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Abstract Interpretation of Supermodular Games
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Abstract

Supermodular games find significant applications in a variety of models, especially in operations
research and economic applications of noncooperative gametheory, and feature pure strategy Nash equi-
libria characterized as fixed points of multivalued functions on complete lattices. Pure strategy Nash equi-
libria of supermodular games are here approximated by resorting to the theory of abstract interpretation,
a well established and known framework used for designing static analyses of programming languages.
This is obtained by extending the theory of abstract interpretation in order to handle approximations
of multivalued functions and by providing some methods for abstracting supermodular games, in order
to obtain approximate Nash equilibria which are shown to be correct within the abstract interpretation
framework.

1 Introduction

Motivations. Games may have strategic complementarities, which means, roughly speaking, that best
responses of players have monotonic reactions, reflecting acomplementarity relationship between own
actions and rivals’ actions. Games with strategic complementarities occur in a large array of models, espe-
cially in operations research and economic applications ofnoncooperative game theory, a significant sample
of them is described by Topkis’ book [17]. Pionereed by Topkis [16], this class of games is formalized by
supermodular games, where the payoff functions of each player have the lattice-theoretical properties of
supermodularity and increasing differences. In a supermodular game, the strategy space of every player
is partially ordered and is assumed to be a complete lattice,while the utility in playing a higher strategy
increases when the opponents also play higher strategies. It turns out that pure strategy Nash equilibria
of supermodular games exist and form a complete lattice w.r.t. the ordering relation of the strategy space,
thus exhibiting the least and greatest Nash equilibria. Furthermore, since the best response correspondence
of a supermodular game satisfies a monotonicity hypothesis,its least and greatest equilibria can be char-
acterized and, under some assumptions of finiteness, calculated as least and greatest fixed points by the
well-known lattice-theoretical Knaster-Tarski fixed point theorem, which provides the theoretical basis for
the Robinson-Topkis algorithm [17].

Since the breakthrough on the PPAD-completeness of finding mixed Nash equilibria [7], the question
of approximating Nash equilibria emerged as a key problem inalgorithmic game theory [8, 11]. In this
context, approximate equilibrium refers toǫ-approximation, withǫ > 0, meaning that, for each player, all
the strategies have a payoff which is at mostǫ more (or less) than the precise payoff of the given strategy.
It is well known that the notion of correct (a.k.a. sound) approximation is fundamental in static program
analysis, one major research area in programming language theory and design. Static program analysis
derives some partial but correct information of the run-time program behavior without actually executing
programs. Prominent examples of static analysis include dataflow analysis used in program compilers, type
systems for inferring program types, model checking for program verification, and abstract interpretation
used to design abstract interpreters of programs. In particular, the abstract interpretation approach to static
analysis [2, 3] relies on a lattice-theoretical model of thenotion of approximation. Program properties are
modelled by a domainC endowed with a partial order≤ which plays the role of approximation relation,
wherex ≤ y intuitively means that the propertyy is an approximation of the propertyx, or, equivalently,
that the propertyx is logically stronger thany. The key principle in static analysis by abstract interpreta-
tion is to provide an approximate interpretation, a.k.a. anabstract interpretation, of a program for a given
abstraction of the properties of its concrete semantics. This leads to the idea of abstract domain, which is an
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ordered collection of abstract program properties which can be inferred by static analysis, where approxi-
mation is again modeled by the ordering relation. The classical introductory example of program abstract
interpretation is sign analysis. Given an arithmetic integer expressione, one tries to bound its sign—
negative, zero or positive—without actually computinge. The idea is that one can prove thate ≡ 3×−2 is
negative without actually computing thate evaluates to−6. If S = {−, 0,+} then abstract integers inA are
defined as subsets of these signs inS, i.e.,A , ℘(S). Here,A is ordered by inclusion which encodes the
approximation relation: for example,{+} ⊆ {0,+} encodes that being positive is a stronger property than
being nonnegative, so that nonnegative is an approximationof positive. Then, any set of integer numbers
S ∈ ℘(Z) can be abstractly represented by its most precise abstraction inA through an abstraction function
α : ℘(Z) → A. Hence, a set of integersS is correctly approximated by an abstract integera ∈ A precisely
whenα(S) ⊆ a holds. In turn, one can define abstract addition⊕ and multiplication⊗ on abstract integers
in A: for example,{−, 0}⊕ {−} = {−} and{−}⊕ {+} = {−, 0,+}, while{−}⊗ {+, 0} = {−, 0} and
{−,+}⊗{0} = {0}. Hence, in order to analyze the expression3×−2 we convert it toα({3})⊗α({−2})
to infer {−}. Of course, it may well happen that the abstract domain does not carry enough precision to
compute the most precise information theoretically available inA: for the expression−2 + 2, we have that
α({−2})⊕ α({2}) = {−, 0,+} althoughα({−2 + 2}) = {0} ( α({−2})⊕ α({2}). In such cases, the
output of the static analysis is “I don’t know”. In the terminology of abstract interpretation,⊕ and⊗ are
correct approximations of concrete integer addition and multiplication. Program semantics are typically
formalized using fixed points of functions for modelling loops and recursive procedures. A basic result of
abstract interpretation tells us that correctness is preserved for least and greatest fixed points: if a concrete
monotone functionf : C → C is correctly approximated by an abstract monotone functionf ♯ : A → A
on an abstractionA of C then the least (or greatest) fixed pointlfp(f) ∈ C of f is correctly approximated
by the least (or greatest) fixed pointlfp(f ♯) ∈ A of f ♯, i.e., α(lfp(f)) ≤A lfp(f ♯). For example, the
concrete output of the programP ≡ x := 3;while (x < 13) do x := 2 ∗ x is {24}, while its abstract
interpretation is derived as the least fixed point which is greater than or equal to the initial abstract value
α({3}) = {+} for the functionf ♯ : A → A defined byf ♯(a) = α({2})⊗ a, so that this least fixed point
is lfp≥{+}(f

♯) = {+}, and in this case we have thatα({24}) = lfp≥{+}(f
♯).

Goal. The similarities between supermodular games and formal program semantics should be therefore
clear, since they both rely on order-theoretical models andon computing extremal fixed points of suitable
functions on lattices. However, while the order theory-based approximation of program semantics by static
analysis is a traditional and well-established area in computer science since forty years, to the best of
our knowledge, no attempt has been made to apply some techniques used in static program analysis for
defining a corresponding notion of approximation in supermodular games. The overall goal of this paper
is to investigate whether and how abstract interpretation can be used to define and calculate approximate
Nash equilibria of supermodular games, where the key notionof approximation will be modeled by a
partial ordering relation similarly to what happens in static program analysis. This appears to be the first
contribution to make use of an order-theoretical notion of approximation for equilibria of supermodular
games, in particular by resorting to the abstract interpretation technique ordinarily used in static program
analysis.

Contributions. As sketched above, abstract interpretation essentially relies on: (1) abstract domainsA
which encode approximate properties; (2) abstract functionsf ♯ which must correctly approximate onA
the behavior of some concrete operationsf ; (3) results of correctness for the abstract interpreter using A
andf ♯, for example the correctness of extremal fixed points of abstract functions, e.g.lfp(f ♯) correctly
approximateslfp(f); (4) so-called widening/narrowing operators tailored forthe abstract domainsA to
ensure and/or accelerate the convergence in iterative fixedpoint computations of abstract functionsf ♯. We
contribute to set up a general framework for designing abstract interpretations of supermodular games which
basically encompasses the above points (1)-(3), while widening/narrowing operators are not taken into
account since their definition is closely related to some individual abstract domain. Our main contributions
can be summarized as follows.

• In supermodular games, a strategy spaceSi for the playeri is assumed to be a complete lattice and
best response correspondences are (multivalued) functions defined over a productS1 × · · · × SN of
complete lattices which plays the role of concrete domain. Thus, as a preliminary step, we show how
abstractions of strategy spaces can be composed in order to define an abstract domain of the product
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S1×· · ·×SN , and, on the other hand, an abstraction of the productS1×· · ·×SN can be decomposed
into abstract domains of the individualSi’s.

• Abstract interpretation is commonly used for approximating single-valued functions on complete
lattices. For supermodular games, best responses are indeed multivalued functionsB : S1 × · · · ×
SN → ℘(S1 × · · · × SN ) that we expect to approximate. Thus, we first provide short and direct
constructive proofs ensuring the existence of fixed points for multivalued functions. Then, we show
how abstract interpretation can be generalized to handle multivalued functions, first by defining a
parametric notion of correct approximation for multivalued functions, and then by proving that these
correct abstract multivalued functions preserve their correctness for their fixed points.

• We investigate how to define an “abstract interpreter” of a supermodular game. The first approach
consists in defining a supermodular game on an abstract strategy space. Given a gameΓ with strategy
spacesSi and utility functionsui : S1 × · · · × SN → R, this means that we assume a family of
abstractionsAi, one for eachSi, that gives rise to an abstract strategy spaceA = A1×· · ·×AN , and
a suitable abstract restriction of the utility functionsuA

i : A1 × · · · × AN → R. This defines what
we call an abstract gameΓA, which, under some conditions, has abstract equilibria which correctly
approximate the equilibria ofΓ. Obviously, the fixed point computations overA for the abstract
gameΓA should be more efficient than inΓ. This abstraction technique provides a generalization
of the efficient algorithm by Echenique [9] for finding all equilibria in a finite game with strategic
complementarities.

• On the other hand, we put forward a second notion of abstract game where the strategy spaces are
subject to a kind of partial approximation, meaning that, for any utility function, we consider ap-
proximations of the strategy spaces of the “other players”,i.e., correct approximations over abstract
domainsAi of the functionsui(si, ·) : S1 × · · ·Si−1 ×Si+1 × · · · ×SN → R, for any given strategy
si ∈ Si. This abstraction technique gives rise to games having an abstract best response correspon-
dence. This approach is inspired and somehow generalizes the implicit methodology of approximate
computation of equilibria considered by Carl and Heikkilä[1, Chapter 8].

Our results are illustrated on some examples of supermodular games, in particular a couple of examples of
Bertrand oligopoly models are taken from Carl and Heikkilä’s book [1].

2 Background

2.1 Order-Theoretical Notions

Given a functionf : X → Y and a subsetS ⊆ X thenf(S) , {f(s) ∈ Y | s ∈ S} denotes the image of

f onS andf s : ℘(X) → ℘(Y ) denotes the corresponding standard powerset lifting off , that is,f s(S) ,
f(S). Given a family ofN > 0 sets(Si)

N
i=1, ×N

i=1Si denotes their Cartesian product. Ifi ∈ [1, N ] and
s ∈ ×N

i=1Si thenS−i , S1×· · ·×Si−1×Si+1×· · ·SN , whiles−i , (s1, . . . , si−1, si+1, . . . , sN ) ∈ S−i.
Also, 〈RN ,≤〉 denotes the standard product poset of real numbers, where for s, t ∈ RN , s ≤ t iff for any
i ∈ [1, N ], si ≤ ti, while s + t = (si + ti)

N
i=1. A multivalued function, also called correspondence, is a

mappingf : X → ℘(X). An elementx ∈ X is a fixed point off whenx ∈ f(x), whereFix(f) , {x ∈
X | x ∈ f(x)}.

Let 〈C,≤,∧,∨,⊥,⊤〉 be a complete lattice, compactly denoted by〈C,≤〉. A nonempty subsetS ⊆ C
is a subcomplete sublattice ofC if for all its nonempty subsetsX ⊆ S, ∧X ∈ S and∨X ∈ S. Let us recall
the following relations on the powerset℘(C): for anyX,Y ∈ ℘(C),

(Smyth preorder) X �S Y
△

⇐⇒ ∀y ∈ Y.∃x ∈ X. x ≤ y

(Hoare preorder) X �H Y
△

⇐⇒ ∀x ∈ X.∃y ∈ Y. x ≤ y

(Egli-Milner preorder) X �EM Y
△

⇐⇒ X �S Y & X �H Y

(Veinott relation) X �V Y
△

⇐⇒ ∀x ∈ X.∀y ∈ Y. x ∧ y ∈ X & x ∨ y ∈ Y

Smyth, Hoare and Egli-Milner relations are preorders (i.e., reflexive and transitive), while Veinott relation
(also called strong set relation) is transitive and antisymmetric. A multivalued functionf : C → ℘(C) is
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S-monotone if for anyx, y ∈ C, x ≤ y impliesf(x) �S f(y). H-, EM - andV -monotonicity are defined
analogously. We also use the following notations:

℘∧(C) , {X ∈ ℘(C) | ∧X ∈ X} ℘∨(C) , {X ∈ ℘(C) | ∨X ∈ X}

℘⋄(C) , ℘∧(C) ∩ ℘∨(C) SL(C) , {X ∈ ℘(C) | X 6= ∅, X subcomplete sublattice ofC}

Observe that ifX,Y ∈ ℘∧(C) thenX �S Y ⇔ ∧X ≤ ∧Y . Similarly, if X,Y ∈ ℘∨(C) then
X �H Y ⇔ ∨X ≤ ∨Y and ifX,Y ∈ ℘⋄(C) thenX �EM Y ⇔ ∧X ≤ ∧Y & ∨X ≤ ∨Y .

The pointwise ordering relation⊑ between two functionsf, g : X → C whose rangeC is a complete
lattice, is defined byf ⊑ g if for any x ∈ X , f(x) ≤C g(x). A functionf : C → D between complete
lattices is additive (co-additive) whenf preserves arbitrary lub’s (glb’s). Given a functionf : C → C on
a complete latticeC, Fix(f) , {x ∈ C | x = f(x)} denotes the set of fixed points off , while lfp(f)
andgfp(f) denote, respectively, the least and greatest fixed points off , when they exist. Let us recall that
least and greatest fixed points always exist for monotone functions. If f : C → C then for any ordinal
α ∈ O, theα-powerfα : C → C is defined by transfinite induction as follows: for anyx ∈ C, (1) if
α = 0 thenf0(x) , x; (2) if α = β + 1 thenfβ+1(x) , f(fβ(x)); (3) if α = ∨{β ∈ O | β < α} then
fα(x) ,

∨

β<α fβ(x).
A mapρ : C → C, with C complete lattice, is a (topological) closure operator when: (i) x ≤ y ⇒

ρ(x) ≤ ρ(y); (ii) x ≤ ρ(x); (iii) ρ(ρ(x)) = ρ(x). We denote byuco(〈C,≤〉) the set of all closure operators
on the complete latticeC. A closure operatorρ ∈ uco(C) is uniquely determined by its imageρ(C), which
coincides with its set of fixed pointsFix(ρ), as follows: for anyc ∈ C, ρ(c) = ∧C{x ∈ ρ(C) | c ≤ x}.
Also, a subsetS ⊆ C is the image of a closure operatorρS ∈ uco(C) iff S is meet-closed, i.e.,S =
{∧CX ∈ C | X ⊆ S}; in this case,ρS(c) = ∧C{x ∈ S | c ≤ x}.

Supermodularity. Given a complete latticeC, a functionu : C → RN is a supermodular if for any
c1, c2 ∈ C, u(c1 ∨ c2) + u(c1 ∧ c2) ≥ u(c1) + u(c2), whileu is quasisupermodular if for anyc1, c2 ∈ C,
u(c1 ∧ c2) ≤ u(c1) ⇒ u(c2) ≤ u(c1 ∨ c2) andu(c1 ∧ c2) < u(c1) ⇒ u(c2) < u(c1 ∨ c2). Clearly,
supermodularity implies quasisupermodularity (while theconverse is not true). Recall that ifu : C → RN

is quasisupermodular thenargmax(f) , {x ∈ C | ∀y ∈ C. f(y) ≤ f(x)} is a sublattice ofC.
A functionu : C1 × C2 → RN has increasing differences when for any(x, y) ≤ (x′, y′), u(x′, y) −

u(x, y) ≤ u(x′, y′) − u(x, y′), or, equivalently, the functionsu(x′, ·) − u(x, ·) andu(·, y′) − u(·, y) are
monotone. A functionu : C1 × C2 → RN has the single crossing property when for any(x, y) ≤ (x′, y′),
u(x, y) ≤ u(x′, y) ⇒ u(x, y′) ≤ u(x′, y′) andu(x, y) < u(x′, y) ⇒ u(x, y′) < u(x′, y′). Clearly, ifu
has increasing differences thenu has the single crossing property, while the converse does not hold.

Supermodularity on product complete lattices and increasing differences are related as follows: a func-
tion u : C1 × C2 → RN is supermodular if and only ifu has increasing differences and, for anyci ∈ Ci,
u(c1, ·) : C2 → RN andu(·, c2) : C1 → RN are supermodular.

2.2 Noncooperative Games

In our model, a noncooperative gameΓ = 〈Si, ui〉
n
i=1 for playersi = 1, ..., n consists of a family of

feasible strategy spaces(Si,≤i)
n
i=1 which are assumed to be complete lattices, so that the strategy space

S , ×n
i=1Si is a complete lattice for the componentwise order≤, and of a family of utility (or payoff)

functionsui : S → RNi , with Ni ≥ 1. Thei-th best response correspondenceBi : S−i → ℘(Si) is defined
asBi(s−i) , {xi ∈ Si | ∀si ∈ Si. ui(si, s−i) ≤ ui(xi, s−i)}, while the best response correspondence
B : S → ℘(S) is defined byB(s1, ..., sn) , ×n

i=1Bi(s−i). A strategys ∈ S is a pure Nash equilibrium
for Γ whens is a fixed point ofB, i.e., s ∈ B(s), meaning that ins there is no feasible way for any
player to strictly improve its utility if the strategies of all the other players remain unchanged. We denote
byEq(Γ) ∈ ℘(S) the set of Nash equilibria forΓ, so thatEq(Γ) = Fix(B).

2.2.1 (Quasi)Supermodular Games

A noncooperativeΓ = 〈Si, ui〉
n
i=1 is supermodularwhen:

(1) for anyi, for anys−i ∈ S−i, ui(·, s−i) : Si → RNi is supermodular;
(2) for anyi, ui(·, ·) : Si × S−i → RNi has increasing differences.
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〈s1, ..., sn〉 := 〈⊥1, ...,⊥n〉; //〈s1, ..., sn〉 := 〈⊤1, ...,⊤n〉;

do
{

〈t1, ..., tn〉 := 〈s1, ..., sn〉;

s1 := ∧1B1(s−1); //s1 := ∨1B1(s−1);

. . .

sn := ∧nBn(s−n); //s1 := ∨nBn(s−n);
}

while ¬(〈s1, ..., sn〉 = 〈t1, ..., tn〉)

Figure 1: Robinson-Topkis (RT) algorithm.

On the other hand,Γ is quasisupermodular(or, with strategic complementarities) when:

(1) for anyi, for anys−i ∈ S−i, ui(·, s−i) : Si → RNi is quasisupermodular;
(2) for anyi, ui(·, ·) : Si × S−i → RNi has the single crossing property.

In these cases, it turns out (cf. [17, Theorems 2.8.1 and 2.8.6]) that thei-th best response correspondence
Bi : S−i → ℘(Si) isEM -monotone, as well as the best response correspondenceB : S → ℘(S).

Let us recall that, given a complete latticeC, a functionf : C → RN is order upper semicontinuous if
for any chainY ⊆ C,

lim sup
x∈Y,x→∨Y

f(x) ≤ f(∨C) and lim sup
x∈Y,x→∧Y

f(x) ≤ f(∧C).

It turns out (cf. [17, Lemma 4.2.2]) that if eachui(·, s−i) : Si → RNi is order upper semicontinuous
then, for eachs ∈ S, Bi(s−i) ∈ SL(Si), i.e., Bi(s−i) is a nonempty subcomplete sublattice ofSi, so
thatB(s) ∈ SL(S) also holds. In particular, we have that∧iBi(s−i),∨iBi(s−i) ∈ Bi(s−i) as well as
∧B(s),∨B(s) ∈ B(s), namely,Bi(s−i) ∈ ℘⋄(Si) andB(s) ∈ ℘⋄(S). It also turns out [18, Theorem 2]
that 〈Eq(Γ),≤〉 is a complete lattice—although, in general, it is not a subcomplete sublattice ofS—and
thereforeΓ admits the least and greatest Nash equilibria, which are denoted, respectively, byleq(Γ) and
geq(Γ). It should be remarked that the hypothesis of upper semicontinuity for ui(·, s−i) holds for any
finite-strategy game, namely for those games where each strategy spaceSi is finite. In the following, we
will consider (quasi)supermodular games which satisfy this hypothesis of upper semicontinuity.

If, given anysi ∈ Si, the functionui(si, ·) : S−i → RNi is monotone then it turns out [1, Proposi-
tions 8.23 and 8.51] thatgeq(Γ) majorizes all equilibria, i.e., for alli ands ∈ Eq(Γ), ui(geq(Γ)) ≥ ui(s),
while leq(Γ) minimizes all equilibria.

2.3 Computing Game Equilibria

Consider a (quasi)supermodular gameΓ = 〈Si, ui〉
n
i=1 and define the functionsB∧, B∨ : S → S as fol-

lows: B∧(s) , ∧B(s) andB∨(s) , ∨B(s). As recalled in Section 2.2.1, we have thatB∧(s), B∨(s) ∈
B(s). When the image of the strategy spaceS for B∧ turns out to be finite, the standard algorithm [17,
Algorithm 4.3.2] for computingleq(Γ) consists in applying the constructive Knaster-Tarski fixedpoint the-
orem to the functionB∧ so thatleq(Γ) =

∨

k≥0
Bk

∧(⊥S). Dually, we have thatgeq(Γ) =
∧

k≥0
Bk

∨(⊤S).
In particular, this procedure can be always used for finite games. The application of the so-called chaotic
iteration in this fixed point computation provides the Robinson-Topkis (RT) algorithm [17, Algorithm 4.3.1]
in Figure 2.3, also called round-robin optimization, whichis presented in its version for least fixed points,
while the statements in comments provide the version for calculating greatest fixed points.

Let us provide a running example of supermodular finite game.

Example 2.1. Consider a two players finite gameΓ represented in normal form by the following double-
entry payoff matrix:
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1 2 3 4 5 6

6 -1, -3 -1, -1 2, 4 5, 6 6, 5 6, 5

5 0, 0 0, 2 3, 4 6, 6 7, 5 6, 5

4 3, 1 3, 3 3, 5 5, 6 5, 5 4, 4

3 2, 2 2, 4 2, 6 4, 5 4, 4 3, 2

2 6, 4 6, 6 6, 7 6, 4 5, 2 4, -1

1 6, 4 5, 6 5, 6 4, 2 3, 0 2, -3

Here,S1 andS2 are both the finite chain of integersC = 〈{1, 2, 3, 4, 5, 6},≤〉 andu1(x, y), u2(x, y) :
S1 × S2 → R are, respectively, the first and second entry in the matrix element determined by rowx and
columny. It turns out that bothu1 andu2 have increasing differences, so that, sinceS1 andS2 are finite
chains,Γ is a finite supermodular game. The two best response correspondencesB1, B2 : C → SL(C) are
as follows:

B1(1) = {1, 2}, B1(2) = {2}, B1(3) = {2}, B1(4) = {2, 5}, B1(5) = {5}, B1(6) = {5, 6};
B2(1) = {2, 3}, B2(2) = {3}, B2(3) = {3}, B2(4) = {4}, B2(5) = {4}, B2(6) = {4}.

Thus,Eq(Γ) = {(2, 3), (5, 4)}, since this is the setFix(B) of fixed points of the best response corre-
spondenceB = B1 × B2. We also notice thatu1(·, s2), u2(s1, ·) : C → R are neither monotone nor
antimonotone. The fixed point computations of the least and greatest equilibria through the above RT
algorithm proceed as follows:

(1, 1) 7→
(

∧B1(1, 1), 1
)

= (1, 1) 7→
(

1,∧B2(1, 1)
)

= (1, 2) 7→ (2, 2) 7→ (2, 3) 7→ (2, 3) 7→ (2, 3) (lfp)

(6, 6) 7→ (∨B1(6, 6), 6) = (6, 6) 7→ (6,∨B2(6, 6)) = (6, 4) 7→ (5, 4) 7→ (5, 4) 7→ (5, 4) (gfp)

2.4 Abstract Interpretation

Static program analysis relies on correct (a.k.a. sound) and computable semantic approximations. A pro-
gramP is modeled by some semanticsSemJP K and a static analysis ofP is designed as an approximate
semanticsSem♯JP K which must be correct w.r.t.SemJP K. This may be called global correctness of static
analysis. Any (finite) programP is a suitable composition of a number of constituents subprogramsci
and this is reflected on its global semanticsSemJP K which is commonly defined by some combinations of
the semanticsSemJciK of its components. Thus, global correctness of a static analysis ofP is typically
derived from local correctness of static analyses for its componentsci. This global vs. local picture of static
analysis correctness is very common, independently of the kind of programs (imperative, functional, reac-
tive, etc.), of static analysis techniques (model checking, abstract interpretation, logical deductive systems,
type systems, etc.), of program properties under analysis (safety, liveness, numerical properties, pointer
aliasing, type safety, etc.). A basic and rough proof principle in static analysis is that global correctness is
derived from local correctness. In particular this appliesto static program analyses that are designed using
some form of abstract interpretation. Let us consider a simplified but recurrent scenario, whereSemJP K is
defined as least (or greatest) fixed pointlfp(f) of a monotone functionf on some domainC of program
properties, which is endowed with a partial order that encodes the relative precision of properties. In ab-
stract interpretation, a static analysis is then specified as an abstract fixed point computation which must
be correct forlfp(f). This is routinely defined through an ordered abstract domain A of properties and an
abstract semantic functionf ♯ : A → A that give rise to a fixed point-based static analysislfp(f ♯) (whose
decidability and/or practical scalability is usually ensured by chain conditions onA, widenings/narrowings
operators, interpolations, etc.). Correctness relies on encoding approximation through a concretization map
γ : A → C and/or an abstraction mapα : C → A: the approximation of some valuec through an abstract
propertya is encoded asα(c) ≤A a or — equivalently, whenα/γ form a Galois connection —c ≤C γ(a).
Hence, global correctness translates toα(lfp(f)) ≤ lfp(f ♯), local correctness meansα ◦ f ⊑ f ♯ ◦ α, and
the well-known “fixed point approximation lemma” [2, 3] tells us that local implies global correctness.

In standard abstract interpretation [2, 3], abstract domains, also called abstractions, are specified by
Galois connections/insertions (GCs/GIs for short). Concrete and abstract domains,〈C,≤C〉 and〈A,≤A〉,
are assumed to be complete lattices which are related by abstraction and concretization mapsα : C → A
andγ : A → C that give rise to a GC(α,C,A, γ), that is, for alla ∈ A andc ∈ C, α(c) ≤A a ⇔ c ≤C

γ(a). A GC is a GI whenα ◦ γ = id. A GC is (finitely) disjunctive whenγ preserves all (finite) lubs. We
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useAbs(C) to denote all the possible abstractions ofC, whereA ∈ Abs(C) means thatA is an abstract
domain ofC specified by some GC/GI. Let us recall some well known properties of a GC(α,C,A, γ):
(1)α is additive; (2)γ is co-additive; (3)γ ◦α : C → C is a closure operator; (4) ifρ : C → C is a closure
operator then(ρ, C, ρ(C), id) is a GI; (5)(α,C,A, γ) is a GC iff γ(A) is the image of a closure operator
onC; (6) a GC(α,C,A, γ) is (finitely) disjunctive iffγ(A) is (finitely) meet- and join-closed.

Example 2.2. Let us consider a concrete domain〈C,≤〉 which is a finite chain. Then, it turns out that
(α,C,A, γ) is a GC iff γ(A) is the image of a closure operator onC iff γ(A) is a any subset ofC which
contains⊤C . As an example, for the gameΓ in Example 2.1, whereSi is the chain of integers[1, 6], we
have thatA1 = {3, 5, 6} andA2 = {2, 6} are two abstractions ofC.

Example 2.3. Let us consider the ceil function on real numbers⌈·⌉ : R → R, that is,⌈x⌉ is the smallest
integer not less thanx. Let us observe that⌈·⌉ is a closure operator on〈R,≤〉 because: (1)x ≤ y ⇒ ⌈x⌉ ≤
⌈y⌉; (2)x ≤ ⌈x⌉; (3) ⌈⌈x⌉⌉ = ⌈x⌉. Therefore, the ceil function allows us to view integer numbersZ = ⌈R⌉
as an abstraction of real numbers. The ceil function can be generalized to any finite fractional part of real

numbers: given any integer numberN ≥ 0, clN : R → R is defined as follows:clN (x) = ⌈10Nx⌉
10N

. For
N = 0, clN (x) = ⌈x⌉, while forN > 0, clN (x) is the smallest rational number with at mostN fractional
digits not less thanx. For example, ifx ∈ R and1 < x ≤ 1.01 thencl2(x) = 1.01. Clearly, it turns out
thatclN is a closure operator which permits to cast rational numberswith at mostN fractional digits as an
abstraction of real numbers.

Let f : C → C be some concrete monotone function—to keep notation simple, we consider 1-ary
functions—and letf ♯ : A → A be a corresponding monotone abstract function defined on some abstrac-
tion A specified by a GC(α,C,A, γ). Then,f ♯ is a correct (or sound) approximation off on A when
f ◦ γ ⊑ γ ◦ f ♯ holds. Iff ♯ is a correct approximation off then we also have fixed point correctness, that
is, lfp(f) ≤C γ(lfp(f ♯)) andgfp(f) ≤C γ(gfp(f ♯)). The abstract functionfA , α ◦ f ◦ γ : A → A is
called the best correct approximation off on A, because any abstract functionf ♯ is correct ifffA ⊑ f ♯.
Hence,fA plays the role of the best possible approximation off on the abstractionA.

3 Abstractions on Product Domains

Let us show how abstractions of different concrete domainsCi can be composed in order to define an
abstract domain of the product domain×iCi, and, on the other hand, an abstraction of a product×iCi can
be decomposed into abstract domains of the component domainsCi. In the following, we consider a finite
family of complete lattices〈Ci,≤i〉

n
i=1, while product domains are considered with the componentwise

ordering relation.

Product Composition of Abstractions. This method has been introduced by Cousot and Cousot in [6,
Section 4.4]. Given a family of GCs(αi, Ci, Ai, γi)

n
i=1, one can easily define a componentwise abstrac-

tion (α,×n
i=1Ci,×

n
i=1Ai, γ) of the product complete lattice×n

i=1Ci, where×n
i=1Ci and×n

i=1Ai are both
complete lattices w.r.t. the componentwise partial order and for anyc ∈ ×n

i=1Ci anda ∈ ×n
i=1Ai,

α(c) , (αi(ci))
n
i=1, γ(a) , (γi(ai))

n
i=1.

For anyi, we also use the functionγ−i : A−i → C−i to denoteγ−i(a−i) = γ(a)−i = (γj(aj))j 6=i.

Lemma 3.1. (α,×n
i=1Ci,×

n
i=1Ai, γ) is a GC. Moreover, if each(αi, Ci, Ai, γi) is a (finitely) disjunctive

GC then(α,×n
i=1Ci,×

n
i=1Ai, γ) is a (finitely) disjunctive GC.

In static program analysis,(α,×n
i=1Ci,×

n
i=1Ai, γ) is called a nonrelational abstraction since, intuitively,

the product abstraction×n
i=1Ai does not take into account any relationship between the different concrete

domainsCi.

Decomposition of Product Abstractions. Let us show that any GC(α,×n
i=1Ci, A, γ) for the concrete

product domain×n
i=1Ci induces corresponding abstractions(αi, Ci, Ai, γi) of Ci as follows:

– Ai , {ci ∈ Ci | ∃a ∈ A.γ(a)i = ci} ⊆ Ci, endowed with the partial order≤i of Ci;

7



– for anyci ∈ Ci, αi(ci) , γ(α(ci,⊥−i))i;

– for anyxi ∈ Ai, γi(xi) , xi.

Lemma 3.2. (αi, Ci, Ai, γi) is a GC. Moreover, this GC is (finitely) disjunctive when(α,×n
i=1Ci, A, γ) is

(finitely) disjunctive.

Proof. Let us show thatAi ⊆ Ci is meet-closed. IfX ⊆ Ai then for anyx ∈ X there exists some
ax ∈ A such thatγ(ax)i = x. Then, leta , ∧A{ax ∈ A | x ∈ X} ∈ A. Sinceγ preserves arbitrary
meets, we have thatγ(a) = ∧C{γ(ax) ∈ C | x ∈ X}, so thatγ(a)i = ∧CiX , that is,∧CiX ∈ Ai.
Hence, sinceAi is a Moore-family ofCi, we have thatγi = id : Ai → Ci preserves arbitrary meets and
therefore is a concretization function. Let us check thatαi is the left adjoint ofγi, i.e., for anyci ∈ Ci,
αi(ci) = γ(α(ci,⊥−i))i = ∧Ci{xi ∈ Ai | ci ≤i xi}. On the one hand, since(ci,⊥−i) ≤ γ(α(ci,⊥−i)),
we have thatci ≤ γ(α(ci,⊥−i))i, so that sinceγ(α(ci,⊥−i))i ∈ Ai, we conclude that∧Ci{xi ∈ Ai | ci ≤i

xi} ≤i γ(α(ci,⊥−i))i. On the other hand, ifxi ∈ Ai andci ≤i xi thenxi = γ(a)i for somea ∈ A,
so that we have that(ci,⊥−i) ≤ γ(a), thereforeγ(α(ci,⊥−i)) ≤ γ(α(γ(a))) = γ(a), and, in turn,
γ(α(ci,⊥−i))i ≤i γ(a)i = xi, which implies thatγ(α(ci,⊥−i))i ≤i ∧Ci{xi ∈ Ai | ci ≤i xi}. Finally,
let us observe that ifγ is (finitely) additive andX ⊆ Ai so that for anyx ∈ X there exists someax ∈ A
such thatγ(ax)i = x thenγ(∨A{ax ∈ A | x ∈ X}) = ∨{γ(ax) ∈ ×n

i=1Ci | x ∈ X}, so thatγ(∨A{ax ∈
A | x ∈ X})i = ∨iγ(ax)i = ∨iX , namely,∨iX ∈ Ai, meaning thatγi = id is (finitely) additive.

A GC (α,×n
i=1Ci, A, γ) is callednonrelationalwhen it is isomorphic to the product composition, ac-

cording to Lemma 3.1, of its components obtained by Lemma 3.2. Of course, the product composition by
Lemma 3.1 of abstract domains is trivially nonrelational. Otherwise,(α,×n

i=1Ci, A, γ) is calledrelational.
It is worth remarking that ifA is relational thenA cannot be obtained as a product of abstractions ofC.
As a consequence, the relationality of an abstractionA prevents the definition of a standard noncooperative
game over the strategy spaceA sinceA cannot be obtained as a product domain.

Example 3.3. Let us consider the gameΓ in Example 2.1 whose finite strategy space isC × C, where
C = {1, 2, 3, 4, 5, 6} is a chain. Consider the subsetA ⊆ C × C as depicted by the following diagram
where the ordering is induced fromC × C:

(2, 2)

(3, 4)

(4, 4) (3, 5)

(4, 5)

(6, 6)

SinceA is meet- and join-closed and includes the greatest element(6, 6) of C × C, we have thatA is
a disjunctive abstraction ofC × C, whereα : C × C → A is the closure operator induced byA and
γ : A → C×C is the identity. Observe thatA is relational since its decomposition by Lemma 3.2 provides
A1 = {2, 3, 4, 6} andA2 = {2, 4, 5, 6}, and the product compositionA1×A2 by Lemma 3.1 yields a more
expressive abstraction thanA, for example(2, 4) ∈ (A1 ×A2)rA.

On the other hand, for the abstractionsA1 = {3, 5, 6} andA2 = {2, 6} of Example 2.2, by Lemma 3.1,
the product domainA1 ×A2 is a nonrelational abstraction ofC × C.

4 Approximation of Multivalued Functions

Let us show how abstract interpretation can be applied to approximate least and greatest fixed points of
multivalued functions.
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4.1 Constructive Results for Fixed Points of Multivalued Functions

LetC be a complete lattice,f : C → ℘(C) be a multivalued function andf∧, f∨ : C → C be the functions
defined as:f∧(c) , ∧f(c) andf∨(c) , ∨f(c). The following constructive result ensuring the existence
of least fixed points for a multivalued function is given in [15, Propositions 3.10 and 3.24]. We provide
here a shorter and more direct constructive proof than in [15] which is based on the constructive version of
Tarski’s fixed point theorem given by Cousot and Cousot [4].

Lemma 4.1. If f : C → ℘∧(C) is S-monotone thenf has the least fixed pointlfp(f). Moreover,lfp(f) =
∨

α∈O
fα
∧
(⊥).

Proof. By hypothesis,f(x) ∈ ℘∧(C), so thatf∧(x) ∈ f(x). If x, y ∈ C andx ≤ y then, by hypothesis,
f(x) �S f(y), therefore, sincef∧(y) ∈ f(y), there exists somez ∈ f(x) such thatz ≤ f∧(y), and,
in turn, f∧(x) ≤ z ≤ f∧(y). Hence, sincef∧ is a monotone function on a complete lattice, by Tarski’s
theorem, its least fixed pointlfp(f∧) ∈ C exists. Furthermore, by the constructive version of Tarski’s
theorem [4, Theorem 5.1],lfp(f∧) =

∨

α∈O
fα
∧
(⊥). We have thatlfp(f∧) = f∧(lfp(f∧)) ∈ f(lfp(f∧)),

hencelfp(f∧) ∈ Fix(f). Consider anyz ∈ Fix(f). We prove by transfinite induction that for anyα ∈ O,
fα
∧
(⊥) ≤ z. If α = 0 thenf0

∧
(⊥) = ⊥ ≤ z. If α = β + 1 thenfα

∧
(⊥) = f∧(f

β
∧
(⊥)), and, since, by

inductive hypothesis,fβ
∧
(⊥) ≤ z, then, by monotonicity off∧, f∧(fβ

∧
(⊥)) ≤ f∧(z) = ∧f(z) ≤ z. If

α = ∨{β ∈ O | β < α} is a limit ordinal thenfα
∧
(⊥) =

∨

β<α fβ
∧
(⊥); since, by inductive hypothesis,

fβ
∧
(⊥) ≤ z for anyβ < α, we obtain thatfα

∧
(⊥) ≤ z. This therefore shows thatf has the least fixed point

lfp(f) = lfp(f∧).

By duality, as consequences of the above result, we obtain the following characterizations, where
point (3) coincides with Zhou’s theorem (see [18, Theorem 1]and [15, Proposition 3.15]), which is used
for showing that pure Nash equilibria of a supermodular gameform a complete lattice.

Corollary 4.2.
(1) If f : C → ℘∨(C) isH-monotone thenf has the greatest fixed pointgfp(f) =

∧

α∈O
fα
∨
(⊤).

(2) If f : C → ℘⋄(C) is EM -monotone thenf has the least and greatest fixed points, wherelfp(f) =
∨

α∈O
fα
∧
(⊥) andgfp(f) =

∧

α∈O
fα
∨
(⊤).

(3) If f : C → SL(C) isEM -monotone then〈Fix(f),≤〉 is a complete lattice.
(4) If f, g : C → SL(C) areEM -monotone and, for anyc ∈ C, f(c) �EM g(c) thenFix(f) �EM Fix(g).

Proof. Let us prove point (4). By Point (3), bothFix(f) andFix(g) are complete lattices for≤. Thus,
Fix(f) �EM Fix(g) holds iff ∧Fix(f) = lfp(f) ≤ lfp(g) = ∧Fix(g) and∨Fix(f) = gfp(f) ≤
gfp(g) = ∨Fix(g). Moreover, since, for anyc ∈ C, f(c) �EM g(c), we also have thatf∧(c) = ∧f(c) ≤
∧f(c) = g∧(c), thus, as a consequence,lfp(f∧) ≤ lfp(g∧). The proof of Lemma 4.1 shows thatlfp(f) =
lfp(f∧) andlfp(g) = lfp(g∧), so that we obtainlfp(f) ≤ lfp(g). The proof forgfp(f) ≤ gfp(g) is dual.

4.2 Concretization-based Approximations

As discussed in [5], a minimal requirement for defining an abstract domain consists in specifying the mean-
ing of its abstract values through a concretization map. Let〈A,≤A〉 be an abstraction of a concrete domain
C specified by a monotone concretization mapγ : A → C. Let us observe that the powerset lifting
γs : ℘(A) → ℘(C) is S-monotone, meaning that ifY1 �S Y2 thenγs(Y1) �S γs(Y2): if γ(y2) ∈ γs(Y2)
then there existsy1 ∈ Y1 such thaty1 ≤A y2, so thatγ(y1) ∈ γs(Y1) and γ(y1) ≤C γ(y2), i.e.,
γs(Y1) �S γs(Y2). Analogously,γs is H- andEM -monotone. Consider a concreteS-monotone mul-
tivalued functionf : C → ℘∧(C), whose least fixed point exists by Lemma 4.1.

Definition 4.3 (Correct Approximation of Multivalued Functions ). An abstract multivalued function
f ♯ : A → ℘(A) overA is aS-correct approximationof f when:

(1) f ♯ : A → ℘∧(A) andf ♯ is S-monotone (fixed point condition)

(2) for anya ∈ A, f(γ(a)) �S γs(f ♯(a)) (soundness condition)

H- andEM -correct approximations are defined by replacing in this definitionS- with, respectively,H- and
EM -, and℘∧ with, respectively,℘∨ and℘⋄.
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Let us point out that the soundness condition (2) is the standard correctness requirement used in abstract
interpretation, as recalled in Section 2.4. The differencehere is thatC2 andA2 are mere preorders rather
than partial orders. However, this is enough for guaranteeing a correct approximation of least fixed points.

Theorem 4.4(Correct Least Fixed Point Approximation). If f ♯ is aS-correct approximation off then
lfp(f) ≤C γ(lfp(f ♯)).

Proof. Let us considerf∧ : C → C andf ♯
∧
: A → A. By Lemma 4.1,lfp(f) = lfp(f∧) andlfp(f ♯) =

lfp(f ♯
∧
). Let us check thatf ♯

∧
is a standard correct approximation off∧. For anya ∈ A, γ(f ♯

∧
(a)) ∈

γs(f ♯(a)), hence, sincef(γ(a)) �S γs(f ♯(a)), we have that there exists somez ∈ f(γ(a)) such that
z ≤ γ(f ♯

∧
(a)), so thatf∧(γ(a) = ∧f(γ(a)) ≤ z ≤ γ(f ♯

∧
(a)). Hence, by the concretization-based fixed

point transfer (see [13, Theorem 2.2.4]), it turns out thatlfp(f∧) ≤C γ(lfp(f ♯
∧
)), therefore showing that

lfp(f) ≤ γ(lfp(f ♯)).

Dual results hold forH- andEM -correct approximations.

Corollary 4.5.
(1) If f ♯ is aH-correct approximation off thengfp(f) ≤C γ(gfp(f ♯)).
(2) If f ♯ is a EM -correct approximation off thenFix(f) �EM γs(Fix(f ♯)), in particular, lfp(f) ≤C

γ(lfp(f ♯)) andgfp(f) ≤C γ(gfp(f ♯)).

Proof. By duality from Theorem 4.4. In particular, point (2) follows because, by Corollary 4.2,Fix(f) ∈
℘⋄(C), Fix(f ♯) ∈ ℘⋄(A) and thereforeγs(Fix(f ♯)) ∈ ℘⋄(C), so thatFix(f) �EM γs(Fix(f ♯)) iff
lfp(f) ≤ γ(lfp(f ♯)) andgfp(f) ≤ γ(gfp(f ♯)).

The approximation of least/greatest fixed points of multivalued functions can also be easily given for an
abstraction mapα : C → A. In this case, aS-monotone mapf ♯ : A → ℘∧(A) is a correct approximation
of a concreteS-monotone mapf : C → ℘∧(C) when, for anyc ∈ C, αs(f(c)) �S f ♯(α(c)), where
αs : ℘(C) → ℘(A). Here, fixed point approximation states thatα(lfp(f)) ≤A lfp(f ♯).

4.3 Galois Connection-based Approximations

Let us now consider the ideal case of abstract interpretation where the best approximations in an abstract
domainA of concrete objects always exist, that is,A is specified by a GC(α,C,A, γ). However, recall
that here〈℘∧(C),�S〉 and〈℘∧(A),�S〉 are mere preorders, and not posets. Then, given two preorders
〈X,�X〉 and〈Y,�Y 〉, we say that two functionsβ : X → Y andδ : Y → X specify a preorder-GC
(β,X, Y, δ) whenδ andβ are monotone (meaning, e.g. forβ, thatx �X x′ ⇒ β(x) �Y β(x′)) and the
equivalenceβ(x) �Y y ⇔ x �X δ(y) holds. As expected, it turns out that GCs induce preorder-GCs for
Smyth, Hoare and Egli-Milner preorders.

Lemma 4.6. Let (α,C,A, γ) be a Galois connection. Then,
(

αs, 〈℘∧(C),�S〉, 〈℘
∧(A),�S〉, γ

s
)

,
(

αs,

〈℘∨(C),�H〉,〈℘∨(A),�H〉, γs
)

, and
(

αs, 〈℘⋄(C),�EM 〉, 〈℘⋄(A),�EM 〉, γs
)

are preorder-Galois con-
nections.

Proof. Let us check thatαs is S-monotone: ifX �S Y andα(y) ∈ αs(Y ) then there existsx ∈ X such
thatx ≤C y, so that, by monotonicity ofα, α(x) ≤A α(y), and thereforeαs(X) �S αs(Y ). Analogously,
γs is S-monotone. Let us check thatαs(X) �S Y ⇒ X �S γs(Y ): if γ(y) ∈ γs(Y ) then there exists
α(x) ∈ αs(X) such thatα(x) ≤A y, and, since(α,C,A, γ) is a GC, this implies thatx ≤C γ(y), so that
X �S γs(Y ). Analogously, it turns out thatX �S γs(Y ) ⇒ αs(X) �S Y . Hence, this shows that
(

αs, 〈℘∧(C),�S〉, 〈℘
∧(A),�S〉, γ

s
)

is a preorder-GC. The proofs for Hoare and Egli-Milner preorders are
analogous.

The ideal Galois connection-based framework allows us to define best correct approximations of mul-
tivalued functions. Iff : C → ℘(C) and(α,C,A, γ) is a GC then itsbest correct approximationon the
abstract domainA is the multifunctionfA : A → ℘(A) defined as follows:fA(a) , αs(f(γ(a))). In par-
ticular, if f : C → ℘∧(C) isS-monotone thenfA : A → ℘∧(A) turns out to beS-monotone. Analogously
for Hoare and Egli-Milner preorders. Similarly to standardabstract interpretation [3], it turns out thatfA is
the best among theS-correct approximations off , as formalized by the following result.
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Lemma 4.7. AS-monotone correspondencef ♯ : A → ℘∧(A) is aS-correct approximation off iff for any
a ∈ A, fA(a) �S f ♯(a). Also, analogous characterizations hold forH- andEM -correct approximations.

Proof. An easy consequence of Lemma 4.6, since for anya ∈ A, fA(a) = αs(f(γ(a)) �S f ♯(a) iff for
anya ∈ A, f(γ(a)) �S γs(f ♯(a)).

Hence, it turns out that the fixed point approximations givenby Theorem 4.4 and Corollary 4.5 apply to
the best correct approximationsfA.

Completeness. In abstract interpretation, completeness [3, 10] formalizes an ideal situation where the
abstract functionf ♯ on A is capable of not losing information w.r.t. the abstractionin A of the concrete
functionf , that is, the equalityα(f(c)) = f ♯(α(c)) always holds. As a key consequence, completeness
lifts to fixed points, meaning thatα(lfp(f)) = lfp(f ♯) holds. Let us show that this also holds for multivalued
functions. An abstractS-monotone functionf ♯ : A → ℘∧(A) is acomplete approximationof aS-monotone
functionf : C → ℘∧(C) when for anyc ∈ C, αs(f(c)) = f ♯(α(c)).

Lemma 4.8(Complete Least Fixed Point Approximation). If f ♯ is a complete approximation off then
α(lfp(f)) = lfp(f ♯).

Proof. By Lemma 4.1,lfp(f) = lfp(f∧) and lfp(f ♯) = lfp(f ♯
∧
). Sincef∧(c) ∈ f(c), we have that

α(f∧(c)) ∈ αs(f(c)), so thatα(f∧(c)) = ∧αs(f(c)). By hypothesis,∧αs(f(c)) = ∧f ♯(α(c)) = f ♯
∧
(α(c)),

so thatα ◦ f∧ = f ♯
∧
◦ α holds. Thus, by complete fixed point transfer [3, Theorem 7.1.0.4],α(lfp(f∧)) =

lfp(f ♯
∧
).

4.4 Approximations of Best Response Correspondences

The above abstract interpretation-based approach for multivalued functions can be applied to (quasi)super-
modular games by approximating their best response correspondences. In particular, one can abstract both
thei-th best response correspondencesBi : S−i → SL(Si) and the overall best responseB : S → SL(S).

Example 4.9. Let us consider the gameΓ in Example 2.1 and the abstractionA of its strategy spaceC×C
defined in Example 3.3. Then, one can define the best correct approximationBA in A of the best response
functionB : C × C → SL(C × C), that is,BA : A → ℘(A) is defined asBA(a) , αs(B(γ(a)) =
αs(B(a)) = {α(s1, s2) ∈ A | (s1, s2) ∈ B(a)}. We therefore have that:

BA(2, 2) = αs({(2, 3)}) = {(3, 4)}, BA(3, 4) = αs({(2, 3), (5, 3)}) = {(3, 4), (6, 6)},

BA(4, 4) = αs({(2, 4), (5, 4)}) = {(3, 4), (6, 6)}, BA(3, 5) = αs({(5, 3)}) = {(6, 6)},

BA(4, 5) = αs({((5, 4)}) = {(6, 6)}, BA(6, 6) = αs({(5, 4), (6, 4)}) = {(6, 6)}.

Hence,Fix(BA) = {(3, 4), (6, 6)}. Therefore, by Theorem 4.4 and Corollary 4.5, here we have that
leq(Γ) = lfp(B) = (2, 3) ≤ (3, 4) = lfp(BA) andgeq(Γ) = gfp(B) = (5, 4) ≤ (6, 6) = gfp(BA).

5 Games with Abstract Strategy Spaces

Let us consider a gameΓ = 〈Si, ui〉
n
i=1 and a corresponding familyG = (αi, Si, Ai, γi)

n
i=1 of GCs of the

strategy spacesSi. By Lemma 3.1,(α,×n
i=1Si,×

n
i=1Ai, γ) specifies a nonrelational product abstraction of

the whole strategy space×n
i=1Si. We define thei-th utility functionuG

i : ×n
i=1Ai → RNi on the abstract

strategy space×n
i=1Ai simply by restrictingui on γ(×n

i=1Ai) as follows:uG
i (a) , ui(γ(a)). We point

out that this definition is a form of generalization of the restricted games considered by Echenique [9,
Section 2.3].

Lemma 5.1. If ui(·, s−i) is (quasi)supermodular and all the GCs inG are finitely disjunctive thenuG
i (·, a−i) :

Ai → RNi is (quasi)supermodular. Also, ifui(si, ·) is monotone thenuG
i (ai, ·) : A−i → RNi is monotone.
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Proof. Let us check thatuG
i (·, a−i) is supermodular:

uG
i (ai ∨Ai bi, a−i) + uG

i (ai ∧Ai bi, a−i) = [by definition]

ui(γi(ai ∨Ai bi), γ−i(a−i)) + ui(γi(ai ∧Ai bi), γ−i(a−i)) = [G are finitely disjunctive GCs]

ui(γi(ai) ∨i γi(bi), γ−i(a−i)) + ui(γi(ai) ∧i γi(bi), γ−i(a−i)) ≥ [by supermodularity ofui]

ui(γi(ai), γ−i(a−i)) + ui(γi(bi), γ−i(a−i)) = [by definition]

uG
i (ai, a−i) + uG

i (bi, a−i)

The proof of quasisupermodularity is analogous. Let us alsocheck thatuG
i (ai, ·) is monotone. Consider

a−i ≤ b−i, so that, by monotonicity ofγ−i, we have thatγ−i(a−i) ≤ γ−i(b−i). Hence, by monotonicity of
ui(γi(ai), ·), we obtain:uG

i (ai, a−i) = ui(γi(ai), γ−i(a−i)) ≤ ui(γi(ai), γ−i(b−i)) = uG
i (ai, b−i).

Let us also observe that ifui(si, s−i) has increasing differences (the single crossing property), X ⊆
×n

i=1Si is any subset of the strategy space andui/X : X → RNi is the mere restriction ofui to the subset
X thenui/X still has increasing differences (the single crossing property). Hence, in particular, this holds

for uG
i : ×n

i=1Ai → R. As a consequence of this and of Lemma 5.1, we obtain the following abstract
(quasi)supermodular games.

Corollary 5.2. If Γ = 〈Si, ui〉
n
i=1 is a (quasi)supermodular game andG = (αi, Si, Ai, γi)

n
i=1 is a family

of finitely disjunctive GCs thenΓG , 〈Ai, u
G
i 〉

n
i=1 is a (quasi)supermodular game.

Let us see an array of examples of abstract games.

Example 5.3. Consider the gameΓ in Example 2.1 and the product abstractionA1 ×A2 ∈ Abs(S1 × S2)
defined in Example 3.3. The restricted gameΓ♯ of Lemma 5.1 on the abstract strategy space{3, 5, 6} ×
{2, 6} is therefore specified by the following payoff matrix:

2 6
6 -1, -1 6, 5

5 0, 2 6, 5

3 2, 4 3, 2

Since bothA1 andA2 are trivially disjunctive abstractions, by Corollary 5.2,it turns out thatΓ♯ is su-
permodular. The best response correspondencesB♯

i : A−i → SL(Ai) for the supermodular gameΓ♯ are
therefore as follows:

B♯
1(2) = {3}, B♯

1(6) = {5, 6}, B♯
2(3) = {2}; B♯

2(5) = {6}, B♯
2(6) = {6}.

We observe thatB♯
2 is not aS-correct approximation ofB2 because:B2(3) = {3} 6�S {2} = B♯

2(3).
Indeed, it turns out thatEq(Γ♯) = {(3, 2), (5, 6), (6, 6)}, so thatleq(Γ) = (2, 3) 6≤ (3, 2) = leq(Γ♯). Thus,
in this case, the solutions of the abstract gameΓ♯ do not correctly approximate the solutions ofΓ.
Instead, following Section 4.4 and analogously to Example 4.9, one can define the best correct approx-
imation BA : A → SL(A) in A , A1 × A2 of the best response correspondenceB of Γ, that is,
BA(a1, a2) = {(α1(s1), α2(s2)) ∈ A | (s1, s2) ∈ B(a1, a2)} acts as follows:

BA(3, 2) = {(3, 6)}, BA(3, 6) = {(5, 6), (6, 6)}, BA(5, 2) = {(3, 6)},

BA(5, 6) = {(5, 6), (6, 6)}, BA(6, 2) = {(3, 6)}, BA(6, 6) = {(5, 6), (6, 6)}.

Hence,Fix(BA) = {(5, 6), (6, 6)}, so thatleq(Γ) = lfp(B) = (2, 3) ≤ (5, 6) = lfp(BA) andgeq(Γ) =
gfp(B) = (5, 4) ≤ (6, 6) = gfp(BA).

Example 5.4. In Example 5.3, let us consider the abstractionA2 = {4, 6} ∈ Abs(S2), so that the super-
modular gameΓ♯ is given by the following payoff matrix:

4 6
6 5, 6 6, 5

5 6, 6 6, 5

3 4, 5 3, 2
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while the best response correspondencesB♯
i become:

B♯
1(4) = {5}, B♯

1(6) = {5, 6}, B♯
2(3) = {4}; B♯

2(5) = {4}, B♯
2(6) = {4}.

Thus, here we have thatEq(Γ♯) = {(5, 4)}. In this case, it turns out thatB♯
i is aEM -correct approximation

of Bi, so that, by Corollary 4.5 (2),Eq(Γ) = Fix(B) = {(2, 3), (5, 4)} �EM {(5, 4)} = Fix(B♯) =
Eq(Γ♯) holds.

Example 5.5. Here, we consider the disjunctive abstractionsA1 = {4, 5, 6} ∈ Abs(S1) andA2 =
{3, 4, 5, 6} ∈ Abs(S2). In this case, we have the following supermodular abstract gameΓ♯ overA1 ×A2:

3 4 5 6
6 2, 4 5, 6 6, 5 6, 5

5 3, 4 6, 6 7, 5 6, 5

4 3, 5 5, 6 5, 5 4, 4

where the best response functionsB♯
i are therefore as follows:

B♯
1(3) = {4, 5}, B♯

1(4) = {5}, B♯
1(5) = {5}, B♯

1(6) = {5, 6};

B♯
2(4) = {4}, B♯

2(5) = {4}, B♯
2(6) = {4}.

Here, it turns out thatB♯
i is aEM -correct approximation ofBi, so that the abstract best responseB♯ :

A1 × A2 → SL(A1 × A2) is aEM -correct approximation ofB. Then, by Corollary 4.5 (2), we have that
Eq(Γ) = Fix(B) = {(2, 3), (5, 4)} �EM {(5, 4)} = Fix(B♯) = Eq(Γ♯).

Thus, for the concrete supermodular gameΓ of Example 2.1, while the abstract games of Examples 5.4
and 5.5 can be viewed as correct approximations ofΓ, this instead does not hold for the abstract game in
Example 5.3. The following results provide conditions thatjustify these different behaviors.

Theorem 5.6(Correctness of Games with Abstract Strategy Spaces). Let G = (αi, Si, Ai, γi)
n
i=1 be

a family of finitely disjunctive GIs,S = ×n
i=1Si, A = ×n

i=1Ai and (α, S,A, γ) be the nonrelational
product composition ofG. Let Γ = 〈Si, ui〉

n
i=1 be a (quasi)supermodular game, with best responseB,

andΓG = 〈Ai, u
G
i 〉

n
i=1 be the corresponding abstract (quasi)supermodular game, with best responseBG .

Assume that for anya ∈ A,
∨

S B(γ(a)) ∨S γ(
∧

A BG(a)) ∈ γ(A). Then,Eq(Γ) �EM γs(Eq(ΓG)) and,
in particular, leq(Γ) ≤ γs(leq(ΓG)) andgeq(Γ) ≤ γs(geq(ΓG)).

Proof. We have thatEq(Γ) = Fix(B) andEq(ΓG) = Fix(BG), whereB : S → ℘⋄(S) andBG : A →
℘⋄(A) areEM -monotone. Thus, by Corollary 4.5 (2), in order to prove thatEq(Γ) �EM γs(Eq(ΓG))
it is enough to prove that for anya ∈ A, B(γ(a)) �EM γs(BG(a)). Let h ,

∨

S B(γ(a)) ∈ S, so
thath ∈ B(γ(a)), andk ,

∧

A BG(a) ∈ A, so that, by Corollary 5.2,k ∈ BG(a). By hypothesis, we
have thath ∨S γ(k) ∈ γ(A). Let us consider somei ∈ [1, n]. Therefore,hi ∨i γi(ki) ∈ γi(Ai), that is,
hi ∨i γi(ki) = γi(bi), for somebi ∈ Ai. Hence, sinceki ∈ BG

i (a−i), we have that

ui(hi ∨i γi(ki), γ−i(a−i)) = ui(γi(bi), γ−i(a−i)) = uG
i (bi, a−i) ≤ uG

i (ki, a−i) = ui(γi(ki), γ−i(a−i)).

On the other hand, sincehi ∈ Bi(γ(a)−i) = Bi(γ−i(a−i)), we have thatui(hi ∧i γi(ki), γ−i(a−i)) ≤
ui(hi, γ−i(a−i)). Furthermore, sinceui is supermodular, we also have that

ui(hi ∧i γi(ki), γ−i(a−i)) + ui(hi ∨i γi(ki), γ−i(a−i)) ≥ ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i)).

We therefore obtain:

ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i)) ≥ ui(hi ∧i γi(ki), γ−i(a−i)) + ui(hi ∨i γi(ki), γ−i(a−i))

≥ ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i))

so that

ui(hi, γ−i(a−i)) + ui(γi(ki), γ−i(a−i)) = ui(hi ∧i γi(ki), γ−i(a−i)) + ui(hi ∨i γi(ki), γ−i(a−i))
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and, in turn,ui(hi∧iγi(ki), γ−i(a−i)) = ui(hi, γ−i(a−i)) anduG
i (bi, a−i) = ui(hi∨iγi(ki), γ−i(a−i)) =

ui(γi(ki), γ−i(a−i)) = uG
i (ki, a−i). Thus,hi ∧i γi(ki) ∈ Bi(γ−i(a−i)) andhi ∨i γi(ki) ∈ γi(B

G
i (a−i)).

Therefore, it turns out thath∧γ(k) ∈ B(γ(a)) andh∨γ(k) ∈ γs(BG(a)). Hence, ifs ∈ B(γ(a)) thens ≤
h ≤ h ∨ γ(k) ∈ γs(BG(a)), while if t ∈ γs(BG(a)) thent = γs(d), for somed ∈ BG(a), so thatk ≤A d
and, in turn,t = γs(d) ≥ γ(k) ≥ h ∧ γ(k) ∈ B(γ(a)), thus showing thatB(γ(a)) �EM γs(BG(a)). The
proof for quasisupermodular games is analogous.

As a consequence of the above result, we obtain a generalization of [9, Lemma 4], which is the basis
for designing the efficient algorithm in [9, Section 4] that computes all the Nash equilibria in a finite game
with strategic complementarities. A GC(α,C,A, γ) is called aprincipal filter GCwhen the imageγ(A) is
the principal filter atγ(⊥A), that is,γ(A) = {c ∈ C | γ(⊥A) ≤ c}.

Corollary 5.7. LetG = (αi, Si, Ai, γi)
n
i=1 be principal filter GCs. Then,Eq(Γ) �EM γs(Eq(ΓG)).

Proof. Observe that the product(α,×n
i=1Si,×

n
i=1Ai, γ) is a principal filter GC. Then, this is a straight

consequence of Theorem 5.6, since
∨

S B(γ(a)) ∨S γ(
∧

A BG(a)) ≥ γ(
∧

A BG(a)) ≥ γ((⊥Ai)
n
i=1), so

that
∨

S B(γ(a)) ∨S γ(
∧

A BG(a)) ∈ γ(A) holds.

Example 5.8. Let us consider the following finite supermodular game∆ taken from [1, Example 8.11],
which is an example of the well known Bertrand oligopoly model [17]. Playersi ∈ {1, 2, 3} stand for firms
which sell substitute productspi (e.g., a can of beer), whose feasible selling prices (e.g., in euros)si range
in Si , [a, b], where the smallest price shift is 5 cents. The payoff functionui : S1 ×S2 ×S3 → R models
the profit of firmi:

ui(s1, s2, s3) , di(s1, s2, s3)(si − ci)

wheredi(s1, s2, s3) gives the demand ofpi, i.e., how many units ofpi the firmi sells in a given time frame,
while ci is the unit cost ofpi so that(si − ci) is the profit per unit. Following [1, Example 8.11], let us
assume that:

u1(s1, s2, s3) = (370 + 213(s2 + s3) + 60s1 − 230s21)(s1 − 1.10)

u2(s1, s2, s3) = (360 + 233(s1 + s3) + 55s2 − 220s22)(s2 − 1.20)

u3(s1, s2, s3) = (375 + 226(s1 + s2) + 50s3 − 200s23)(s3 − 1.25)

As shown in general in [1, Corollary 8.9], it turns out that each payoff functionui has increasing differences
andui(si, ·) is monotone, so that the game∆ has the least and greatest price equilibrialeq(∆) andgeq(∆),
andgeq(∆) (leq(∆)) provides the best (least) profits among all equilibria. It should be noted that [1, Exam-
ple 8.11] considers as payoff functions the integer part ofui, namely,⌊ui(s1, s2, s3)⌋, however we notice
that that this definition of payoff function does not have increasing differences, so that [1, Corollary 8.9],
which assumes the hypothesis of increasing differences, cannot be applied: for example, [1, Example 8.11]
considersSi = {x/20 | x ∈ [26, 42]Z} and with(1.3, 1.3, 1.8) ≤ (1.35, 1.3, 1.85), we would have that

⌊u1(1.35, 1.3, 1.8)⌋ − ⌊u1(1.3, 1.3, 1.8)⌋ = ⌊173.03125⌋− ⌊143.92⌋ = 30 >

⌊u1(1.35, 1.3, 1.85)⌋− ⌊u1(1.3, 1.3, 1.85)⌋ = ⌊175.69375⌋− ⌊146.05⌋ = 29

Instead, we consider hereSi , {x/20 | x ∈ [20, 46]Z}, namely the feasible prices range from 1 to 2.3 euros
with 0.05 shift. Using the standard RT algorithm in Figure 2.3 (we made a simple C++ implementation of
RT), one obtains:

leq(∆) = (1.80, 1.90, 1.95) = geq(∆)

namely,∆ admits a unique Nash equilibrium. It turns out that the algorithm RT calculatesleq(∆) starting
from the bottom(1.0, 1.0, 1.0) through 12 calls to

∧

Bi(s−i), while it may output the same equilibrium as
geq(∆) beginning from the top(2.3, 2.3, 2.3) through 9 calls to

∨

Bi(s−i).
Let us consider the following abstractionsAi ∈ Abs(Si):

A1 , {x/20 | x ∈ [35, 38]Z ∪ [42, 46]Z}, A2 , {x/20 | x ∈ [36, 46]Z}, A3 , {x/20 | x ∈ [38, 46]Z}.
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Notice thatA2 andA3 are principal filter abstractions, while this is not the casefor A1, so that Corollary 5.7
cannot be applied. We observe that:

{
∨

1
B1(a−1) ∈ S1 | a−1 ∈ A2 ×A3} = {36/20, 37/20, 38/20},

{
∨

2
B2(a−2) ∈ S2 | a−2 ∈ A1 ×A3} = {38/20, 39/20, 40/20},

{
∨

3
B3(a−3) ∈ S3 | a−3 ∈ A1 ×A2} = {39/20, 40/20, 41/20, 42/20}.

The hypothesis of Theorem 5.6 is therefore satisfied, because for anya−i ∈ A−i, we have that
∨

Bi(a−i) ∈
Ai. Hence, by Corollary 5.2, we consider the supermodular abstract game∆A on the abstract strategy
spacesAi. By exploiting the standard RT algorithm in Figure 2.3 for∆A, we still obtain a unique equilib-
rium leq(∆A) = (1.80, 1.90, 1.95) = geq(∆A), so that in this case no approximation of equilibria occurs.
Here, RT calculatesleq(∆A) starting from the bottom(1.8, 1.8, 1.9) of A1 × A2 × A3 through 6 calls to
∧

BA
i (a−i) and any call

∧

BA
i (a−i) scans the smaller abstract strategy spaceAi instead ofSi. On the

other hand,(1.80, 1.90, 1.95) = geq(∆) can be also calculated from the top(2.3, 2.3, 2.3) still with 9 calls
to

∨

BA
i (a−i), each scanning the reduced abstract strategy spacesAi.

6 Games with Abstract Best Response

In the following, we put forward a notion of abstract game where the strategy spaces are subject to a form of
partial approximation by abstract interpretation, meaning that we consider approximations of the strategy
spaces of the “other players” for any utility function, i.e., correct approximations of the functionsui(si, ·),
for any givensi. This approach gives rise to games having an abstract best response correspondence.
Here, we aim at providing a systematic abstraction framework for the implicit methodology of approximate
computation of equilibria considered by Carl and Heikkilä[1] in their Examples 8.58, 8.63 and 8.64.

Given a gameΓ = 〈Si, ui〉
n
i=1, we consider a familyG = (αi, Si, Ai, γi)

n
i=1 of GCs and, by Lemma 3.1,

their nonrelational product(α,×n
i=1Si,×

n
i=1Ai, γ), where we denote byρ , γ ◦ α ∈ uco(×n

i=1Si) the
corresponding closure operator and, for anyi, by ρ−i ∈ uco(S−i) the closure operator corresponding to
the(n− i)-th nonrelational product(α−i,×j 6=iSj ,×j 6=iAj , γ−i). The utility functionui,G : ×n

i=1Si → R

is then defined as follows: for anys ∈ ×n
i=1Si, ui,G(si, s−i) , ui(si, ρ−i(s−i)).

Lemma 6.1. If ui(si, s−i) has increasing differences (the single crossing property)thenui,G(si, s−i)
has increasing differences (the single crossing property). Also, ifui(si, ·) is monotone thenui,G(si, ·) is
monotone.

Proof. Assume that(si, s−i) ≤ (ti, t−i). Hence,s−i ≤−i t−i, so that, by monotonicity ofρ−i, ρ−i(s−i) ≤−i

ρ−i(t−i), and, in turn,(si, ρ−i(s−i)) ≤ (ti, ρ−i(t−i)). Then:

ui,G(ti, s−i)− ui,G(si, s−i) = [by definition]

ui(ti, ρ−i(s−i))− ui(si, ρ−i(s−i)) ≤ [sinceui has increasing differences]

ui(ti, ρ−i(t−i))− ui(si, ρ−i(t−i)) = [by definition]

ui,G(ti, t−i)− ui,G(si, t−i).

The single crossing property forui,G(si, s−i) can be proved similarly. Lets−i ≤−i t−i, so that, by mono-
tonicity of ρ−i, ρ−i(s−i) ≤−i ρ−i(t−i). Then, by monotonicity ofui(si, ·), we obtain:ui,G(si, s−i) =
ui(si, ρ−i(s−i)) = ui(si, ρ−i(t−i)) = ui,G(si, t−i), thus proving the monotonicity ofui,G(si, ·).

Moreover, let us point out that ifui(·, s−i) is (quasi)supermodular then, obviously,ui,G(·, s−i) remains
(quasi)supermodular as well, so that by defining the gameΓG , 〈Si, ui,G〉

n
i=1 we obtain the following

consequence.

Corollary 6.2. If Γ is (quasi)supermodular thenΓG is (quasi)supermodular.

We callΓG a game with abstract best responsebecause thei-th best response correspondenceBi,G :
S−i → SL(Si) is such thatBi,G(s−i) = {si ∈ Si | ∀xi ∈ Si.ui(xi, ρ−i(s−i)) ≤ ui(xi, ρ−i(s−i))} =
Bi(ρ−i(s−i)), so that the best response correspondence satisfiesBG(s) = BG(ρ(s)) = B(ρ(s)), namely,
BG can be viewed as the restriction ofB to the abstract strategy spaceρ(S).
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Corollary 6.3 (Correctness of Games with Abstract Best Response). Let G = (αi, Si, Ai, γi)
n
i=1 be a

family of GCs. Then,Eq(Γ) �EM Eq(ΓG) and, in particular,leq(Γ) ≤ leq(ΓG) andgeq(Γ) ≤ geq(ΓG).

Proof. Since, by Corollary 6.2,ΓG is (quasi)supermodular, we have thatEq(Γ) = Fix(B) andEq(ΓG) =
Fix(BG). We have that for anys ∈ ×n

i=1Si, by extensiveness ofρ, s ≤ ρ(s), so that, sinceB is monotone,
we obtainB(s) �EM B(ρ(s)) = BG(s). Hence, by Corollary 4.2 (4), we obtain thatFix(B) �EM

Fix(BG).

Example 6.4. Let us consider the two-player gameΓ = 〈Si, ui〉
2
i=1 in [1, Example 8.53], which is a further

example of Bertrand oligopoly, whereS1 = S2 = [ 3
2
, 5

2
]×[ 3

2
, 5

2
] and the utility functionsui : S1×S2 → R2

are defined byui((si1, si2), s−i) = (ui1(si1, s−i), ui2(si2, s−i)) ∈ R2 with

u11(s11, s21, s22) ,
(

52− 21s11 + s21 + 4s22 + 8 sgn(s21s22 − 4)
)

(s11 − 1)

u12(s12, s21, s22) ,
(

51− 21s12 − sgn(s12 −
11

5
) + 2s21 + 3s22 + 4 sgn(s21 + s22 − 4)

)

(s12 −
11

10
)

u21(s21, s11, s12) ,
(

50− 20s21 − sgn(s21 −
11

5
) + 3s11 + 2s12 + 2 sgn(s11 + s12 − 4)

)

(s21 −
11

10
)

u22(s22, s11, s12) ,
(

49− 20s22 + 4s11 + s12 + sgn(s11s12 − 4)
)

(s22 − 1)

Since any utility functionuij(sij , s−i) does not depend onsi,−j , let us observe thatui(·, s−i) : Si → R2

is supermodular. Moreover, by [1, Propositions 8.56, 8.57], we also have thatui(s1, s2) has the single
crossing property, so thatΓ is indeed quasisupermodular. Also, sinceSi is a compact (for the standard
topology) complete sublattice ofR2, we also have thatui(·, s−i) is order upper semicontinuous, so that,
for any s ∈ S1 × S2, the best response correspondenceB satisfiesB(s) ∈ SL(S1 × S2). Indeed, as
observed in [1, Example 8.53], it turns out that the utility functionsuij(·, s−i) : [ 3

2
, 5

2
] → R have unique

maximum points denoted byfij(s−i) which are the solutions of the equationsd
ds
uij(s, s−i) = 0. An easy

computation then provides:

f11(s21, s22) ,
73

42
+

1

42
s21 +

2

21
s22 +

4

21
sgn(s21s22 − 4)

f12(s21, s22) ,
247

140
+

1

42
s21 +

1

14
s22 +

2

21
sgn(s21 + s22 − 4)

f21(s11, s12) ,
9

5
+

3

40
s11 +

1

20
s12 +

1

20
sgn(s11 + s12 − 4)

f22(s11, s12) ,
69

40
+

1

10
s11 +

1

40
s12 +

1

40
sgn(s11s12 − 4)

so that the best responseB can be simplified as follows:

B(s11, s12, s21, s22) =
{(

f11(s21, s22), f12(s21, s22), f21(s11, s12), f22(s11, s12)
)}

.

As shown in [1, Example 8.53], direct solutions ofΓ can be obtained by solving a linear system of four
equations with four real variables and this yields the following least and greatest equilibria:

leq(Γ) =
(4940854

2778745
,
5281784

2778745
,
5497457

2778745
,
10699993

5557490

)

geq(Γ) =
(6033654

2778745
,
5848294

2778745
,
5885617

2778745
,
11224753

5557490

)

Carl and Heikkilä [1, Example 8.58] describe how to derive algorithmically approximate solutions ofΓ by
approximating the fractional part of real numbers through the floor function, namely, the greatest rational
number withN fractional digits which is not more than a given real number.In this section we gave an
abstract interpretation-based methodology for systematically designing this kind of approximate solutions
which generalizes the approach in [1, Example 8.58]. Here, we use the ceil abstraction of real numbers
already described in Example 2.3. Thus, we consider the closure operatorcl3 : [ 3

2
, 5

2
] → [ 3

2
, 5

2
], that is,

cl3(x) is the smallest rational number with at most 3 fractional digits not less thanx. With a slight abuse
of notation,cl3 is also used to denote the corresponding componentwise function cl3 : [ 3

2
, 5

2
]2 → [ 3

2
, 5

2
]2,

namely,cl3(si1, si2) = (cl3(si1), cl3(si1)). Let Acl3 , { y
103

∈ Q | y ∈ [1500, 2500]Z} = {cl3(x) | x ∈

[ 3
2
, 5

2
]} (and this is a finite domain) andA , Acl3 × Acl3 . Then,(cl3, [ 32 ,

5

2
], Acl3 , id) is a GC, so that, by
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Lemma 3.1,G3 = (cl3, Si, A, id)
2
i=1 is a pair of GCs. Let us denote byΓG3

the corresponding game with
abstract best response defined in Corollary 6.2, so thatui,G3

(si, s−i) = ui(si, cl3(s−i)). Thus, it turns out
that the abstract best response correspondenceBG3

is defined as follows:

B(s1, s2) =
{(

f11(cl3(s2)), f12(cl3(s2)), f21(cl3(s1)), f22(cl3(s1))
)}

so that,BG3
can be restricted to the finite domainA × A and therefore has a finite range. This allows us

to compute the least and greatest equilibria ofΓG3
by the standard RT algorithm in Figure 2.3. Through a

simple C++ program, we obtain the following solutions:

leq(ΓG3
) =

(10669

6000
,
6653

3500
,
79139

40000
,
77017

40000

)

geq(ΓG3
) =

(91199

42000
,
14733

7000
,
42363

20000
,
80793

40000

)

By Corollary 6.3, we know that these are correct approximations, i.e.,leq(Γ) ≤ leq(ΓG3
) andgeq(Γ) ≤

geq(ΓG3
). Both fixed point calculationsleq(ΓG3

) andgeq(ΓG3
) need 16 calls to the abstract functions

fij(a−i), for somea−i ∈ A−i, which provide the unique maximum points foruij(·, a−i). It is worth
noting that, even with the precision of 3 fractional digits of cl3, the maximum approximation for these
abstract solutions turns out to beleq(ΓG3

)22 − leq(Γ)22 = 2148733

22229960000
= 0.00009665932822.

7 Further Work

We investigated how the abstract interpretation technique, which is widely used for static program analysis,
can be applied to define and calculate approximate Nash equilibria of supermodular games, thus showing
how a notion of approximation of equilibria can be modeled byan ordering relation analogously to what
happens in the standard approaches to static analysis of therun-time behaviors of programs. To our knowl-
edge, this is the first contribution towards the goal of approximating solutions of supermodular games by
relying on a lattice-theoretical approach. We see a number of interesting avenues for further work on this
subject. First, our notion of correct approximation of a multivalued function relies on a naive pointwise
lifting of an abstract domain, as specified by a Galois connection, to Smyth, Hoare, Egli-Milner and Veinott
preorder relations on the powerset, which is the range of best response correspondences in supermodular
games. It is worth investigating whether abstract domains can be lifted in different and more sophisticated
ways to this class of preordered powersets, in particular bytaking into account that, for a certain class of
complete lattices, the Veinott ordering gives rise to complete lattices [14]. Secondly, it could be interesting
to investigate some further conditions which can guaranteethe correctness of games with abstract strategy
spaces (cf. Theorem 5.6). The goal here is that of devising a notion of simulation between games whose
strategy spaces are related by some form of abstraction, in order to prove that ifΓ′ simulatesΓ then the
equilibria ofΓ are approximated by the equilibria ofΓ′. Finally, while this paper set up the abstraction
framework by using very simple abstract domains, the general task of designing useful and expressive
abstract domains, possibly endowed with widening operators for efficient fixed point computations, for
specific classes of supermodular games is left as an open issue.
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