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Abstract

The paper investigates the consensus problem in anonymous, failures prone and asynchronous
shared memory systems. It introduces a new class of failure detectors, called anonymity-
preserving failures detectors suited to anonymous systems. As its name indicates, a failure
detector in this class cannot be relied upon to break anonymity. For example, the anonymous
perfect detector AP , which gives at each process an estimation of the number of processes that
have failed belongs to this class.

The paper then determines the weakest failure detector among this class for consensus. This
failure detector, called C, may be seen as a loose failures counter: (1) after a failure occurs, the
counter is eventually incremented, and (2) when at least two processes do not fail, it eventually
stabilizes. Finally, the paper also introduces failure detector Ck, a simple generalization of C
and shows that it can be used to solve k-set-agreement, a generalization of consensus in which
up to k distinct values may be decided.
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1 Introduction

Anonymous computing The vast majority of the literature about distributed computing as-
sumes that each process is provided with an unique identifier. We consider in this work anonymous
computing in which processes have no identifiers and are programmed identically. Besides intellec-
tual curiosity, anonymous computing might be of practical interest [27]. For example, for privacy
reasons, a set of distributed processes may be willing to compute some function on their inputs
without revealing their identity. Or the distributed computation might be performed on top of an
anonymous communication system [16], and thus using ids is forbidden.

Specifically, we consider the totally anonymous shared memory model of distributed computing.
The shared memory consists only in basic shared objects, namely read/write registers. We assume
that there is no way to uniquely assign registers to the processes as this would provide a way to
differentiate the processes. Previous works [6, 27] have shown that the lack of unique identifiers
limits the computational power of the shared memory model. Similarly, starting from the pioneering
work of Angluin [2], the computational power of anonymous message passing system in the failure-
free case has been investigated for particular or general graph topologies, e.g., [8, 7, 31, 32].

Consensus, failure and asynchrony Besides the unavailability of unique identifiers, a major
difficulty is coping with failures and asynchrony. Many simple distributed tasks cannot be solved in
asynchronous and failures-prone distributed system. A prominent example is consensus, which is
a cornerstone task in fault-tolerant distributed computing. Informally, the processes, each starting
with a private value, are required to agree on one value chosen among their initial values. In
systems with identities, it is well known that asynchronous fault tolerant consensus is impossible
as soon as at least one process may fail by crashing [21, 29]. This impossibility trivially extends to
anonymous systems.

Failure detectors Failure detectors [14] are a popular approach to circumvent impossibilities
stemming from asynchrony and failures. A failure detector is a distributed device that provides
each processes with perhaps unreliable information about which other processes have crashed. In
non-anonymous systems, several classes of failure detectors have been defined [22]. In many cases,
their specification involves processes identities. For example, the perfect detector P provides each
process with a list of the identities of some of the processes that have crashed. The list is eventually
complete in the sense that it eventually includes the identity of each crashed process. The leader
failure detector Ω eventually outputs the same identity at every process, which is the identity of a
non-faulty process.

Given a distributed task T , a natural question is to determine the weakest failure detector for
T , that is a failure detector D which is both sufficient to solve the task – there is an asynchronous,
fault tolerant protocol that uses D to solve T – and necessary, in the sense that any failure detector
D′ that can be used to solve T can also be used to emulate D. For example, is well-known that
Ω is the weakest failure detector for consensus [13] in shared memory systems when processes are
provided with unique identifiers.

Failures detector in anonymous systems Bonnet and Raynal initiated the study of failure
detectors in anonymous message passing systems [10]. In particular, they identify identity-free
counterpart of classical failure detectors including Ω and P . AΩ, an identity-free failure detector
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equivalent to Ω, outputs a Boolean value at each process and, eventually outputs at a single correct
process true and false at every other process. A consensus algorithm that uses AΩ is also presented.
In the shared memory model, an anonymous AΩ-based protocol can be found in [17]. Bonnet and
Raynal left open the following question: “Consensus in anonymous distributed systems: is there a
weakest failure detector?”[9]. This paper answers this question positively.

Contributions of the paper Although the definition of the failure detector AΩ is useful for
anonymous systems, as it does not involve processes identities, it allows to (eventually) break
symmetry, as it eventually singles out one process. We are interested in failure detectors that
preserve anonymity in the following sense: for any process p and any sequence of failure detector
outputs d = d[1], d[2], . . . at process p, the same sequence might be output at every process whithout
violating the specification of the failure detector. An example of such failure detector is AP which
provides at each process an eventually accurate estimation of the number of faulty processes.
Anonymity-preserving failure detectors cannot be relied upon to differentiate otherwise identical
processes. Within this framework, we identify the weakest failure detector for consensus in the
shared memory model. In more details the paper makes the following contributions:

1. It first defines (Section 3) the class of anonymity-preserving failure detectors and a new failure
detector denoted C. Failure detector C might be seen as a shared loose failure counter. It
guarantees that after each new failure the counter is eventually incremented, and in case two
or more processes are non-faulty, the counter eventually stabilizes. Let us notice that even
if several failures occur, the counter might be incremented only once. C is thus far from
providing an accurate tally of failures.

2. The paper shows that C is powerful enough to solve consensus while tolerating any number of
failures (Section 4). The algorithm is uniform, in the sense that it does not require the total
number of processes n to be known. Striving to not reinvent the wheel, the protocol relies
on standard shared memory constructs, namely adopt-commit [23] and safe-agreement [12]
objects.

3. It is then shown that C can be emulated using any anonymity-preserving failure detector
D powerful enough to solve consensus (Section 5). The extraction algorithm reuses in part
the techniques developed by Zielinski [33] for proving statement of this type in the shared
memory model with identities. Interestingly, the proof does not rely on the specifics of the
impossibility of fault-tolerant consensus but rather on the fact this task cannot be solved
non-anonymously wait-free among two processes.

4. Finally, it focuses on k-set agreement [15], a task that generalizes consensus by allowing
up to k distinct values to be decided. A generalization denoted Ck of failure detector C is
introduced and a Ck-based algorithm is presented (Section 6).

2 Computational Model

We recall in this section the main points of the asynchronous, anonymous and crash-prone model
equipped with failure detectors.
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Anonymous, asynchronous crash-prone shared memory model We consider an asyn-
chronous and crash-prone shared-memory system consisting in n ≥ 2 processes. Each process p has
a unique index i in the range [1, n]. The indexes are used only for modeling purpose. The process
with index i is denoted by pi. Processes are anonymous in the sense that they run the same code
and are not aware of their index. Hence, in an execution, processes may behave differently only
as a result of the underlying schedule or because their initial states differ. Processes communicate
via a shared memory that consists in an unbounded number of multi-writer/multi-reader atomic
registers. Processes are asynchronous, e.g., each process runs at its own speed, independently of
the other processes. Processes may fail by crashing. A process that crashes stops executing its code
and never recovers.

Failure detector For modeling failure detectors, we assume the existence of a global clock
whose values are the non-negative integers. The clock is not accessible to the processes. Let
Π = {p1, . . . , pn} be the set of processes. A process may fail by crashing, i.e., prematurely stops
executing its code. A process that has crashed never recover. A failure pattern is a function
F : N → 2Π that specifies the set of processes that have failed at each time τ ∈ N. Let faulty(F)
denote the set of processes that fail in F , i.e., faulty(F) =

⋃
τ≥0F(τ). The set of processes that

do not fail is correct(F) = Π \ faulty(F). When the failure pattern is clear from the context, we
say that a process pi is correct is pi ∈ correct(F) and faulty otherwise. An environment is a set
of failure patterns. Unless specified otherwise, we assume the wait-free environment that contains
every failure pattern in which at least one process is correct.

A failure detector [14] provides at each process some information on the underlying failure
pattern. Each process can query its local failure detector module. Such a query returns a value
in some (possibly infinite) range R. The outputs of the failure detector during an execution is
described by a failure detector history. A failure detector history is a function H : Π × N → R
that maps each pair (process index, time) to a value in the failure detector range R. The value
returned by the failure detector at process pi at time τ is H(pi, τ). A failure detector D with range
R associates a non-empty set of histories D(F) to each failure pattern F .

Protocol and executions A distributed algorithm or a protocol consists in n copies of a local
algorithm A, one per process. An execution or a run is a finite or infinite sequence of steps. In
a step, a process (1) queries the failure detector or (2) reads or (3) writes a shared register and
performs some local computation. A configuration describes the local state of each process and the
state of each shared register.

An execution or a run of a protocol A using failure detector D in environment E is a tuple
e = (F , H, I, S, T ) where F is a failure pattern in E , H a failure detector history in D(F), I is an
initial configuration of A, S a sequence of steps of A and T a non-decreasing sequence of times. S
is called a schedule and the ith step S[i] of S takes place at time T [i]. A tuple e = (F , H, I, S, T )
represents an execution of A if and only if (1) S and T are both finite in which case they have the
same length, or are both infinite, (2) no processes take a step after it has crashed, (3) if step S[i] is
a failure detector query by process pj that returns d, then d = H(pj , T [i]), i.e., the failure detector
queries return values that are consistent with the history H, (4) the steps taken in S are consistent
with A, (5) the timings of read and write steps, together with the values written or read in these
steps are consistent with the atomic semantic of the shared registers and, (6) if S is infinite, every
correct process takes infinitely many steps in S. Condition (5) can be reformulated as follows [25]:
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For any i, j, if step S[i] causally precedes step S[j], T [i] < T [j]. Formalizing these conditions is not
difficult but tedious. We refer to prior work [18, 25, 33] on failure detector in the shared memory
model for a formal treatment.

Consensus and k-set agreement Consensus and k-set agreement are examples of distributed
tasks. In the consensus task, each process starts with a value taken from some set V and is required
to decide a value subject to the following requirements: (Validity) any decided value is the initial
value of some process, (Agreement) no two distinct values are decided and (Termination) every
non-faulty process decides. In binary consensus, the set of possible initial values is restricted
to V = {0, 1}. The k-set agreement task has the same validity and termination requirement of
consensus but relaxes agreement as follows: (k-agreement) no more than k distinct values are
decided.

Let A be a protocol that uses a failure detector D. We assume that each process p is equipped
with two local variables, one, read-only inp and the other, write-once outp whose purpose is to
store the input and decision values, respectively, of p. Let T be the consensus or k-set agreement
tasks. We say that protocol A solves T using failure detector D in environment E if in any infinite
execution e = (F , H, I, S, T ) of A where F ∈ E and for every process p, inp is initialized to some
value v ∈ V, every process q ∈ correct(F) eventually decides, i.e. writes a value 6= ⊥ to outp and
the values written satisfy the validity and (k)-agreement requirements of T .

Comparing failure detectors Let D and D′ be two failure detectors. D is said to be as least
as weak as D′ in environment E , denoted D ≤E D′ if there is a protocol TD′→D that emulates D
using D′. Specifically, such a protocol maintains at each process p a local variable out-Dp whose
successive values are in the range of D. TD′→D emulates D if for every failure pattern F ∈ E , in
any execution with failure pattern F , there exists an history H ∈ D(F) such that for every process
p and every time τ , H(p, τ) = out-Dτ

p where out-Dτ
p denotes the value of the variable out-D at p

at time τ . D and D′ are said to be equivalent in environment E if D ≤E D′ and D ≤E D′.
Finally, a failure detector D is said to be a weakest failure detector for a task T in environment

E if (1) there is a protocol that solves T using D in E and (2) for every failure detector D′ that
can be used to solve T , D ≤E D′. For example, Ω is a weakest failure detector for consensus [13]
in asynchronous systems with identities.

3 Anonymity-preserving failure detectors

This section introduces the class of anonymity preserving failure detectors and defines the new
failure detector C.

The class of anonymity-preserving failure detectors Intuitively, a failure detector is anonymity
preserving if it cannot be relied upon to break symmetry among the processes. In the context of
anonymous systems, a failure detector history H is anonymity-preserving if for every time τ and
every processes indexes i, j, H(pi, τ) = H(pj , τ). That is, two queries at the same time by different
processes return the same value. Hence, in such history, the value output by the failure detector
only depends on the time at which the failure detector is queried, and does not depend on the
querying process. An anonymity preserving history is thus a function H : N→ R that maps time
to values in the failure detector range.
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A failure detector is anonymity preserving if for every failure pattern F , for every pi ∈ Π and
every history H ∈ D(F), the anonymity-preserving history H ′:

∀pj ∈ Π, ∀τ,H ′(pj , τ) = H(pi, τ)

also belongs to D(F). Intuitively, any sequence of values output by the failure detector at process
pi may have been returned at every other process. That is, if d = d1, d2, . . . is a legal sequence
of output for process pi for some failure pattern F , then d is also a valid sequence at any process
pj 6= pi, for the same failure pattern F .

For instance, the failure detector AΩ [10] eventually distinguish a unique correct process. It
provides to each process a single bit whose value eventually is 0 except for one correct process. More
precisely, the range of AΩ is {0, 1} and, for every failure pattern F , the history H : Π×N→ {0, 1}
belongs to AΩ(F) if and only if:

Eventual leadership. there exists a time τ and a process pi ∈ correct(F) such that for every τ ′ ≥ τ
and every process pj , H(pj , τ

′) = 1 ⇐⇒ j = i.

Clearly, AΩ is not an anonymity-preserving failure detector. In every legal history, there is a time
after which distinct values are output at least two processes.

An example of an anonymity-preserving failure detector is an identity-free variant [30] of the
perfect failure detector, denoted AP in [10]. The range of AP is N and, for any failure pattern F
the history H : Π× N→ N belongs to AP (F) if and only if:

Accuracy. For every time τ and every process pi, H(pi, τ) ≤ |F(τ)|

Completeness. There exists a time τ such that for all τ ′ ≥ τ , H(pi, τ
′) = |F(τ ′)|

AP is an anonymity-preserving failure detector. If for failure pattern F d = f1, f2, . . . is a valid
sequence of outputs for process pi, so it is for any process pj 6= pi.

Failure detector C Failure detector C is somewhat related to the signaling failure detector FS
[26]. The range of failure detector FS is {green,red}. While no failures occur, the output of FS
is green. Once a failure occurs, and only if it does, the failure detector must eventually output red
at every correct process.

Failure detector C might be seen as an unreliable variant of FS. The range of failure detector
C is the integers. At each process, the sequence of integers output by C is non-decreasing, and
after each new failure, the output of the failure detector is eventually increased. However, when
at least two processes are correct in the underlying failure pattern, C output eventually stabilizes.
That is, after some time, every query to C by process pi returns the same value, for each process
pi. More formally, for every failure pattern F , history H : Π×N→ N belongs to C(F) if and only
if:

1. Monotonicity. For every process pi, for every times τ ≤ τ ′, H(pi, τ) ≤ H(pi, τ
′);

2. Signaling For every times τ, τ ′ : τ < τ ′, for every processes pi, pj , if |F(τ)| < |F(τ ′)|, there
exists a time τ ′′, τ ′ ≤ τ ′′ such that H(pi, τ) < H(pj , τ

′′);

3. Convergence. If |correct(F)| > 1, for every process pi, there exists a time τ such that for
every τ ′τ ≤ τ ′, H(pi, τ) = H(pi, τ

′).
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4 A C-based consensus protocol

This section presents a consensus protocol based on failure detector C. To simplify the presentation,
we concentrate on binary consensus in which the set of possible inputs is {0, 1}. Multivalued
consensus can be solved from binary consensus by successively agreeing on the bits of one of the
proposed value. The protocol is depicted in Figure 1. Besides registers, it relies on standard shared
memory constructs, namely adopt-commit [23] and safe agreement [11, 12] objects, that we describe
next.

Base objects An adopt-commit object supports a single operation denoted propose(v) where v
is a value from some finite set V. Such an operation returns a couple (b, u) where b is either adopt
or commit and u is a value in V, subject to the following requirements [23, 30, 4]:

1. Validity. If an operation returns (d, v) then v is the input of a propose() operation.

2. Agreement. If an operation returns (commit , v) then each output is either (adopt , v) or
(commit , v).

3. Convergence. If the input of every operation is v, then every output is (commit , v).

4. Termination. Each operation by a non-faulty process produces an output.

A shared-memory implementation of an adopt-commit object that tolerates an arbitrary num-
ber of crash-failures can be found in [4]. The implementation ([4], Algorithm 2) uses two multi-
writer/multi-reader registers and a conflict-detector, which in turn can be implemented in a wait-free
manner using only fact−1(|V|) multi-writer/multi-reader registers ([4], Algorithm 3). Algorithms
2 and 3 do not use processes identities, and are thus suitable for the anonymous shared-memory
model.

The safe agreement object, originally introduced by Borowsky and Gafni [11] allows the pro-
cesses to propose values and to agree on a single value. It is at the heart of the BG-simulations
[11, 24] in which it is used by simulators to agree on each step of the simulated processes. Differ-
ent specifications of a safe agreement object can be found in the literature, e.g., [5, 12, 28]. Our
specification below closely follows [5].

A safe agreement object supports two operations propose(v) where v is a value in {0, 1}1 and
read(). Both operations return either a value u ∈ {0, 1} or ⊥. Each process can invoke propose() at
most once, while read() can be invoked arbitrarily many times. An execution is well-formed if (1)
each process calls propose() at most once and, (2) no processes start a read() or propose() operation
before its previous operation (if any) has returned. It is required that in any well-formed execution,
the following properties are satisfied:

1. Validity. If an operation returns a value v 6= ⊥, v is the input of a propose() operation.

2. Agreement. If values v, v′ ∈ {0, 1} are returned by some operation, v = v′.

3. Termination. Every operation performed by a non-faulty process terminates.

We say that a propose() operation is successful if it returns a value 6= ⊥.

1More generally, v may belong to any finite set. Restricting to binary inputs is sufficient for our purpose, namely
using failure detector C to solve binary consensus.
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4. Consistent reads. Any read() operation that terminates and starts after a successful propose()
operation has completed returns a non-⊥ value.

5. Non-triviality. Not every propose() operations return ⊥.

Observe that the non-triviality property is satisfied in executions in which a process fails while
performing a propose() operation. In the case in which no processes fail while performing propose(),
it follows from the termination and non-triviality properties that at least one propose() operation is
successful. Nevertheless, it is not guaranteed that every propose() operation is successful. However,
the consistent reads property implies that if, after its propose() operation has returned, a process
keeps reading the object, it eventually gets back a non-⊥ value.

When processes have unique identity, safe agreement objects can be implemented with registers,
e.g., [11]. In anonymous systems, a safe agreement object implementation can be obtained by
slightly modifying an anonymous binary consensus protocol by Attiya, Gorbach and Moran [6]
designed for the asynchronous shared memory model with no failures. See appendix A for more
details.

Algorithm 1 C-based binary consensus protocol.

1: init SA[1, . . .] . Array of safe agreement objects
2: AC[1, . . .] . Array of adopt-commit objects
3: D ← ⊥ . Decision register, initially ⊥
4: function propose(v) . v ∈ {0, 1}
5: est← v; start tasks T1, T2;

6: task T1:
7: for r = 1, 2, . . . do
8: repeat d← C-query() until d ≥ r end repeat
9: aux ← SA[r].propose(est) . aux ∈ {0, 1,⊥}

10: if aux = ⊥ then
11: repeat aux← SA[r].read(); d← C-query()
12: until (d > r) ∨ (aux 6= ⊥)
13: end if
14: (b, u)← AC[r].propose(aux) . b ∈ {adopt , commit}, u ∈ {0, 1,⊥}
15: case b = commit ∧ u ∈ {0, 1} then D ← u; return
16: b = adopt ∧ u ∈ {0, 1} then est← u
17: default then nop . u = ⊥
18: end case
19: end for
20: task T2:
21: repeat u← D until u 6= ⊥ end repeat
22: stop task T1; return u

Description of the protocol Algorithm. 1 consists in two tasks denoted T1 and T2, launched
in parallel at each process p (line 5). In task T2, process p keeps reading a shared register D, whose
initial value is ⊥, until it sees some non-⊥ value u. u is then decided by p (line 22).

In task T1, processes proceed in asynchronous rounds aiming at writing a single non-⊥ value to
D. An adopt-commit object and a safe agreement object denoted respectively AC[r] and SA[r] are
associated with each round r. Following a standard design pattern, e.g., [3, 24], the processes that
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enter round r first try to reach agreement by accessing the safe agreement object SA[r] (line 9) and
then check whether agreement has been achieved using the adopt-commit object AC[r] (line 14).

In more details, each process p maintains an estimate est that contains the value it currently
favors. In round r, process p proposes its estimate to SA[r] (line 9) and, if its operation is unsuc-
cessful (line 10), enters a loop in which it repeatedly reads the object (line 11). If no processes that
enter round r fail, at least one of the invocations of propose() on SA[r] is successful (non-triviality
and termination properties of safe agreement) and thus by keeping reading the object, a process
eventually obtains a non-⊥ value (consistent reads property of safe agreement). Hence, in the case
in which no processes entering round r fail, every process that enters that round eventually obtains a
non-⊥ value, either because its propose() operation is successful, or as a result of a read() operation.
Note that this value is the same for every process (agreement property of safe agreement).

However, some of the processes that enter round r may fail. In this case, each propose() operation
may be unsuccessful, and every read() operation may return ⊥. We rely on failure detector C to
ensure progress as follows:

• A process is allowed to enter a round r only if its local failure detector module output is larger
than or equal to r (line 8);

• A process exits the loop in which it is trying to obtain a non-⊥ value from SA[r] by performing
read() operation whenever its local failure detector output is strictly larger than dc (line 12).

This simple mechanism prevents processes from getting stuck in any round r in which a failure
occurs. Indeed, a process p failing in round r must have obtained from C a value dc ≥ r (line 7).
Then, following the crash of p, due to the signaling property of C, C eventually outputs at every
non-faulty processes values strictly larger than dC , allowing these processes to exit the loop in
which the safe agreement object SA[r] is read (lines 11–12).

To reconcile processes that have obtained a non-⊥ value form SA[r] and those to which C has
signaled a failure, we use the adopt-commit object AC[r] (line 14). Each process p keeps in its
local variable aux the result of its operations (at lines 9 and 11) on SA[r], e.g., ⊥ or some value
v ∈ {0, 1}. In the second part of round r, process p proposes the value stored in aux to AC[r]
(line 14). If it gets back (adopt, u), where u 6= ⊥ it changes its estimate to u (line 16). A process
that receives (commit, u) can thus safely write u to the decision register D, as it follows from the
agreement of adopt-commit that every propose() operation returns (commit, u) or (adopt, u). Hence,
every process either writes u to D or changes its estimate to u, thus preventing any value u′ 6= u to
be written to D in subsequent rounds. Finally, if a process p receives (∗,⊥), then no process writes
to D in the current round r, and p leaves its estimate unchanged (line 17).

As for termination, a process decides as soon as it reads a non-⊥ value from D (task T2). Let us
observe that this happens if there is a round r in which (1) enters only one process, and this process
is correct or (2) enter only correct processes, and at each of these processes, the largest output of C
is r. Clearly, if only one process p enters round r, its propose() operation on SA[r] returns a non-⊥
value u (non-triviality property of safe agreement). u is then the only value proposed to AC[r]. p
thus receives (commit, u) from AC[r] (convergence property of adopt-commit) and then writes u
to D. Condition (1) is satisfied in executions in which there is only one correct process.

For the second condition, if only correct process enters round r, at least one of the propose()
operation on SA[r] is successful. Moreover, no process can exit the reading loop (lines 11-12)
without having obtained a non-⊥ value from SA[r], as C never outputs a value larger than r to
those processes. Since every non-⊥ value returned by operations on SA[r] are the same, only one
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value is proposed to AC[r], from which we conclude that only (commit, v), where v 6= ⊥, is returned
by each propose() operation performed on AC[r] (convergence property of AC[r].). Hence a value
is written to D in round r. Condition (2) is met in every execution in which there is at least two
correct processes, since in that case the output of C eventually stabilizes at every correct process,
and the stabilization value is larger than every value output at faulty processes.

Proof of the protocol We consider an arbitrary execution e of the protocol. We assume that
every correct process invokes propose() at line 4. Let F be the failure pattern, and H ∈ C(F)
the failure detector history in e. Consensus agreement and validity follow from the agreement
and validity properties of the adopt-commit and the safe agreement objects (see the proof of
Theorem 4.3). The proof of termination relies on the following Lemma, which stems from the
signaling property of the underlying failure detector C.

Lemma 4.1. Let τc be the time at which the last crash occurs in e (i.e., F(τ) = F(τc), for
every τc < τ). There exists T ∈ N such that: (i) for every faulty process p, for every time
τ ≤ τc, H(p, τc) ≤ T and, (ii) there exists a time τT such that for every correct p, for every time
τ, τT ≤ τ, T < H(p, τ).

In other words, there is value T such that each query to C by a faulty processes returns a value
smaller than T while the queries by the correct processes eventually return values strictly greater
than T .

Proof. Let T = max{H(p, τ) : p ∈ faulty(F) and τ < τc}. Item (i) is an immediate consequence of
the definition of T . By the definition of T , there exists a faulty process q and a time τ1 < τc at
which the output of C at q is T , i.e., H(q, τ1) = T . Let p be a correct process. As for every time
τ, τ1 < τc ≤ τ , F(τ1) < F(τ), there exists a time τp, τ1 < τp such that T = H(q, τ1) < H(p, τp)
(Signaling property of C). Let τT = max{τp : p is correct}. By the monotonicity property of C,
for every time τ, τT ≤ τ and every correct process p, T < H(p, τp) ≤ H(p, τ), which proves item
(ii).

We say that a process decides when it returns a value at line 22 in task T2.

Lemma 4.2 (Termination). Every correct process decides.

Proof. Assume for contradiction that no correct processes decide. As a process decides as soon as
it reads a non-⊥ value from the decision register D (task T2), no non-⊥ value is ever written to D.
Hence no process exits task T1 by executing the return statement of line 15.

We say that a process enters round r is it exists the repeat loop (line 8) of round r. Note that
this occurs when a query to C returns a value d, r ≤ d. A process is blocked in round r if it enters
round r and never enters round r + 1.

Let p denote a correct process and let d be a value returned to p by a query to C. Observe
that p enters round d. Indeed, for every round r < d, p is not blocked in round r. First, as the
successive values returned by the queries to C form a non-decreasing sequence, the condition for
entering round r is eventually satisfied at p (line 8). Second, in round r, as p does not fail, its calls
to propose() on the safe agreement and adopt-commit objects SA[r] and AC[r] terminate. Finally,
the repeat loop at lines 11–12 eventually ends since C eventually outputs a value greater than r
at process p.

We consider two cases according to the number of correct processes in the execution.
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• |correct(F)| = 1. Let p be the correct process of the execution. By Lemma 4.1 and the
monotonicity property of C, there exists an integer T such that (1) after some time every
query to C by p returns a value greater than T and (2) every query by a faulty process returns
a value ≤ T . It follows that there exists a round r, T ≤ r such that no process but p enters
round r (Faulty processes cannot enter round r since they do not obtain large enough values
from C. On the contrary, p does enter round r as a query by p to C returns r.).

Therefore, p is the only process that calls propose() (on line 9) on the safe agreement object
SA[r]. By the non-triviality property of safe agreement, it must get back a value v 6= ⊥ from
that call, which it then proposes to the adopt-commit object AC[r] (line 14). This operation
returns (commit, v) as p is the only process that accesses the object. It thus follows from the
code that p writes v to D. This is a contradiction.

• |correct(F)| > 1. In this case, at each correct process p the output of C eventually stabilizes
to a value denoted dp. Let R = max{dp : p ∈ correct(F)} and let P be the set of processes
at which the failure detector output is eventually R. As seen above, each process p ∈ P
eventually enters round R, and it follows from Lemma 4.1 that no faulty process enters
rounds R. Hence every call to propose() on the safe agreement object SA[R] returns. By the
non-triviality property, at least one of these calls is successful, i.e., returns a non-⊥ value. By
the agreement property of safe agreement, all non-⊥ values returned by successful propose()
operations are the same. Let v denote this value.

Let p ∈ P . Suppose that p propose() operation on SA[R] returns ⊥. p cannot exit the
repeat loop on lines 11-12 by getting a value d > R from C, as by definition R is the largest
value output by C at p. However, as there is a successful propose() operation on SA[R], one
of p read() operations on SA[R] returns a non-⊥ value. By the agreement property of safe
agreement objects, this value is v.

Therefore, every propose() operation on the adopt-commit object AC[R] has v as input.
Each such operation thus returns (commit, v), from which we conclude that v is written to
the decision register D. This is a contradiction.

Theorem 4.3. Protocol 1 solves binary consensus using failure detector C.

Proof. Validity directly follows from the validity properties of safe agreement and adopt-commit
object. Termination follows from Lemma 4.2. For agreement, we prove that all values written to
the decision register D are the same.

Let r be the first round in which a value is written to D. That is, a process writes to D after
entering round r and before leaving that round. Let v be the value written by that process. By
the code (line 15), p has previously called propose() on AC[r] and has received (commit, v) from
that call. By adopt-commit agreement, every other propose() operation on AC[r] that terminates
returns (adopt, v) or (commit, v). It thus follows that (1) every value written to D in round r is v
and, (2) every process that does not return in round r (at line 15) sets its estimate est to v before
leaving round r (line 16). Therefore, for any round r′ ≥ r, the estimate of any process entering
round r′ is v, from which we conclude that no value 6= v can be written to D after round r.
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5 C is necessary to solve consensus

Let X be an anonymity-preserving failure detector, and assume that there is a protocol A that
solves consensus using X. We present (Algorithm 2) a protocol TX→C that emulates C using X in
the wait-free environment.

Overview As in previous protocols that emulate weakest failure detectors [13, 19, 25, 33], in
TX→C each process locally simulates many possible runs of algorithm A. According to the output
of these runs, information on the failure pattern is inferred and the desired weakest failure detector
emulated.

Let F denote the failure pattern underlying the execution of TX→C . In order to simulate valid
runs of A, e.g., runs indistinguishable from reals runs of A, samples from the underlying failure
detector X have to be collected. Those samples are then used in the simulation of each step in
which a query to failure detector X occurs. Hence, each process p must collect samples from its
failure detector module, but also from other processes. Precedence relationships between samples
should also be maintained to order to simulate valid runs of A. For example, the simulation must
avoid using a sample from some faulty process q if a sample taken after the failure of q has already
been used. In systems with identities, this is usually achieved by maintaining a DAG, where each
vertex v contains failure detector sample d and a process id, and for any successor v′ of v, the
sample d′ associated with v′ has been taken after d. In the anonymous shared memory model, the
lack of identifiers make tracking precedence relationships difficult and the standard technique [13]
does not apply. However, in the case of anonymity-preserving failure detectors, the samples taken
by each process p from its local failure detector module are sufficient to simulate runs of A, even
with more than one participating process. This is because the sequence of samples obtained by p
might have been also obtained by every other processes in some execution with the same failure
pattern F .

In TX→C , each process p simulates executions of A in which at most two processes, denoted
q0 and q1, participate with input 0 and 1 respectively. On one hand, for such an execution e by
adding clones of q0 and q1 one may construct an indistinguishable execution e′ in which the number
of participating processes matches the number of correct processes in correct(F). It thus can be
shown that execution e is indistinguishable from the point of view of q0 and q1 from some real
execution of A with failure pattern F . On the other hand, there must exist an interleaving of the
steps of q0 and q1 such that the corresponding emulated execution of A does not decide. Otherwise,
algorithm A together with the sequence of failure detector samples collected by p can be used to
solve binary consensus wait-free and without failure detector by two non-anonymous processes q0

and q1, contradicting the impossibility of consensus.
Operationally, process p explores every possible two-processes schedules of A in a particular,

corridor -based order, as in [25, 33]. Whenever a decision occurs in the execution simulated by p, a
shared counter is incremented, and the output of C at p is set to the new value of the counter. We
prove (1) that following any (real) process failure, p eventually simulates an execution of A in which
a decision occurs, and due to the order in which schedules are explored, (2) that eventually p keeps
simulating one infinite execution in which no processes decide. The correctness of the emulation C
then follows (1) and (2).
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Algorithm A′ Let MEM denote the (not necessarily finite) array of registers used by A. Recall
that in a step of A, a process performs a read() or write() operation on some register MEM [`]
or a query() operation, from which it gets back an output from the underlying failure detector X.
It may then perform some local computation. Instead of simulating runs of A, we are going to
simulate runs of a slightly modified version of A, called A′, defined as follows. The purpose of the
modification is to help tracking causality relations between steps of the algorithms.

In algorithm A′, each process has an extra local counter η whose initial value is 1. Each register
MEM [`] is divided in two fields, data and ctr. MEM [`].data is initialized as specified by A while
the initial value ofMEM [`].ctr is 0. For each integer ` and value v, each operationMEM [`].write(v)
inA is replaced inA′ by MEM [`].write(〈v, η〉), i.e., v and the current value of the local variable η are
written to the data and ctr components, respectively, of MEM [`]. Similarly, each instruction of the
form v ← MEM [`].read() in A is replaced in A′ by 〈v, η′〉 ← MEM [`].read(); η ← max(η, η′ + 1).
Finally, after each write(), read() or query() operation η is incremented (η ← η+ 1). For each step s
of the modified algorithm A′, we define η(s) as the value of η immediately before it is incremented
(e.g., immediately before η ← η+ 1 is performed). Obviously, these modifications do not affect the
correctness of A′, i.e., A′ solves consensus using X.

Causality Let r be a run of A′ with two processes q0, q1, where the input of qi, i ∈ {0, 1} is i.
Note that in these particular executions, although the processes are anonymous, we can assume
that the values written are unique, as they can be tagged with the process input and a sequence
number. For any two steps s, s′ in r, s causally precedes s′, denoted s � s′ if and only if :

1. s and s′ are performed by the same process in that order or,

2. in s a value v is written to some register MEM [`], and in s′ v is read from MEM [`] or,

3. there exists a steps s′′ such that s � s′′ and s′′ � s′.

The following Lemma follows from the management of the variables η in A′.

Lemma 5.1. Let r be a run of A′ by two processes q0, q1 with input 0 and 1 respectively. For every
steps s, s′ of r, s � s′ =⇒ η(s) < η(s′).

Proof. If s and s′ are two steps by the same process qi, occurring in that order, the lemma follows
from the fact that η is incremented at the end of each step of qi. Suppose value v is written to some
register in s and read in s′. Then η(s′) = max(old, η(s)+1) > η(s) where old is the value of η at the
beginning of s′ and the lemma follows. Otherwise, there exists steps s0(= s), s1, . . . , sm(= s′) such
that for every j, 0 ≤ j ≤ m− 1, steps sj and sj+1 are performed by the same process in that order
or a value written in sj is read in sj+1. In that case, the lemma follows from an easy induction on
m.

Collecting failure detector X samples In order to simulate a run r of A′, each process p
must be able to select appropriate outputs from the failure detector X for each query() steps in r.
Since failure detector X is anonymity-preserving, p does not need to know outputs of X at other
processes p′. Indeed, for any failure pattern F and any finite or infinite sequence x = x1, x2, . . . of
outputs of X collected by p in a run with failure pattern F , there is a run with the same failure
pattern in which every process see the same sequence x of outputs of X. Therefore, in order to
provide failure detector values for the simulation of runs of A′, p simply builds an ever growing
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sequence of failure detector outputs x[1], x[2], . . . by repeatedly querying its local failure detector
module.

Induced schedules of A′ Each process p simulates runs of A′ in which at most two processes,
denoted q0 and q1, take steps with initial values 0 and 1 respectively. We next describe how a
binary sequence and a sequence of failure detector X outputs induce a schedule S of A′, that is a
sequence of steps of A′.

Let x denote a sequence of failure detector outputs, obtained from X at increasing times, and
let λ denote a binary sequence. Intuitively, λ describes in which order processes take steps in S
and x supplies failure detector outputs for simulating query(). A difficulty is to choose output in x
for each query() step of S in such a way that there is a real execution of A′ indistinguishable to q0

and q1 from S.
Schedule S is defined inductively. Recall that a configuration c, in the context of a two processes

schedule consists in a triplet (s0, s1,MEM) where si, i ∈ {0, 1} is the local state of qi and the array
MEM contains the current value of each register used by A′. In the initial configuration c0 of
S, c0.si, i ∈ {0, 1} reflects the fact that the initial value of qi is i and c0.MEM is initialized as
specified by A′. The ith step of S is taken by process qλ[i] and is deduced from A′ applied to the
local state of qλ[i] in configuration ci−1. If this step is a read() or write() step, it is simulated by
reading or writing a value to/from MEM . If the step is a query() operation, it is simulated by
taking x[ηλ[i]] as its result, where ηλ[i] is the value of the variable η at process qλ[i] in configuration
ci−1. Configuration ci is then derived from ci−1 in the obvious way.

The choice of output for each simulated query() preserves causality in the following sense: Let
s and s′ be steps of S in which X is queried and assume that s � s′. Let j, j′ the indices in x of
the values returned by these queries in the simulation. Then x[j] is obtained from X before x[j′],
i.e., j < j′, as one would expect. Indeed, let qi and qi′ be respectively the processes that perform
s and s′, and let η(s) and η(s′) be the value of η at process qi and qi′ in the configurations that
immediately precede s and s′, respectively. The results of the queries in s and s′ are x[η(s)] and
x[η(s′)]. By Lemma 5.1, as s � s′, η(s) < η(s′).

Indistinguishability of induced schedules from real runs Given a binary sequence λ and
a sequence x of outputs of X, the schedule Sλ,x induced by λ and x may not correspond to a real
execution of A′. More precisely, for the simulation of S to be meaningful, we need that there exists
a real run r of A′ that is indistinguishable from S to q0 and q1. The schedule in r may differ from
S, but the successive states of qi must be the same in S and r, for each i ∈ {0, 1}. Next Lemma
establishes the existence of r.

Lemma 5.2. Let λ be a binary sequence. Let x denote a (finite or infinite) sequence of outputs
of X and let S denote the schedule induced by λ and x. Assume that there exists a failure pattern
F , a history H ∈ X(F) and an increasing sequence of times τ1 < τ2 < . . . such that for every
i, x[i] = H(p, τi) for some process p. If for every i, |F(τi)| ≤ n − 2, there exists a run of A
indistinguishable from S to q0 and q1.

Proof. Let r = (F , H, I, S′, T ) where F and H as are in the Lemma statement, and I is the initial
configuration in which process qi input is i, for each i ∈ {0, 1}. S′ is a schedule with exactly the
same steps as S and T is a non-decreasing sequence of times, such that for every i, step S[i] occurs
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at time T [i]. To define S′ and T , we associate with each step s in S a time θ(s) as follows: Let
prec(s) be the set of steps in S that causally precede s, i.e., prec(s) = {s′ ∈ S : s′ � s}.

θ(s) =

{
τη(s) if s is a query() step

max{θ(s′) : s′ ∈ prec(s)}+ 1 otherwise.

S′ is the sequence of steps in S, order according to θ. If two steps s, s′ are such that θ(s) = θ(s′),
they are performed by two distinct processes and we order the step performed by q0 first. T is then
the sequence θ(S′[1]), θ(S′[2]), . . . We next verify that r defines a run of A′.

We check that for any two steps s1, s2, if s1 � s2, then θ(s1) < θ(s2). Suppose first that s1 is a
query step. If s2 is also a query step, since s1 � s2, it follows from Lemma 5.1 that η(s1) < η(s2).
Hence θ(s1) = τη(s1) < τη(s2) = θ(s2). If s2 is a read or write step, since s1 ∈ prec(s2), θ(s1) < θ(s2).

Suppose now that s1 is read or write step. If s2 is also read or write step, θ(s1) < θ(s2) since
s1 ∈ prec(s2). Otherwise s2 is a query. Observe that ` ≤ θ(s1), where ` is the length of the longest
causal chain of steps ending in s1. By the management of the η variables in A′, ` = η(s1). If
` = θ(s1), as s1 � s2, η(s1) < η(s2) (Lemma 5.1) and thus, since η(s2) ≤ τη(s2), θ(s1) < θ(s2).
Otherwise, there exists a query step s ∈ prec(s1) such that θ(s1) = τη(s) + δ, where δ is the length
of the causal chain from s to s1. Since s � s1 � s2, η(s2) = η(s) + δ′ where δ < δ′. Hence, as
τη(s) + δ ≤ τη(s)+δ < τη(s)+δ′ = θ(s2), θ(s1) < θ(s2). Therefore, for any i, j, if S′[i] causally precedes
S′[j] then T [i] < T [j]. Property (5) of a run is satisfied.

Clearly S′ and T have the same length (property (1)). By assumption, at least two processes,
say p and p′ do not fail in F . Algorithm A′ being anonymous, and failure detector X anonymity
preserving, we can think of run r as a run in which p and p′ take the steps in lieu of q0 and q1,
respectively. Hence, no process takes a step in r after it has failed (property (2)). By definition, if
s = S′[i] is a query step, T [i] = τη(s) and the value returned by the query is d = x[η(s)] = H(p, τη(s))
for some process p. Since X is an anonymity preserving, d is also a valid output at time τη(s) for
the process performing the query (property (3)). S and S′ contain the same set of steps. For each
process qi, the steps of qi occur in the same order in S and S′. Hence S and S′ are indistinguishable
to qi. Finally, as the order of read/write operations on each register MEM [`] is preserved in S′,
each read returns last value written. Hence property (4) of runs holds.

Run r however may not be fair. A infinite run r = (F , H, I, S, T ) is fair if every process in
correct(F) take infinitely many steps in r. Given an infinite binary sequence λ, let inf(λ) ⊆ {0, 1}
the bits that appear infinitely many often in λ. Next Lemma expresses a sufficient condition for the
existence of a fair run indistinguishable to q0 and q1 from the schedule induce by binary sequence
and a sequence of failure detector outputs λ, x.

Lemma 5.3. Let λ be an infinite binary sequence and x an infinite sequence of failure detector X
outputs. Suppose that there exists a failure pattern F , a sequence of times τ1 < τ2 < . . . and an
history H ∈ X(F) such that for every i ≥ 1, x[i] = H(p, τ) for some process p.

If |correct(F)| ≥ 2 and inf(λ) = {0, 1} then the schedule Sλ,x induced by λ, x is indistinguishable
from the schedule in a fair run r of A.

In the induced schedule Sλ,x, only two processes take step. However, more than two processes
may be correct in the failure pattern F . We resolve this difficulty by adding clones of q0 and q1.
A clone [20] of process qi is a process that has the same input and the same code as qi. p is
scheduled in lock-step with qi: it reads and writes the same values as p, and each of its queries to
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X returns the same output as the queries by p. The latter is made possible by the fact that X is
anonymity-preserving. The outputs of X at qi are also valid outputs at any other processes.

Proof. Let r = (F , H, I, S′, T ) be the run indistinguishable to q0 and q1, as defined in the proof
of Lemma 5.2. If |correct(F)| > 2, we construct fair run r′ by adding |correct(F)| − 2 clones of q0

to r. Each clone p has the same input as q0, writes and reads the same value as q0. The queries
by p occur at the same times as the queries by q0 and return the same values. Since X is an
anonymity-preserving failure detector, there exists and history H ′ ∈ X(F) such that for any time
τ and any clone p, H ′(p, τ) = H ′(q0, τ) = H(q0, τ). Steps by clones are not seen by neither q0 nor
q1. Thus r′ is indistinguishable from r to q0 and q1. Clearly r′ is a fair run of A′.

C emulation Algorithm 2 emulates failure detector C from any anonymity preserving failure
detector X that can be used to solve consensus. It closely follows the emulation technique of
Zielinski [33]. At each process p, the emulation consists in two tasks T and T ′ that run in parallel.
In task T , p collects outputs of X by querying its local failure detector module. The outputs are
stored in the array x. In task T ′, p recursively simulates every possible schedule of A′ (lines 9-19).
An infinite array A of registers is used to implement a weak shared counter. Each register A[i]
initial value is ⊥. The counter is incremented by changing to > the value of the register with the
smallest index containing ⊥. The value of the counter is thus the largest index i of A such that
A[i] = >. Each time a process decides in a simulated schedule, the counter is incremented and the
output of C is set to the counter new value (line 17).

Algorithm 2 TX→C , where X can be used to solve consensus.

1: initA[1 . . .]← [⊥, . . .] . Array of registers with initial value ⊥
2: procedure C-emulation
3: x[1 . . .]← [⊥, . . .] . Array for storing outputs of X
4: c0 ← initial configuration: qi, i ∈ {0, 1} input is i, MEM is initialized as prescribed by A′
5: P0 ← {q0, q1}; λ0 ← ε; out-C ← 0
6: start tasks T and T’ where task T’ is explore(λ0, c0, P0);

7: function explore(λ, c, P )
8: let U be the set of processes still undecided in c
9: for each P ′ ⊆ P ∩ U in an order consistent with ⊆ do

10: for each qi ∈ P ′ do
11: let step be the next step of qi in configuration c according to A′ . simulate next step of qi
12: case step = read() from `th register then read c.MEM [`]
13: step = write(v) to `th register then write v to c.MEM [`]
14: step = X-query() then take x[`] as the output of X, where ` is the value of η in c.si;
15: end case
16: perform local computation; update c.si
17: if qi has decided in c then let m← min{` : A[`] = ⊥}; A[m]← >; C-out ← m
18: end if . update (emulated) failure detector C output
19: λ← λ · i; explore(λ, c, P ′)
20: end for
21: end for
22: task T: . Failure detector X sampling
23: for i = 1, 2, . . . do x[i]← X-query() end for

In the following, we consider an arbitrary run of algorithm 2. Let F denote the failure pattern
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of this run and H ∈ X(F) the failure detector history. We denote by f the total number of failures,
i.e., f = |faulty(F)|. We first show that each correct process p simulates at least one schedule in
which a decision occurs after the time of the last crash in F . (Lemma 5.4). Consequently, the
output of C at p is incremented at least once after the last time a process fails, as required by the
signaling property. The second Lemma (Lemma 5.5) states that if the underlying failure pattern
includes at least two correct processes, the exploration procedure is eventually stuck simulating a
non-deciding schedule. As the output of C is modified each time a simulated schedule decides, it
follows that eventually the emulation of C eventually stabilizes at each process.

Lemma 5.4. Let τc be the time of the last crash and let m = max{` : A[`] = > at a time τc}.
There exist a time τ following the time of the last crash such that for every correct process p,
C-outτp > m.

Proof. Let p be a correct process. There exists an index i such that for every j, i < j, x[j] is a
value output by X after the last crash occurs. Let ic denote the smallest such i.

explore(λ0, c0, P0) recursively simulates schedules of A′. Recall that simulating a query step
consists in selecting an output in x. For any time τ , let iτe be the largest index of x such that x[iτe ]
has been used to simulate a query step.

Claim: For any time τ , if iτe ≤ ic, explore(λ0, c0, P0) has not terminated by time τ .
Proof of the Claim. Assume for contradiction that explore(λ0, c0, P0) has terminated by time τ .
Essentially, this implies that A′ together with x[1, . . . , iτe ] can be used to solve consensus wait-free
using only registers.

Assume for contradiction that explore(λ0, c0, P0) terminates. Then for each possible schedule
S of A′ for two processes q0, q1, there is a finite prefix S′ at the end of which each participating
process has decided. This schedule is induced by some finite binary sequence λ′ and the sequence
of outputs of X x′ = x[1..iτe ], i.e., S′ = Sλ′,x′ . There exists times τ ′1 < . . . < τ ′iτe such that for every
i, 1 ≤ i ≤ iτe , x

′[i] = x[i] = H(p, τ ′i). As iτe ≤ ic, τ
′
i < τc where τc is the time of the last crash.

Therefore, |F(τ ′i)| < f ≤ n− 1, for every i, 1 ≤ i ≤ iτe . It thus follows from Lemma 5.2 that Sλ′,x′

is indistinguishable for its participating processes from a real run of A′. Therefore, the decisions in
Sλ,x′ satisfy the validity and agreement requirements of consensus. Moreover, in the simulation of
Sλ′,x′ , the simulation of query() steps for qi depends only on the local state of qi in the simulation
(line 23).

Therefore algorithm A′ together with the finite array x′ can be used by two non-anonymous pro-
cesses q0 and q1 to solve wait-free using only registers the following election task: Each non-faulty
process is required to decide the id of one of the participating processes such that all decisions are
the same. This task cannot be solved wait-free with registers [11], as it can then be used to solve
consensus. end of the proof of the Claim.

The recursion tree of explore(λ0, c0, P0) has bounded degree. It thus follows from the claim that
a schedule is simulated in which an output x[j] for some j > ic, is used to simulate a query step.
That is, x[j] is a value output by X after the time of the last crash. Let explore(λ, c, P ) be the
first call to explore in which a value output by X after the last crash is used to simulate a query
step. Without loss of generality, let us assume that q0 is the simulated process in this step. As the
output of the query depends solely on λ and c, the next calls to explore following the simulation
of this step are of the form explore(∗, ∗, {q0}) (line 9). That is, x[j] is used for the first time while
simulating the schedule induced by the sequence λ · 0 · 0 · 0 . . ..
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Let r the real run of A′ that is indistinguishable from Sλ,x. By Lemma 5.2, r does exist since
every failure detector output used in Sλ,x is taken before the last crash, that is at times τ such
that |F(τ)| ≤ n− 2. Run r′ is obtained by extending and adding clones to r. In r′, after r, only q0

and his clones take steps. Those steps are the same as in the simulated schedule Sλ·0·0·0...,x. The
number of clones of q0 is |correct(F)| − 1. q1 has no clones. r′ is a real execution of A, as we can
identify q0 and his clones to the set of correct processes in F and q1 with one the faulty processes.
Thus no process takes step after it has failed in r′. Moreover, r′ is fair. Therefore, q0 decides in
Sλ·0·0·0...,x. This happens at some time τd > τc. By the code (line 17), the value of a new register
A[m′] with m′ > m is changed to > and the emulated output of C is set to m′ > m.

Lemma 5.5. If |correct(F)| ≥ 2, there exist an integer D such that for every process p and every
time τ , C-outτp ≤ D.

Proof. Let p be a correct process and x the array of samples of X at p. We assume that there is at
least two correct processes in the underlying failure pattern F . Therefore, according to Lemma 5.2,
every simulated schedule Sλ,x is indistinguishable from a real execution of A′. Hence, as seen in
the proof of Lemma 5.4, explore(λ0, c0, P0) does not terminate at each correct process p, as it would
otherwise imply a wait-free protocol for two-processes election using only registers.

The remaining of the proof is essentially the same as the proof of Theorem 3 in [33]. The key
ingredient is the particular order in which schedules are simulated. Let λ0 · λ1 · . . ., c0 · c1 · . . . and
P0 · P1 . . . be defined as having explore(λ0 · λ1 · · ·λk+1, ck+1, Pk+1) be the first call in explore(λ0 ·
λ1 · · ·λk, ck, Pk) that does not terminate. Let λ = λ0 · λ1 · · · . At least one process takes infinitely
many steps but does not decide in Sλ,x. As Sλ,x is indistinguishable from a real run of A′, it must
be the case that inf(λ) ( {0, 1} (Lemma 5.3). Without loss of generality, let inf(λ) = {0}, that is
λ = λ′ · 0 · 0 · · · .

For every k, k′, k ≤ k′, Pk ⊇ Pk′ ⊇ {λk′} (lines 9-10). Moreover, the order in which set P are
chosen (line 9) implies that for each k, Pk = ∪k′ geqk{λk′}. Therefore, we have Pk′ = {q0} for each
k′ ≥ k for some k > 0. Hence, eventually process p simulates solely schedule Sλ,x, in which process
q0 never decides and takes infinitely many steps. It then follows that p eventually stops modifying
the output of the emulated failure detector C.

Theorem 5.6. Algorithm 2 emulates C.

Proof. By the code, the values of the variable out-C never decrease (Monotonicity property). The
convergence property directly follows from Lemma 5.5.

Lemma 5.4 implies that the signaling property holds: Let τ, τ ′, τ < τ ′ be two times such that
F(τ) ( F(τ ′). Let p and p′ be two processes, p′ being a correct process. As a crash occurs after
time τ , out-Cτp ≤ m. This follows from the facts that at the time τc of the last crash, only the
registers A[1], . . . , A[m] have their value equal to >, and whenever out-C is set to d, the value of
register A[d] has previously been changed to > (line 17). Hence out-Cτp ≤ m. By lemma 5.4 and

the monotonicity property, there exists a time τ ′′, τ ′ ≤ τ ′′ such that out-Cτp ≤ m < out-Cτ
′′
p′ , as

desired.

6 The case of k-set agreement

This section defines the failure detector Ck and presents a Ck-base algorithm for k-set agreement.
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6.1 The failure detector family Ck, 1 ≤ k ≤ n

For every k, 1 ≤ k ≤ n, failure detector Ck generalizes C as follows. For every failure pattern F ,
history H : Π× N→ N belongs to Ck(F) if and only if

1. Monotonicity. For every process pi, for every times τ ≤ τ ′, H(pi, τ) ≤ H(pi, τ
′);

2. k-Signaling For every times τ ≤ τ ′, for every pair of processes pi, pj , if k ≤ |F(τ ′) \ F(τ)|,
there exists a time τ ′′, τ ′ ≤ τ ′′ such that H(pi, τ) < H(pj , τ

′′);

3. k-Convergence. If k < |correct(F)|, there exists a time τ such that for every τ ′, τ ≤ τ ′, for
every processes pi, pj , H(pi, τ) = H(pj , τ

′).

C1 is identical to C, while in an n-processes system, Cn provides no information on failures. In-
tuitively, failure detector Ck behaves in a similar way as C, but has a coarser view on failures. In
any time interval in which less than k failures occur, the output of Ck may or may not change.
However, as soon as the number of failures is at least k, and provided that the interval is large
enough, it is guaranteed that the output of Ck is incremented.

6.2 Ck-based k-set agreement protocol

This section presents a protocol (Algorithm 3) that solves the k-simultaneous binary consensus task
using failure detector Ck. In the k-binary simultaneous consensus task [1] (k-BSC for short), each
process is initially provided with a binary vector −→v ∈ {0, 1}k and is required to decide a pair (i, b)
where i, 1 ≤ i ≤ k is an integer and b a binary value subject to the following requirements:

1. Validity. If (i, b) is decided then b is the ith bit of some input vector.

2. Agreement. For every i, 1 ≤ i ≤ k, if pairs (i, b) and (i, b′) are decided then b = b′.

3. Termination. Every correct process eventually decides.

Intuitively, the k-BSC task might be seen as trying to solve k instance of binary consensus in
parallel. Each process has initially a binary of proposal −→v [i] for each instance i, and is required
to decide in at least one instance. Decisions (if any) in each instance i must satisfy the validity
and agreement of consensus. k-set agreement can be implemented wait-free from k-BSC objects
and registers. The protocol presented in [1] does not use ids but relies on snapshot objects, which
can be implemented with registers without using ids [27]. Therefore, k-set agreement can be solved
using k-SBC in the anonymous shared memory model.

Description of the protocol Algorithm 3 shares a similar structure with the binary consensus
protocol (Algorithm 1). It consist in two tasks T1 and T2 that run in parallel. A process decides
at line 27 in task T2 when it reads a pair (i, v) from the decision register D.

In task T1, each i, 1 ≤ i ≤ k is associated with an infinite alternating sequence δi = SAi[1], ACi[1], SAi[2], ACi[2], . . .
of safe agreement and adopt-commit objects, in a way similar to the extended BG-simulation pro-
tocol [24]. Indeed, tasks T1 might be seen as a variant of the extended BG-simulation adapted to
the anonymous settings. The purpose of each sequence δi is to reach agreement on a common value,
which is one the proposal −→v [i] of some process. As in Algorithm 1, in each round r, processes first
access safe agreement SAi[r] trying to pick a common non-⊥ value (lines 9-17). Then, again as in

18



Algorithm 1 object ACi[r] is used to reconcile the two possible outputs returned by the operations
on SAi[r], namely ⊥ and some value v ∈ {0, 1} (lines 18-24), and ensure agreement and validity.

For termination, some care should be taken as:

• On one hand, when the number of failures f is small (f ≤ k − 1) or there are few correct
processes (|correct| ≤ k), the output of Ck is arbitrary;

• On the other hand, when a large number f, f ≥ k of processes fail, every safe agreement
objects SA1[r], . . . , SAk[r] of a given round r may be “blocked”, in the sense that no propose()
operations on each of the objects are successful. In that case, the output of Ck should allow
the processes to move to the next round.

To resolve this difficulty, each process accesses the safe agreement objects SA1[r], . . . , SA2[r] of
round r in that order until it receives a non-⊥ response or reaches the end of the sequence (line 9-
12). If at most k processes enter the round, each non-faulty process thus performs a successful
propose() operation on one the safe agreement of the round object. Moreover, as in Algorithm 1, a
process enters round r only after its local failure detector module has output a value d ≥ r (line 8).
In the case where f ≥ k, there thus exists due to the k-signaling property of Ck a round R such that
no more than k − 1 faulty processes enter any round r, r ≥ R. In any such round r, at most k − 1
safe agreement objects are blocked (by processes failing while performing a propose() operation).

After having invoked propose() on each safe agreement SA1[r], . . . , SAk[r], a process waits until
either (1) a read() operation returns a non-⊥ value or (2) the output of Ck is larger than r (line 16).
When |correct| > k, the k-convergence property ensures that eventually the output of Ck is the
same value D ≥ R at each process. Hence, in round D condition (1) cannot be satisfied, but as seen
above, at least one the safe agreement of round R is not blocked. Eventually, every read() operations
performed on that object returns a non-⊥ value. To summarize, the protocol ensures that every
non-faulty process receives a non-⊥ value from one of the safe agreement object of round r if (i)
at most k processes enter round r or (ii) Ck output eventually stabilizes on D and r = D. Note
that condition (i) or (ii) is satisfied in every execution, as if the failure detector output does not
stabilize, |correct| ≤ k. Finally, when a process p has obtained a non-⊥ value v from safe agreement
SA`[r], it first accesses the corresponding object AC`[r] to try to commit value v (line 18). If round
r satisfies conditions (i) or (ii) above, this ensure that only v is proposed to AC`[r], and thus p
writes to the decision register D (line 20) and eventually decides.

Proof of the protocol We consider an arbitrary run of the protocol. Let F and H ∈ Ck(F) be
respectively the failure pattern and the failure detector history in the run.

Lemma 6.1. Let p be a correct process. There is an integer D and at time τ such that the number
of faulty processes at which Ck outputs values larger than or equal to D is strictly smaller than k:
|{q : q ∈ faulty(F) ∧ ∃τq : H(q, τq) ≥ D}| < k.

Proof. Let f denote the number of failures in F and let τ1 ≤ . . . ≤ τf denote the times at which
the failures occur. If f < k, the Lemma is trivially satisfied.

Let us assume that f ≥ k. Let p be a correct process. Let df be the largest output of Ck at
faulty processes before τf−k+1. Formally, df = max{H(q, τ) : q ∈ faulty(F) ∧ τ ≤ τf−k+1}. As
exactly k−1 crashes occur after τf−k+1, Ck output may be strictly larger than df for at most k−1
faulty processes.
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Algorithm 3 Ck-based k-simultaneous binary consensus protocol.

1: init SAi,1≤i≤k[1, . . .] . k infinite arrays of safe agreement objects
2: ACi,1≤i≤k[1, . . .] . k inifinite arrays of adopt-commit objects
3: D ← ⊥ . Decision register

4: function propose(−→v ) . −→v ∈ {0, 1}k
5:

−→
est← −→v ; start tasks T1,T2

6: task T1:
7: for r = 1, 2, . . . do
8: repeat d← C-query() until d ≥ r end repeat
9: for i = 1, . . . , k do

10: −−→aux[i]← SAi[r].propose(
−→
est[i]) . −−→aux ∈ {0, 1,⊥}k

11: if −−→aux[i] 6= ⊥ then break end if
12: end for
13: if ∃j : −−→aux[j] 6= ⊥ then `← j such that −−→aux[j] 6= ⊥
14: else `← 0
15: repeat `← [` mod k] + 1; −−→aux[`]← SA`[r].read(); d← C-query()
16: until (d > r) ∨ (−−→aux[`] 6= ⊥)
17: end if
18: for i = `, 1, . . . , `− 1, `+ 1, . . . , k do
19: (bi, ui)← ACi[r].propose(

−−→aux[i]) . bi ∈ {adopt , commit}, ui ∈ {0, 1,⊥}
20: case bi = commit ∧ ui ∈ {0, 1} then D ← (i, ui); return

21: bi = adopt ∧ ui ∈ {0, 1} then
−→
est[i]← ui

22: default then nop . ui = ⊥
23: end case
24: end for
25: end for
26: task T2:
27: repeat d← D until d 6= ⊥ end repeat; return d

Let τ ≤ τf−k+1 be a time at which df is output by Ck at some faulty process q. Since
|F(τf )\F(τ)| ≥ k, it follows from the signaling property of Ck that there exists a time τ ′′ ≥ τf−k+1

and an integer D > df such that H(p, τ ′′) = D. Since D > df , the output of Ck can be ≥ D at no
more than k − 1 faulty processes.

A process decides when a pair is returned at line 27.

Lemma 6.2 (Termination). Every correct process decides.

Proof. Assume for contradiction that no correct processes decide. Therefore no processes write to
the decision register D at line 20.

We distinguish two cases according to whether the outputs of Ck is bounded or not.

• The output of Ck is unbounded. As in the consensus protocol (Algorithm 1), a correct process
cannot get stuck in round r if its local failure detector module eventually outputs a value > r.
Indeed, the only blocking part of the code of round r is the repeat loop of lines 15-16. For
each process p, the loop terminates as soon a value d > r is output by Ck. It thus follows
that there is a round R in which only correct processes enter.

Let p be a correct process that enters round R. As no processes invoking propose() on the
safe agreement objects of round R fail, at least one of the propose() operations performed
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on SAi[R] is successful, for each i, 1 ≤ i ≤ k. By the code (lines 9-12), each process invoke
propose() on the objects SA1[R], SA2[R], . . . , SAk[R] in that order on until it receives a non-⊥
response or reach the last object in the sequence. As the output of Ck never stabilizes, the
k-convergence property of Ck implies that |correct(F)| ≤ k, and thus at most k processes
enters round R. Hence, at most k − i+ 1 processes invoke propose() on each safe agreement
object SAi[R]. It thus follows that p receives a non-⊥ response from one of its propose()
operations. Let bi be this successful response and i the index of the object SAi[R] on which
the corresponding propose() operation is performed

It follows from the code (line 13 and lines 18-19) that p invokes propose() on ACi[R] with
input bi. Due to the order in which objects ACj [R], 1 ≤ j ≤ k are accessed (line 18), every
process that performs a successful propose() on SAi[R] does the same, while processes that
did not access the object or receives a ⊥ response from SAi[R] do not access ACi[R]. As all
the successful propose() operations on SAi[R] return the same value, the propose() invocation
by p on ACi[R] returns (commit, bi), with bi 6= ⊥ from which we conclude that p writes to
D. This is a contradiction.

• The output of Ck is bounded. Let R be the largest value output by Ck. As seen in the
previous case, every correct process eventually enters round R. By Lemma 6.1, at most k− 1
faulty processes enter R, since R can be the output of Ck at at most k − 1 faulty processes.
Therefore, at most k− 1 processes fail after entering round R. Consequently, for at least one
of the objects SA1[R], . . . , SAk[R], no processes fail while performing a propose() operation
on that object, and thus one of these operations is successful.

Let p be a process that enters round R. As R is the largest output of Ck, p cannot exit the
repeat loop of lines 15-16 before having read a non-⊥ value from one the safe agreement
object of round R. As at least one propose() operation on the objects SA1[R], . . . , SAk[R] is
successful, this eventually happens. Let ` and b` 6= ⊥ such that −−→aux[`] = b` when p exits the
repeat loop.

In the second part of round R, observe that for every process q that accesses object AC`[R],
we have −−→aux[`] = bq 6= ⊥. Note that by the agreement property of safe agreement, for every
process q, q′, if −−→aux[`] = bq 6= ⊥ at q and −−→aux[`] = bq′ 6= ⊥ at q′ then bq = bq′ . Hence, the
input of every propose() operation on AC`[R] is the same value b` 6= ⊥. By the convergence
property of adopt-commit object, each of the operation returns (commit, b`). Therefore, by
the code (line 20) p writes b` 6= ⊥ to D : a contradiction.

Theorem 6.3. Algorithm 3 solves k-binary simultaneous consensus using failure detector Ck.

Proof. Validity directly follows from the validity properties of adopt-commit and safe agreement
objects. Termination follows from Lemma 6.2. For agreement, it is sufficient to prove that if (i, b)
and (i, b′) are written to D we have b = b′, for every i, 1 ≤ i ≤ k. The proof is similar to the proof
of agreement of the consensus algorithm (Theorem 4.3).

Suppose that processes p and p′ write respectively (i, b) and (i, b′) to D in that order, where
i, 1 ≤ i ≤ k. Without loss of generality, assume that p writes to D in round r. By the code (line 20),
before writing to D, p invokes propose() on ACi[r] and receives (commit, b) as a response. It follows
from the agreement property of adopt-commit object that every value written to D in round r is b.

Moreover, for every process q that does not return in round r at line 20, we have
−→
est[i] = b

(agreement property of adopt-commit) when q leaves round r. Hence in any subsequent round r′,
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only b can be proposed to SAi[r
′] and thus the input of every propose() operation on ACi[r

′] is b or
⊥. Therefore, if (i, b′) is written to D in round r′, b′ = b.

As k-set agreement can be implemented anonymously from registers and k-binary simultaneous
consensus objects, we have:

Corollary 6.4. There is an algorithm that solves k-set agreement using registers and failure de-
tector Ck.

7 Conclusion

The paper has defined the new failure detector C and has shown that, within the class of anonymity-
preserving failure detectors, it is the weakest failure detector for consensus in the anonymous shared
memory model in any environment. The paper has also shown that failure detector Ck, a natural
extension of C, can be used to solve k-set agreement tolerating any number of failures. Obvious
questions for future work include (dis)proving that Ck is the weakest anonymity preserving failure
detector for k-set agreement and extending weakest failure detector results in anonymous systems
outside the domain of anonymity preserving failure detectors.
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A Anonymous safe agreement

For completeness, this section presents an anonymous implementation of a safe agreement object
using registers. The implementation is an almost verbatim copy of an anonymous binary consensus
protocol [6], designed for asynchronous, anonymous but failure-free shared-memory systems.

Attiya, Gorbach and Moran protocol (Algorithm 4 in [6]) consists in two parts, a wait-free
section and a final wait statement. The processes first execute the wait-free code. Agreement is
eventually reached in the wait-free section by evicting slow processes and, in case of conflicting
proposals, favoring value 0. That is, the number of processing willing to decide 1 progressively de-
creases. Processes dropped from the wait-free section simply wait until the remaining processes are
able to agree. In the safe agreement implementation (Algorithm 4 below), the propose() operation
is implemented by the wait-free code, while a read() operation consists in checking whether the exit
condition of the wait statement is satisfied.
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Algorithm 4 Safe agreement (Attiya et. al failure-free consensus protocol [6]).

1: init ∀i ∈ {0, 1}, j ∈ {1, 2, . . .} : Aj [i] = false for each i ∈ {0, 1} . Aj [i] register, initially false
2: D ← ⊥ . Decision register, initially ⊥
3: function propose(v) . v ∈ {0, 1}
4: est← v;
5: for j = 1, 2, . . . do
6: u← Aj [est] . est = 1− est
7: if u = true then return ⊥ end if
8: est← reduceone(j, est)
9: if est = ⊥ then return ⊥ end if

10: if j > 1 then u← Aj−1[est]
11: if u = false then D ← est; return est end if
12: end if
13: end for

14: function read()
15: d← D; return d

16: procedure reduceone(j, v) . v ∈ {0, 1}
17: Aj [v]← true; w ← Aj [v]
18: if w = false then return v
19: else
20: if v = 0 then return ⊥
21: else return 0
22: end if
23: end if
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In more details, the protocol relies on a procedure reduceone() (lines 16-23) that aims at de-
creasing disagreement among the processes. Each process invokes reduceone() with input 0 or 1
and obtains a response in {⊥, 0, 1} with the following properties:

Lemma A.1 ([6], Lemma 4.1). Non-triviality: The output of at least one process is not ⊥; Validity:
If the output of p is v = ⊥, then the input of some process is v. Monotonicy: If some process outputs
0 and another process outputs 1, then the number of processes with output 1 is strictly smaller than
the number of processes with input 1.

By the code, reduceone() is wait-free. Suppose that n processes invoke propose() and none of
them fails. Essentially, in each iteration j of the for loop (lines 5-13) (1) at least one process
receives a non-⊥ value from its invocation of reduceone(j, ∗) and (2) the number of processes whose
estimate est is 1 is strictly smaller than in the previous iteration. Hence, after sufficiently many
operation, only the value of Aj [0] is changed from false to true, which then allow some process to
write 0 to D and return 0 as the result of its propose() operation. Indeed, we have

Lemma A.2 ([6], Lemma 4.6). If n processes invoke propose() and none of them fail, some process
write a non-⊥ value to D in iteration j ≤ n+ 1

When a successful propose() returns, a value 6= ⊥ has been written to the shared register
D. Hence, every read() operation that follows returns a non-⊥ value (consistent reads property).
Validity and agreement of the safe agreement implementation follow from the same properties of
the original consensus protocol. Indeed, as it is designed for asynchronous systems, failures may
impair progress but do not cause violation of safety properties. For details about the underlying
principle and the proof of Algorithm 4, we refer to [6].
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