) thenFix(f) <gm Fix(g).

Proof. Let us prove point (4). By Point (3), boffix(f) andFix(g) are complete lattices fox. Thus,
Fix(f) =gm Fix(g) holds iff AFix(f) = Up(f) < lUp(g) = AFix(g) andVFix(f) = gip(f) <
gfp(g) = V Fix(g). Moreover, since, forany € C, f(c¢) <gm g(c), we also have thaf, (c) = Af(c) <
Af(c) = g.(c), thus, as a consequenéy(f,) < Ifp(g.). The proof of Lemm&4]1 shows theip(f) =
lfp(f,) andlfp(g) = lfp(g, ), so that we obtaitfp(f) < lfp(g). The proof forgfp(f) < gfp(g) is dual. O

4.2 Concretization-based Approximations

As discussed iri|5], a minimal requirement for defining artr&es domain consists in specifying the mean-
ing of its abstract values through a concretization map.(4eK 4) be an abstraction of a concrete domain
C specified by a monotone concretization map A — C. Let us observe that the powerset lifting
7% p(A) — p(C) is S-monotone, meaning that¥; <g Y> thenvy* (Y1) <g v*(Y2): if y(y2) € v*(Y2)
then there existg; € Y7 such thaty; <4 y., so thaty(y1) € ~5(Y1) andy(y1) <c 7(y2), i.e.,
v°(Y1) =s 7°(Y2). Analogously,y® is H- and EM-monotone. Consider a concrefemonotone mul-
tivalued functionf : C — p*(C), whose least fixed point exists by Lemmal4.1.

Definition 4.3 (Correct Approximation of Multivalued Functions). An abstract multivalued function
ff: A — p(A) over A is aS-correct approximatiorof f when:

(1) f*: A— p"(A) andf*is S-monotone (fixed point condition)
(2) foranya € A, f(v(a)) <5 7v*(f*(a)) (soundness condition)

H-andEM-correct approximations are defined by replacing in thisnitédin .S- with, respectivelyH - and
EM-, andp” with, respectivelyp¥ andp®. O



Let us point out that the soundness condition (2) is the stahcbrrectness requirement used in abstract
interpretation, as recalled in Sectionl2.4. The differemee is thatC; and A, are mere preorders rather
than partial orders. However, this is enough for guarantgaicorrect approximation of least fixed points.

Theorem 4.4(Correct Least Fixed Point Approximation). If f# is a S-correct approximation of then
1fp(f) <c v(Up(f*)).

Proof. Let us considerf, : C — C andff : A — A. By LemmaZ1)fp(f) = Ifp(f.) andlfp(ff) =
Ifp(f*). Let us check thayf’ is a standard correct approximation pf For anya € A, v(f¥(a)) €
v4(f*(a)), hence, sincef (v(a)) =5 7*(f*(a)), we have that there exists somec f(vy(a)) such that

2z < y(fH(a)), so thatf, (v(a) = Af(v(a)) < z < v(f*(a)). Hence, by the concretization-based fixed
point transfer (see [13, Theorem 2.2.4]), it turns out tfiatf,) <c ~(Ifp(f*)), therefore showing that

Ifp(f) < v(Ifp(f%)). O

Dual results hold fo#{ - and EM -correct approximations.

Corollary 4.5.

(1) If f*is a H-correct approximation of thengfp(f) <c v(gfp(f*)).

(2) If f%is a EM-correct approximation off thenFix(f) =gy +*(Fix(f*)), in particular, Ifp(f) <c¢
v(Ifp(f*)) andefp(f) <c v(gfp(f*)).

Proof. By duality from Theorerfi4]4. In particular, point (2) follebecause, by Corollafy 4.Bix(f) €
©°(C), Fix(f*) € p°(A) and thereforey® (Fix(f*)) € ¢°(C), so thatFix(f) =<mm °(Fix(f*)) iff
Ifp(f) < »(Ufp(f*)) andgfp(f) < y(gfp(f*)). O

The approximation of least/greatest fixed points of multied functions can also be easily given for an
abstraction map: : C — A. In this case, &-monotone mag? : A — " (A) is a correct approximation
of a concreteS-monotone magf : C — " (C) when, for anyc € C, o*(f(c)) <s f*(a(c)), where
a® : p(C) — p(A). Here, fixed point approximation states thdtfp(f)) <a Ifp(f*).

4.3 Galois Connection-based Approximations

Let us now consider the ideal case of abstract interpretatizere the best approximations in an abstract
domainA of concrete objects always exist, that is,is specified by a GG, C, A,~). However, recall
that here(p”(C), <g) and(p"(A), <) are mere preorders, and not posets. Then, given two preorder
(X,=<x) and (Y, <y), we say that two function§ : X — Y andé : Y — X specify a preorder-GC
(8,X,Y,5) whené and3 are monotone (meaning, e.g. férthatz <x =’ = B(z) <y B(2)) and the
equivalences(z) <y y < = <x d(y) holds. As expected, it turns out that GCs induce preordes-8C
Smyth, Hoare and Egli-Milner preorders.

Lemma 4.6. Let (o, C, A,~) be a Galois connection. Thefe®, (p"(C), <s), (p"(A), Zs),7*), (o,
<pv(c), jH>7<pv (A)v jH>7 ,.ys)’ and (as, <p0(0)a jEM>7 <@<>(A), jEM>a 75) are preOfder-GalOiS con-
nections.

Proof. Let us check that® is S-monotone: ifX <g Y anda(y) € o*(Y) then there exists € X such
thatz <¢ y, so that, by monotonicity of, a(x) <4 a(y), and therefore* (X) <5 «*(Y). Analogously,
~% is S-monotone. Let us check that(X) <s Y = X =<g v*(Y): if v(y) € v*(Y) then there exists
a(x) € a®(X) such thatx(z) <4 y, and, sincéa, C, A, v) is a GC, this implies that <¢ ~(y), so that
X =g v*(Y). Analogously, it turns out thak’ <5 7°(Y) = o*(X) <s Y. Hence, this shows that
(o, (p"(C), =s), (p"(A), <s),7*") is a preorder-GC. The proofs for Hoare and Egli-Milner pdews are
analogous. O

The ideal Galois connection-based framework allows us fiméldest correct approximations of mul-
tivalued functions. Iff : C — p(C) and(«, C, A, ) is a GC then itdest correct approximatioon the
abstract domaint is the multifunctionf4 : A — p(A) defined as followsf4(a) £ a*(f(v(a))). In par-
ticular, if f : C — " (C) is S-monotone therf4 : A — " (A) turns out to beS-monotone. Analogously
for Hoare and Egli-Milner preorders. Similarly to standalstract interpretation[3], it turns out that is
the best among th&-correct approximations of, as formalized by the following result.
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Lemma 4.7. A S-monotone correspondengé : A — " (A) is a S-correct approximation of iff for any
a € A, f4(a) =5 f*(a). Also, analogous characterizations hold i and EM -correct approximations.

Proof. An easy consequence of Lemmal4.6, since foramy A, f4(a) = o*(f(y(a)) =5 f(a) iff for
anya € A, f(v(a)) 25 v*(f*(a)). O

Hence, it turns out that the fixed point approximations giveheoreni 44 and Corollaky 4.5 apply to
the best correct approximatiofis..

Completeness. In abstract interpretation, completeness/[3, 10] fornealian ideal situation where the
abstract functionf? on A is capable of not losing information w.r.t. the abstractiord of the concrete
function f, that is, the equalityv(f(c)) = f*(a(c)) always holds. As a key consequence, completeness
lifts to fixed points, meaning that(1fp(f)) = Ifp(f*) holds. Let us show that this also holds for multivalued
functions. An abstracs-monotone functiorf? : A — " (A) is acomplete approximatioof a. S-monotone
functionf : C — " (C) when for anyc € C, a*(f(c)) = f*(a(c)).

Lemma 4.8(Complete Least Fixed Point Approximation). If f* is a complete approximation gfthen

a(lfp(f)) = Hp(f¥).

Proof. By Lemmal4.l,1fp(f) = lfp(f.) andlfp(f*) = lUfp(fFf). Sincef.(c) € f(c), we have that
a(fi(c) € a*(f(c)), sotha(f.(c)) = Aa®(f(c)). By hypothesispa® (f(c)) = Af*(a(c)) = ff(a(c)),

so thata o f, = f% o a holds. Thus, by complete fixed point transfer [3, Theorem0z4l, a(1fp(f.)) =
1p( /).

0|

4.4 Approximations of Best Response Correspondences

The above abstract interpretation-based approach foivaluled functions can be applied to (quasi)super-
modular games by approximating their best response camelgmces. In particular, one can abstract both
thei-th best response correspondenBgs S_; — SL(.S;) and the overall best responBe: S — SL(.5).

Example 4.9. Let us consider the ganiein Exampld 2.1 and the abstractidrof its strategy spac€ x C
defined in Example_313. Then, one can define the best corrpobéimationB4 in A of the best response
function B : C x C — SL(C x O), thatis,B* : A — p(A) is defined asB*(a) £ a*(B(y(a)) =
a®(B(a)) = {a(s1,s2) € A (s1,52) € B(a)}. We therefore have that:

B4(2,2) = o*({(2,3)}) = {(3,4)}, B(3,4) = a*({(2.3),(5,3)}) = {(3,4), (6,6)},
B(4,4) = o ({(2,4),(5,4)}) = {(3,4), (6,6)}, B"(3,5) = a"({(5,3)}) = {(6,6)},
B4(4,5) = a*({((5,4)}) = {(6,6)}, B*(6,6) = a*({(5,4),(6,4)}) = {(6,6)}.

Hence,Fix(B4) = {(3,4),(6,6)}. Therefore, by Theorei 4.4 and Corolldry]4.5, here we hase th
leq(T) = lip(B) = (2,3) < (3,4) = lip(B4) andgeq(T) = gfp(B) = (5,4) < (6,6) = gip(B4). O

5 Games with Abstract Strategy Spaces

Let us consider a ganie = (S;,u;)?_; and a corresponding family = («, S;, 4;,7:)7, of GCs of the
strategy spaceS;. By Lemmd3.1L{«, x? S;, x| A;,~) specifies a nonrelational product abstraction of
the whole strategy space?_, S;. We define the-th utility functionw? : x?_, 4; — R™: on the abstract
strategy spacex}; A; simply by restrictingu; on~y(x!_,4;) as foIIows ug( ) £ ui(v(a)). We point
out that this deflnltlon is a form of generalization of thetriesed games considered by Echeniquke [9,
Section 2.3].

Lemma5.1. If u;(-, s_;) is (quasi)supermodular and all the GCsgrare finitely disjunctive then? (-, a_;) :
A; — RMi is (quasi)supermodular. Also,if;(s;, -) is monotone thenig(al-, ) : A_; — R¥i is monotone.
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Proof. Let us check that? (-, a_;) is supermodular:

ud (a;iVa, biya_i) +ud(a; Aa, biya_;) = [by definition]
) = [G are finitely disjunctive GCs]
wi(vi(ai) Vi vi(bi), 7-i(a—i)) + ui(vias) Ai i(bi), y—i(a—:)) = [by supermodularity ofi;]
) = [by definition]
uf (aiya;) + uf (bs, a—;)

The proof of quasisupermodularity is analogous. Let us ek that.d (a;, -) is monotone. Consider
a—; < b_;, so that, by monotonicity of_;, we have that_;(a_;) < v_;(b—;). Hence, by monotonicity of
wi(yi(ai), ), we obtainuf (a;, a—i) = wi(vi(a:), v-i(a—i)) < wi(vi(as), v-i(b—s)) = uf (as, o). O

Let us also observe that if;(s;, s—;) has increasing differences (the single crossing propeky

X155 is any subset of the strategy space apd : X — RY: is the mere restriction af; to the subset
X thenu, . still has increasing differences (the single crossing erty). Hence, in particular, this holds

foruf : x,A; — R. As a consequence of this and of Lemind 5.1, we obtain thewfitp abstract
(quasi)supermodular games.
Corollary 5.2. If I = (S;, u;)?", is a (quasi)supermodular game agd= («;, S;, A;, i), is a family
of finitely disjunctive GCs thelt¥ £ (A, uig>?:1 is a (quasi)supermodular game.

Let us see an array of examples of abstract games.
Example 5.3. Consider the gamE in Exampld2.1L and the product abstractibnx A; € Abs(S; x Sa)

defined in Examplg=3]3. The restricted gaftfeof Lemma5.]l on the abstract strategy spé&ss, 6} x
{2, 6} is therefore specified by the following payoff matrix:

2 6
6| -1,-1 6,5
5|1 0,2 6,5
3| 2,4 3,2

Since bothA; and A4, are trivially disjunctive abstractions, by Corolldry 5i2turns out thatl™* is su-
permodular. The best response correspondeBéesA,i — SL(A;) for the supermodular gani¢ are
therefore as follows:

B} (2) = {3}, B}(6)={56}, By3)=1{2}; BL(5)=1{6}, BL(6)=/{6}.

We observe thaBg is not aS-correct approximation oB; because:B2(3) = {3} As {2} = Bg(?,).
Indeed, it turns out thdtq(T'%) = {(3,2), (5, 6), (6,6)}, so thafleq(T") = (2,3) £ (3,2) = leq(I'¥). Thus,

in this case, the solutions of the abstract gdihdo not correctly approximate the solutionslof

Instead, following Sectioh 4.4 and analogously to ExarhpB dne can define the best correct approx-
imation B4 : A — SL(A) in A £ A; x A, of the best response correspondeitef T, that is,
BA(a1,a2) = {(a1(s1), az(s2)) € A| (s1,52) € B(a1,az2)} acts as follows:

3,6)}, B4(3,6) = {(5,6),(6,6)}, B*(5,2) = {(3,6)},
5a6)7 (656)}7 BA(Ga 2) = {(376)}a BA(6a6) = {(576)5 (676)}'

B4(3,2) = {(

B4(5,6) = {(
Hence Fix(B4) = {(5,6), (6,6)}, so thatleq(I") = Ifp(B) = (2,3) < (5,6) = lfp(B*) andgeq(T) =
gfp(B) = (5.4) < (6,6) = gfp(B*). O

Example 5.4. In Exampld 5.8, let us consider the abstractibn= {4,6} € Abs(Ss), so that the super-
modular gamé™* is given by the following payoff matrix:

4 6

6| 5,6 6,5

5| 6,6 6,5

3| 4,5 3,2
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while the best response corresponderE;Ebecome:
Bi(4) = {5}, Bi(6)=1{5,6}, B(3)={4}; Bi(5)={4}, Bi(6)={4}.

Thus, here we have thaty(I') = {(5,4)}. In this case, it turns out tha@’ is a EM -correct approximation
of B;, so that, by Corollarf 415 (2Eq(T") = Fix(B) = {(2,3),(5,4)} <gm {(5,4)} = Fix(B*) =
Eq(T*) holds. O

Example 5.5. Here, we consider the disjunctive abstractiohs = {4,5,6} € Abs(S;) and Ax =
{3,4,5,6} € Abs(S2). In this case, we have the following supermodular abstractej ™ over A; x A,:

3 4 5 6
6| 2,4 5,6 6,5 6,5
3,4 6,6 7,5 6,5
4| 3,5 5,6 5,5 4,4

)]

where the best response functidhSare therefore as follows:

B(3)
Bi(4)

4,5}, B§<4> = {5}, B§<5> = {5}, Bi(6) = {5.6};
4y, B3(5) ={4}, B;(6) ={4}.
Here, it turns out than is a EM-correct approximation of3;, so that the abstract best respoie:

A x Ay — SL(A; x As) is a EM-correct approximation oB. Then, by Corollary 415 (2), we have that
Eq(T) = Fix(B) = {(2,3), (5,4)} <&m {(5,4)} = Fix(B*) = Eq(I'*), O

{
{

Thus, for the concrete supermodular gamaf Exampld 2,11, while the abstract games of Exaniplés 5.4
and[5.b can be viewed as correct approximations,dhis instead does not hold for the abstract game in
Exampld5.B. The following results provide conditions tuatify these different behaviors.

Theorem 5.6(Correctness of Games with Abstract Strategy SpacgslLetG = («;, S;, 4;,7:)7, be
a family of finitely disjunctive GIsS = x,S5;, A = x4, and (o, S, A,~) be the nonrelational
product composition of. LetT' = (S;,u;)? , be a (quasi)supermodular game, with best respaBise
andI9 = <Ai,uig>?:1 be the corresponding abstract (quasi)supermodular ganith, lvest respons&?.

Assume that for any € A4, \/g B(v(a)) Vs v(A4 BY(a)) € v(A). ThenEq(T) <gnm 7*(Eq(l'Y)) and,
in particular, leq(T") < v*(leq(I'Y)) andgeq(T") < v*(geq(I'9)).

Proof. We have thaq(I") = Fix(B) andEq(T'9) = Fix(BY), whereB : S — p°(S) andBY : A —

©°(A) are EM-monotone. Thus, by Corollafy 4.5 (2), in order to prove tha{l') <z 7v*(Eq(I'Y))

it is enough to prove that for any € A, B(y(a)) =gm 7°(BY(a)). Leth £ \/¢B(y(a)) € S, so

thath € B(y(a)), andk £ A, BY(a) € A, so that, by Corollar§ 512 € BY%(a). By hypothesis, we
have thath Vg v(k) € v(A). Let us consider somee [1,n]. Thereforeh; V; vi(k;) € ~vi(4;), thatis,
hi Vi vi(ki) = vi(b;), for someb; € A;. Hence, sincé; € Bl-g(a_i), we have that

wi(hi Vi yi(ki), v=ia=i)) = wi(vi(bs), y—i(a—s)) = uf (b, a—;) < uf (ki,a—s) = wi(yi(ki), v—i(as)).

On the other hand, sindg € B;(y(a)-;) = Bi(v-i(a—;)), we have thaty;(h; A; vi(k:),v7—i(a—;)) <
u;(hi,v—i(a—;)). Furthermore, since; is supermodular, we also have that

wi(hi Nivi(ki), v—i(a—i)) +wi(hi Vi vi(ki), v—i(a—i)) > wi(hi,v—i(a—i)) + wi(yi(ki), 7—i(a—:))-
We therefore obtain:

wi(hiyy—i(a—i)) +wi(vi(ki), v—i(a—i)) > wi(hi Ni vi(ki), v—i(a—i)) + wi(hi Vi vi(ki), v-i(a—i))
> ui(hiy,y—i(a—)) + ui(vi(ki), v-i(a—;))

so that

wi(hiyy—i(a—;)) + wi(vi(ks), v—i(a—s)) = wilhs As vi(ki), v—i(a—;)) + wi(hi Vi vi(ks), v—i(a—s))
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and, in turn,ui(hi /\i'}/i(ki); V_i(a_i)) = ’U,i(hi, V_i(a_i)) anduig(bi, a_i) = ul(hz \/i’yi(ki), ’}/_i(a_i)) =
wi(Yi(ki), v—i(a—)) = uf (ki, a—;). Thus,h; A vi(ks) € Bi(v—i(a—;)) andh; V; vi (ki) € 7i(Bf (a:)).
Therefore, it turns out thadtA~(k) € B(v(a)) andhVy(k) € v*(BY(a)). Hence, ifs € B(v(a)) thens <
h < hV (k) € v*(BY(a)), while if t € v*(BY(a)) thent = v*(d), for somed € BY(a), so thatk <4 d
and, inturng = v%(d) > (k) > h A~y(k) € B(v(a)), thus showing thaB(y(a)) =gm v*(BY(a)). The
proof for quasisupermodular games is analogous. O

As a consequence of the above result, we obtain a geneiatiz#t[9, Lemma 4], which is the basis
for designing the efficient algorithm i[9, Section 4] thatputes all the Nash equilibria in a finite game
with strategic complementarities. A G@, C, A, v) is called aprincipal filter GCwhen the image/(A) is
the principal filter aty(L 4), thatis,y(A) = {c€ C | v(La) < c}.

Corollary 5.7. LetG = (v, Si, A, ;)7 be principal filter GCs. Therq(T") <z v (Eq(I'9)).

Proof. Observe that the produéty, x_,.S;, xI_ 1 4;,7) is a principal filter GC. Then, this is a straight
consequence of Theordm®.6, singg B(y(a)) Vs (A4 B9(a)) > v(A, B9(a)) > v((La,)i,), SO
that\/g B(v(a)) Vs v(A4 BY(a)) € v(A) holds. O

Example 5.8. Let us consider the following finite supermodular gatheaken from [1, Example 8.11],
which is an example of the well known Bertrand oligopoly middé&|. Playersi € {1, 2, 3} stand for firms
which sell substitute products (e.g., a can of beer), whose feasible selling prices (engurios)s; range
ins; £ [a, b], where the smallest price shiftis 5 cents. The payoff fuamcdi; : S; x S2 x S5 — R models
the profit of firms:

ui(sl, S92, 83) £ di(Sl, S92, 83)(81' — Ci)

whered; (s1, s2, s3) gives the demand ¢f;, i.e., how many units gf; the firm: sells in a given time frame,
while ¢; is the unit cost of; so that(s;, — ¢;) is the profit per unit. Following[1, Example 8.11], let us
assume that:

w1 (81, 82, 83) = (370 4 213(s3 + s3) + 6051 — 23053 ) (51 — 1.10)
ua(s1, 52, 83) = (360 + 233(s1 + s3) + 555y — 22053)(s2 — 1.20)
uz(s1, s2,83) = (375 + 226(s1 + s2) + 50s3 — 200s3)(s3 — 1.25)

As shown in general in[1, Corollary 8.9], it turns out thatleaayoff functioru; has increasing differences
andu;(s;, -) is monotone, so that the gamehas the least and greatest price equilibsgA) andgeq(A),
andgeq(A) (leq(A)) provides the best (least) profits among all equilibriahtiwd be noted that [1, Exam-
ple 8.11] considers as payoff functions the integer pait;ohamely,|u;(s1, s2, s3) |, however we notice
that that this definition of payoff function does not haveresasing differences, so that [1, Corollary 8.9],
which assumes the hypothesis of increasing differencesatde applied: for example,|[1, Example 8.11]
considersS; = {z/20 | « € [26,42]z} and with(1.3,1.3,1.8) < (1.35,1.3,1.85), we would have that

lu1(1.35,1.3,1.8) | — |u1(1.3,1.3,1.8)] = [173.03125] — [143.92] = 30 >
lu1(1.35,1.3,1.85) | — |u1(1.3,1.3,1.85)] = |175.69375] — [146.05] = 29

Instead, we consider hefs £ {x/20 | x € [20,46]z}, namely the feasible prices range from 1 to 2.3 euros
with 0.05 shift. Using the standard RT algorithm in Figlir@ @ve made a simple C++ implementation of
RT), one obtains:

leq(A) = (1.80,1.90,1.95) = geq(A)

namely,A admits a unique Nash equilibrium. It turns out that the atgor RT calculatedeq(A) starting
from the bottom(1.0, 1.0, 1.0) through 12 calls tg\ B;(s—;), while it may output the same equilibrium as
geq(A) beginning from the to2.3, 2.3, 2.3) through 9 calls to/ B;(s_;).

Let us consider the following abstractiods € Abs(.S;):

Ay 2 {x/20 |z € [35,38]7U[42,46]7}, As = {2/20|z € [36,46]z}, Az = {x/20]|z € [38,46]z}.
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Notice that4; and As are principal filter abstractions, while this is not the cfaged;, so that Corollariy5]7
cannot be applied. We observe that:

{V,Bi(a_1) € S1 | a_1 € Ay x Az} = {36/20,37/20,38,/20},
{V,Ba(a_s) € Sa | a_y € Ay x A} = {38/20,39/20,40,20},
{VsBs(a_3) € S3 | a_3 € Ay x As} = {39/20,40/20,41/20,42/20}.

The hypothesis of Theordmb.6 is therefore satisfied, bedauanya_; € A_;, we havethal/ B;(a_;) €

A;. Hence, by Corollary5]2, we consider the supermodularatisgameA“ on the abstract strategy
spacesd;. By exploiting the standard RT algorithm in Figlire]2.3 fof', we still obtain a unique equilib-
riumleq(A4) = (1.80,1.90,1.95) = geq(A4), so that in this case no approximation of equilibria occurs.
Here, RT calculatekq(A“) starting from the botton(1.8,1.8,1.9) of A; x Ay x A3 through 6 calls to

A B#(a—;) and any call\ B (a_;) scans the smaller abstract strategy spagénstead ofS;. On the
other hand(1.80, 1.90, 1.95) = geq(A) can be also calculated from the t@p3, 2.3, 2.3) still with 9 calls
to\/ B{*(a_;), each scanning the reduced abstract strategy spaces O

6 Games with Abstract Best Response

In the following, we put forward a notion of abstract game veithe strategy spaces are subject to a form of
partial approximation by abstract interpretation, megnhrat we consider approximations of the strategy
spaces of the “other players” for any utility function, j.eorrect approximations of the functiong(s;, -),
for any givens;. This approach gives rise to games having an abstract bgsbnse correspondence.
Here, we aim at providing a systematic abstraction framkvarthe implicit methodology of approximate
computation of equilibria considered by Carl and HeikKilhin their Examples 8.58, 8.63 and 8.64.
Givenagamé' = (S;, u;)? ,, we consider afamilg = («;, Si, A;,7:)", of GCs and, by Lemnfa3.1,
their nonrelational produdiy, x?_,S;, x"_, A;,7), where we denote by £ v o a € uco(x"_,S;) the
corresponding closure operator and, for anpy p_; € uco(S_;) the closure operator corresponding to
the (n — ¢)-th nonrelational produdiev—;, x j£;S;, X j£;Aj, 7). The utility functionu; g : x7—;5; = R
is then defined as follows: for anye x?_,S;, u;.g(si, $—i) = ui(si, p—i(5-:))-

Lemma 6.1. If u,;(s;,s—;) has increasing differences (the single crossing propettgnu; ¢(s;, s—)
has increasing differences (the single crossing proper®lyo, if u;(s;, -) is monotone them; g(s;, -) is
monotone.

Proof. Assume thafs;, s_;) < (¢;,t—;). Hences_; <_; t_;, sothat, by monotonicity gf _;, p_;(s—;) <_;
p—i(t—;), and, inturnys;, p—i(s—;)) < (t;, p—i(t—;)). Then:
;g (tiy S—i) — uig(si,s—;) = [by definition]
ui(ti, p—i(s—s)) — ui(si, p—i(s—i)) < [sinceu; has increasing differences]
wi(tiy p—i(t—i)) — wi(si, p—i(t—i)) [by definition]
ul-_,g(tl,t i) — Ui g(si,t—q).

The single crossing property far ¢ (s;, s—;) can be proved similarly. Let ; <_; ¢t_;, so that, by mono-
tonicity of p_;, p—i(s—i) <_i p—i(t_;). Then, by monotonicity ofi;(s;,-), we obtain:u; g(s;, s_;) =
wi(si, p—i(s—s)) = ui(si, p—i(t—;)) = u;g(si,t—;), thus proving the monotonicity af; g (s;, -). O

Moreover, let us point out that if; (-, s_;) is (Quasi)supermodular then, obviouslyg (-, s_;) remains
(quasi)supermodular as well, so that by defining the gaigie® (S;, u; ¢)* , we obtain the following
consequence.

Corollary 6.2. If " is (quasi)supermodular thdrg is (quasi)supermodular.

We calll'g a game with abstract best responisecause theé-th best response correspondettg; :
S_; — SL(SZ) is such thatBi7g(S_i) = {Sl € S; |V$1 S Si.ui(xi,p_i(s_i)) < ui(xi;p—i(s—i))} =
B;i(p-i(s—i)), so that the best response correspondence sati$fies = Bg(p(s)) = B(p(s)), namely,
Bg can be viewed as the restriction Bfto the abstract strategy spages).
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Corollary 6.3 (Correctness of Games with Abstract Best RespongelLetG = («;, S;, 4;,7:)", be a
family of GCs. Theriq(T") <gn Eq(T'g) and, in particularleq(T") < leq(T'g) andgeq(T") < geq(T'g).

Proof. Since, by Corollar{/6]2['; is (quasi)supermodular, we have tiat(I") = Fix(B) andEq(T'g) =
Fix(Bg). We have that for any € x_, S;, by extensiveness @f s < p(s), so that, sincé3 is monotone,
we obtainB(s) =gy B(p(s)) = Bg(s). Hence, by Corollary 4]2 (4), we obtain thBix(B) <gum
Fix(Bg). O

Example 6.4. Let us consider the two-player gafie= (Sl, u1>1 1 in [1, Example 8.53], which is a further
example of Bertrand oligopoly, whefg = S, = [%, g] X [2, 2] and the utility functions:; : S; x S — R?
are defined byLi((Sﬂ, Si2), S,i) = (u“ (Sﬂ, S,i), uig(szg, S_ 1)) S RQ with

u11 (811, S21, $22) = (52 — 21511 + S21 + 4522 + 8 sgn(sa1 522 — 4)) (s11 —1)

11 11
u12(s12, 521, 522) = (51 — 21812 — sgn(s12 — g) + 2821 4 3522 + 4 sgn(sa1 + s22 — 4)) (512 — 1—0)

11 11
Uus1(s21, 511, 512) = (50 — 20821 — sgn(sa1 — g) + 3511 4 2512 + 2 sgn(s11 + s12 — 4)) (521 — 1—0)

u22(822, 11, 512) = (49 — 20822 + 4511 + s12 + sgn(s11512 — 4)) (s22 — 1)

Since any utility functionu;;(s;;, s_;) does not depend of _;, let us observe that; (-, s_;) : S; — R?

is supermodular. Moreover, byl|[1, Propositions 8.56, 8.9/ also have that;(s1, s2) has the single
crossing property, so that is indeed quasisupermodular. Also, singeis a compact (for the standard
topology) complete sublattice &2, we also have that;(-, s_;) is order upper semicontinuous, so that,
for any s € S; x Ss, the best response correspondeftsatisfiesB(s) € SL(S; x S3). Indeed, as
observed in[[1L, Example 8.53], it turns out that the utilipétionsu;; (-, s_;) : [2, 3] — R have unique
maximum points denoted bft; (s—;) which are the solutions of the equatioﬂ&ij(s, s—;) = 0. An easy
computation then provides:

f11(s21, 822) Zz + %Sm + 221 S22 + % sgn(sa1822 — 4)
f12(s21, 822) ?ig + 41—2821 + 1—14522 =+ 2—21 sgn(sa1 + s22 — 4)
f21(s11, 512) = % + 430811 + %812 + % sgn(s11 + s12 — 4)
fo2(s11,512) = % + 110811 + 0512 + 410 sgn(si11512 — 4)

so that the best responBecan be simplified as follows:

3(8117 512, 521, 822) = { (f11(8217 522)7 f12(8217 522)7 f21(8117 512)7 f22(8117 512)) }

As shown in[1, Example 8.53], direct solutionsdfcan be obtained by solving a linear system of four
equations with four real variables and this yields the feilg least and greatest equilibria:

loq(T) = (4940854 5281784 5497457 10699993)
A= \2778745° 2778745° 2778745 5557490
oq(T) = (6033654 5848294 5885617 11224753)

84 2778745’ 2778745° 2778745’ 5557490

Carl and Heikkilal[1, Example 8.58] describe how to derilgoathmically approximate solutions @f by
approximating the fractional part of real numbers throughftoor function, namely, the greatest rational
number withN fractional digits which is not more than a given real numbarthis section we gave an
abstract interpretation-based methodology for systemlftidesigning this kind of approximate solutions
which generalizes the approach in [1, Example 8.58]. Herepsge the ceil abstraction of real numbers
already described in Examfdle 2.3. Thus, we consider theisasperatorls : [3,2] — [3, 2], that is,
cls(z) is the smallest rational number with at most 3 fractionaltdigot less tharn:. With a slight abuse
of notation,cl; is also used to denote the corresponding componentwiséidang; : [3, 3]2 — [3, 3]2,
namely,cls(si1, si2) = (cls(si1),cls(si1)). Let Aa, = {4 € Q |y € [1500,2500)z} = {cls(z) | = €

(2, 2]} (and this is a finite domain) and £ A, x Ag,. Then,(cls, [2, 3], Aa,,id) is a GC, so that, by
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Lemmd3.lgs = (cl3, S;, 4,id)%_, is a pair of GCs. Let us denote liy, the corresponding game with
abstract best response defined in Corollary 6.2, soithaf(s;, s—i;) = u;(s;, cls(s—;)). Thus, it turns out
that the abstract best response correspondBpgcés defined as follows:

B(s1,52) = {(f11(clz(s2)), fra(clz(s2)), fa1(cla(s1)), faa(cl3(51))) }

so that,Bg, can be restricted to the finite domaihx A and therefore has a finite range. This allows us
to compute the least and greatest equilibrid'gf by the standard RT algorithm in Figure2.3. Through a
simple C++ program, we obtain the following solutions:

10669 6653 79139 77017)
6000 * 3500 40000 40000
91199 14733 42363 80793)

42000° 7000 " 20000 40000

By Corollary[6.3, we know that these are correct approxiamaj i.e. leq(T') < leq(I'g,) andgeq(T’) <
geq(Tg,). Both fixed point calculationg:q(I'g,) and geq(I'g,) need 16 calls to the abstract functions
fij(a—;), for somea_, € A_;, which provide the unique maximum points foy;(-,a—;). It is worth
noting that, even with the precision of 3 fractional digifsdd;, the maximum approximation for these

abstract solutions turns out to be|(I'g, )22 — leq(I)2s = gyamsoios . = 0.00009665932822. O

leq(I'g,) = (

geq(l'g,) = (

7 Further Work

We investigated how the abstract interpretation technieshéch is widely used for static program analysis,
can be applied to define and calculate approximate Nashiledgibf supermodular games, thus showing
how a notion of approximation of equilibria can be modeledabyordering relation analogously to what
happens in the standard approaches to static analysis friiéme behaviors of programs. To our knowl-
edge, this is the first contribution towards the goal of agjpnating solutions of supermodular games by
relying on a lattice-theoretical approach. We see a numbisiteresting avenues for further work on this
subject. First, our notion of correct approximation of a tivalued function relies on a naive pointwise
lifting of an abstract domain, as specified by a Galois cotioecto Smyth, Hoare, Egli-Milner and Veinott
preorder relations on the powerset, which is the range dflesponse correspondences in supermodular
games. It is worth investigating whether abstract domaéamshe lifted in different and more sophisticated
ways to this class of preordered powersets, in particulaaking into account that, for a certain class of
complete lattices, the Veinott ordering gives rise to catlattices [14]. Secondly, it could be interesting
to investigate some further conditions which can guaratiteeorrectness of games with abstract strategy
spaces (cf. Theorem %.6). The goal here is that of devisingtiamof simulation between games whose
strategy spaces are related by some form of abstractiorrder ¢o prove that i’ simulatesl” then the
equilibria of T are approximated by the equilibria 6f. Finally, while this paper set up the abstraction
framework by using very simple abstract domains, the gérask of designing useful and expressive
abstract domains, possibly endowed with widening opesdiar efficient fixed point computations, for
specific classes of supermodular games is left as an open issu
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