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Abstract

A distance labeling scheme is an assignment of bit-labels to the vertices of an undirected, unweighted
graph such that the distance between any pair of vertices can be decoded solely from their labels. We
propose a series of new labeling schemes within the framework of so-called hub labeling (HL, also known
as landmark labeling or 2-hop-cover labeling), in which each node u stores its distance to all nodes from
an appropriately chosen set of hubs S(u) ⊆ V . For a queried pair of nodes (u, v), the length of a shortest
u−v-path passing through a hub node from S(u)∩ S(v) is then used as an upper bound on the distance
between u and v.

We present a hub labeling which allows us to decode exact distances in sparse graphs using labels
of size sublinear in the number of nodes. For graphs with at most n nodes and average degree ∆,
the tradeoff between label bit size L and query decoding time T for our approach is given by L =
O(n log log∆ T/ log∆ T ), for any T ≤ n. Our simple approach is thus the first sublinear-space distance
labeling for sparse graphs that simultaneously admits small decoding time (for constant ∆, we can achieve
any T = ω(1) while maintaining L = o(n)), and it also provides an improvement in terms of label size
with respect to previous slower approaches.

By using similar techniques, we then present a 2-additive labeling scheme for general graphs, i.e.,
one in which the decoder provides a 2-additive-approximation of the distance between any pair of nodes.
We achieve almost the same label size-time tradeoff L = O(n log2 log T/ log T ), for any T ≤ n. To our
knowledge, this is the first additive scheme with constant absolute error to use labels of sublinear size.
The corresponding decoding time is then small (any T = ω(1) is sufficient).

We believe all of our techniques are of independent value and provide a desirable simplification of
previous approaches.
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1 Introduction
Distance labeling schemes, popularized by Gavoille et al. [16], are among the most fundamental distributed
data structures for graph data. The design problem combines two major challenges. First of all, distance la-
belings serve the role of a distance oracle, i.e., a data structure which for a given undirected graph G = (V,E)
can answer queries of the form: “what is the distance between the nodes s, t ∈ V ?”. Throughout most of
this paper, we will assume that G is an unweighted graph with n nodes and m edges. The efficiency of a
distance oracle is measured by the interplay between the space requirement of the data structure represen-
tation, the encoding time required to set up the oracle for a given graph, and perhaps more importantly, its
decoding time, that is, the time of processing a s − t distance query. Moreover, a distance labeling scheme
is defined more restrictively than a distance oracle, as an assignment of a binary string (label) label(u) to
each node u ∈ V , so that the graph distance between u and v is uniquely determined by the pair of labels:
label(u) and label(v). The size of a distance labeling scheme is now the maximum length of a node label in
the graph. In this way, distance labelings add an extra layer of complexity to the graph distance decoding
problem, by imposing a distributed representation of information in the labels (label(u) : u ∈ V ). Whereas
the concatenation of all n labels in a distance labeling forms a centralized distance oracle, distance labelings
can also be applied in a distributed setting, in which the label of each node is stored at a distinct location
in the network. This is the case, for instance, in applications in compact routing protocols, where the goal
is to find a shortest path from a source node to a target node with a known label [12].

An interesting characteristic of the problem of distance oracle design for sparse graph is its inherent link
to an underlying set intersection task. On the side of lower bounds, this is most clearly observed, following
Pătraşcu and Roditty [21], when we consider a pair of vertices belonging to the same partition of a bipartite
graph. The distance between them is 2 if and only if the sets of their neighbors intersect, and at least 4
otherwise. Consequently, assuming a plausible conjecture on the space required to decide intersection of a
set of small sets, it follows that any oracle for graphs with Õ(1) maximum degree, which admits constant
decoding time, requires Ω̃(n2) space. (Here, the Õ and Ω̃ notation disregards polylogarithmic factors in
n.) By contrast, many efficient algorithms for answering distance queries in real-world scenarios rely on the
premise that the distance between a pair of nodes can be computed using an intersection-type query on a
pair of small sets. In the basic framework of hub labelings, see [1], (introduced in [13] under the name of
2-hop covers, and also referred to as landmark labelings [3]), each node u ∈ U stores the set of its distances
to some subset S(u) ⊆ V of other nodes of the graph. Then, the computed distance value δ′(u, v) for a
queried pair of nodes u, v ∈ V is returned as:

δ′(u, v) := min
w∈S(u)∩S(v)

δ(u,w) + δ(w, v), (1)

where δ denotes the shortest path distance function between a pair of nodes. The computed distance between
all pairs of nodes u and v is exact if set S(u)∩ S(v) contains at least one node on some shortest u− v path.
This property of the family of sets (S(u) : u ∈ V ) is known as shortest path cover. The hub-based method of
distance computation is in practice effective for two reasons. First of all, for transportation-type networks
it is possible to show bounds on the sizes of sets S, which follow from the network structure. Notably,
Abraham et al. [2] introduce the notion of highway dimension h of a network, which is presumed to be a
small constant e.g. for road networks, and show that an appropriate cover of all shortest paths in the graph
can be achieved using sets S of size Õ(h). Moreover, the order in which elements of sets S(u) and S(v) is
browsed when performing the minimum operation is relevant, and in some schemes, the operation can be
interrupted once it is certain that the minimum has been found, before probing all elements of the set. This
is the principle of numerous heuristics for the exact shortest-path problem, such as contraction hierarchies
and algorithms with arc flags [9, 18].

In this work, we make use of the hub set techniques to obtain better (distributed) distance labelings.
Whereas Ω(n) is a lower bound of the size of a hub set for general graphs, we provide hub-based schemes
using smaller sets for specific case, leading to labels which can be encoded on o(n) bits. Our scheme provides
a shortest-path cover in the class of sparse graphs (with average degree ∆ = 2m/n subpolynomial in n).
This construction is overviewed in more detail in Section 1.2.
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The implications of our result can be seen as twofold. First of all, our approach directly leads to labeling of
smaller size (and smaller decoding time) for exact distance queries in sparse graphs than all previous distance
labeling approaches. Additionally, an corollary of our result concerns the case of k-additive approximate
distance labeling, in which the distance decoder is required to return an upper bound on the shortest path
length which is within an additive factor of at most k from the optimum. So far, no way to construct k-
additive distance labels using labels of sublinear size in n was known for any constant k > 0. (This question
was considered previously in, e.g., [7]). We provide a way to construct a 2-additive distance labeling in
general graphs using distance labels of size o(n). (This result is essentially the best possible, since a 1-additive
distance labeling requires distance labels of size at least n/4 already on the class of bipartite graphs.)

In our approaches, the size of the obtained distance labels for the considered cases is improved with
respect to the state-of-the-art by up to a logarithmic multiplicative factor. Rather than seeing this as
“gaining” a logarithm, we rather see this as “not losing” a logarithm. Indeed, the basic ingredient of the hub
sets in previous approaches was a subset of nodes, sampled independently at random from V [6, 10]. The
constructions then relied on the probabilistic method to guarantee that the hubs would have the shortest-
path cover properties, based on the premise that for each pair of nodes the constructed hubs provide a
shortest path cover with sufficiently high probability. The derandomization of this process resulted in a loss
of a logarithmic factor in the analysis of the size of labels. Our approach shows how to avoid this issue:
when constructing labelings for sparse graphs, we do away with randomization altogether, relying on simple
structural results to replace the random subset of nodes.

1.1 Related Work
Distance Labelings. The distance labeling problem in undirected graphs was first investigated by Graham
and Pollak [17], who provided the first labeling scheme with labels of size O(n). The decoding time for labels
of size O(n) was subsequently improved to O(log log n) by Gavoille et al. [16] and to O(log∗ n) by Weimann
and Peleg [25]. Finally, Alstrup et al. [7] present a scheme for general graphs with decoding in O(1) time
using labels of size log 3

2 n + o(n) bits.∗ This matches up to low order terms the space of the currently best
known distance oracle with O(1) time and log 3

2 n2 + o(n2) total space in a centralized memory model, due
to Nitto and Venturini [19].

The notion of D-preserving distance labeling, first introduced by Bollobás et al. [10], describes a labeling
scheme correctly encoding every distance that is at least D. [10] presents such a D-preserving scheme of size
O( nD log2 n). This was recently improved by Alstrup et al. [6] to a D-preserving scheme of size O( nD log2D).
Together with an observation that all distances smaller than D can be stored directly, this results in a
labeling scheme of size O( nR log2R), where R = logn

log m+n
n

. For sparse graphs, this is o(n).

For specific classes of graphs, Gavoille et al. [16] described a O(
√
n log n) distance labeling for planar

graphs, together with Ω(n1/3) lower bound for the same class of graphs. Additionally, O(log2 n) upper bound
for trees and Ω(

√
n) lower bound for sparse graphs were given.

Distance Labeling with Hub Sets. For a given graph G, the computational task of minimizing the
sizes of hub sets (S(u) : u ∈ V ) for exact distance decoding is relatively well understood. A O(log n)-
approximation algorithm for minimizing the average size of a hub set having the sought shortest path cover
property was presented in Cohen et al. [13], whereas a O(log n)-approximation for minimizing the largest
hub set at a node was given more recently in Babenko et al. [8]. Rather surprisingly, the structural question
of obtaining bounds on the size of such hub sets for specific graph classes is wide open. For example, for the
class of graphs of constant maximum degree, there is a large gap between the hub sets in our construction
(of size O(n/ log n)) and the generic lower bound of Ω̃(

√
n).

Distance Oracles. A centralized version of distance labeling problem is distance oracle problem, where
one asks for a centralized data structure allowing for querying a distance between pair of vertices. There

∗For the sake of sanity of the notation, we define log x = max(1, log2(x)).
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usually one asks for what type of tradeoffs are possible between size of the structure, time of the query and
allowed error (multiplicative stretch). Sommer et al. [23] proved that any constant time, constant stretch
oracle must be superlinear in n. Thorup and Zwick [24] proved that distance oracles of stretch 2 require
Ω(n2) space, and of stretch 3 require Ω(n3/2) space. Pătraşcu and Roditty [21] strengthened the lower bound
for stretch 2, proving a lower bound of Ω(n

√
m) on the size of oracles with constant query time. For general

weighted graphs, Thorup and Zwick [24] designed a distance oracle of size O(kn1+1/k), stretch-(2k − 1)
and O(k) time. The query time has been improved to O(log k) time by Wulff-Nilsen [26], and to constant
time in Chechik [11]. The size of the distance oracle from [24] is optimal assuming girth-conjecture. For
sparse graphs, [21] design distance oracle of size O(n4/3m1/3) and stretch 2 in constant time. Also in [21], a
conditional lower bound of Ω̃(n2) bits for a constant time distance oracle is provided. Cohen and Porat [14]
extended this result to sparse graphs. An up-to-date survey of results on approximate distance oracles is
provided in [22].

1.2 Our Results and Organization of the Paper
We start by introducing the necessary conventions in Section 2. We also describe the basic building block
for encoding distance labels, namely, an efficient method of storing the hub set of a node, together with
corresponding distances, in its distance label.

In Section 3, we show how to construct an exact distance labeling scheme for graphs of bounded maximum
degree. This relies on hub sets which consist, for a vertex u of the union of all nodes from a small ball around
vertex u, and all nodes from a selection of equally-spaced levels of the breadth-first-search tree of u. We then
apply a trick, known from the previous work of [4], to reduce the problem of constructing a labeling scheme
for a graph with bounded average degree to that of constructing a labeling scheme for a bounded-degree
graph on twice as many nodes. For graphs with at most n nodes and average degree ∆, the tradeoff between
label bit size L and query decoding time T for our approach is given by L = O(n log log∆ T/ log∆ T ), for
any T ≤ n. In particular, setting T = n, we obtain labels of size O( nR logR), which improves previously
best result [6] by a factor of logR, keeping the Õ(n) decoding time. On the other end, setting T = log n we
obtain first sublinear size distance labeling that achieves almost-constant decoding time.

In Section 4, we adapt our approach to general graphs, using a variant of the proposed labeling scheme for
sparse graphs to achieve 2-additive approximation of distances. As before, we achieve a tradeoff between label
size L and time T of the form L = O(n log2 log T/ log T ), for any T ≤ n. This 2-additive distance labeling
scheme can be easily transformed into an exact one, by encoding the difference between the estimation and
the true distances. Since this difference is always from {0, 1, 2}, we achieve labels of size log 3

2 n+ o(n) (with
any ω(1) decoding time), or of size ( log 3

2 + ε)n (with O(1) decoding time), for any ε > 0. Our approach
almost matches the size of the best known distance labeling schemes [7], which make use of labels of size
log 3

2 n+ o(n) to achieve O(1) decoding time. Arguably, our approach may be considered simpler.
We remark that all our results apply to unweighted graphs, in which each edge has unit length. For sparse

graphs, in which each edge has an integer weight from some interval [1,W ], we can use the same hub sets with
an appropriately modified encoding to achieve a time-label tradeoff of L = O(n log log∆ T logW/ log∆ T ).
For the additive scheme, by subdividing each edge of length w ∈ [1,W ] into a chain of unweighted edges (of
length 1), we achieve a conversion of the 2-additive distance labeling scheme into a (2W )-additive-distance
scheme for weighted graphs.

2 Preliminaries
Notation and Conventions. Even though we are mainly interested in unweighted graphs, for technical
reasons in Sections 3 and 4 we will work in a more general setting where every edge of a graph has a fixed cost
from the set {0, 1}. δ(u, v) denotes the cost of a cheapest path connecting a pair of nodes u and v, and `(u, v)
denotes the smallest number of edges on such a path. We will require the constructed distance labeling to
return the value of δ(u, v). The degree of a node v is denoted by deg(v). When analyzing the complexity
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of the decoding, we assume standard word RAM with logarithmic word size, where we are allowed to access
log n consecutive bits of the stored binary string in constant time.

From now on, we assume that the graph is connected. This is enough because we can always include the
identifier of its connected component in the label of every node, and return ∞ if u and v belong to different
connected components; this only induces additive log n overhead to the label size.

Encoding Distances and Identifiers. The basic procedure for encoding a hub set in a label exploits
some ideas from [7]; we provide a self-contained exposition for completeness. We fix an arbitrary spanning
tree of the graph and assign preorder numbers in the tree to the nodes, i.e., node numbered 1 corresponds
to the root and so on. The preorder number of a node u is denoted by name(u). Such a numbering has the
following useful property.

Lemma 2.1. Let v1, v2, . . . , vn be the preorder sequence of all nodes. Then, for any node u,
∑n
i=2 |δ(u, vi−1)−

δ(u, vi)| ≤ 2n.

Proof. Consider an Euler tour corresponding a traversal of the chosen spanning tree. Every node is visited
at least once there, and the total length of the tour is at most 2n. Consequently, we can cut the tour into
paths connecting node vi−1 with node vi, for every i = 2, 3, . . . , n. The total length of all these paths is at
most 2n and the claim follows.

The following lemma is used for encoding a hub set S using O(|S| log(n/|S|)) bits.

Lemma 2.2. For a fixed v and set S such that |S| ≤ n
x , set S and all of the distances δ(v, u) for u ∈ S

can be stored in O(nx log x) bits. For any constant t > 0, the representation can be augmented with O( n
logt n

)

additional bits so that all elements of S can be extracted one-by-one in O(|S|) total time and given any u we
can check if u ∈ S (and if so, extract δ(u, v)) in O(1) time.

Proof. Let S = (v1, . . . , v|S|), where name(v1) < name(v2) < . . . < name(v|S|). We store name(v1) and then
the differences name(v2) − name(v1), . . . , name(v|S|) − name(v|S|−1). Every difference is encoded using the
Elias γ code (see Elias [15]), and the encodings are concatenated to form one binary string. We are storing up
to n

x integers whose absolute values sum up to at most n, so by Jensen’s inequality this takes O(nx log x) bits
in total. Similarly, we store δ(u, v1) and then the differences δ(u, v2) − δ(u, v1), . . . , δ(u, v|S|) − δ(u, v|S|−1).
By Lemma 2.1 we are again storing up to n

x numbers whose absolute values sum up to at most 2n, which
takes O(nx log x) bits.

All vi can be extracted one-by-one in O(1) time each with standard bitwise operations. To facilitate
checking if x ∈ S in O(1) time, we observe that it is enough to store a bit-vector B[1..n], where the
name(vi)-th bit is set to 1, for every i = 1, 2, . . . , |S|. Then checking if x ∈ S reduces to two rank1 queries.
A rank1 query counts 1s in the specified prefix of the bit-vector and a select1 query returns the position of
the k-th 1 in the bit-vector. By the result of Pǎtraşcu [20], for any constant t > 0, a bit-vector of length n
containing n

x 1s can be stored using

log

(
n
n
x

)
+O(

n

logt n
) = O(

n

x
log x) +O(

n

logt n
)

bits so that any rank or select query can be answered in O(t) time. This allows us to check if u ∈ S and
calculate i such that u = vi in O(t) time. To retrieve δ(u, vi), we store two additional bit-vectors B+ and
B−. Each of them contains exactly n

x 1s and up to 2n 0s. The bit-vectors are defined as follows. For each
i = 2, 3, . . . , n we consider the difference η = δ(u, vi)− δ(u, vi−1). If η ≥ 0, we append 0η1 to B+ and 1 to
B−. Otherwise, we append 1 to B+ and 0−η1 to B−. By Lemma 2.1, each of these two bit-vectors contains
at most 2n 0s, so they can be stored using O(nx log x + n

logt n
) bits so that any rank or select query can be

answered in O(t) time. To recover δ(u, vi), we need to sum up all the differences. This reduces to summing
up all positive and all negative differences separately, which can be done using the corresponding bit-vector
with one rank1 and one select0 query in O(t) total time.
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u

vw

R′

R′

Bv(R
′)

offset(v)

Figure 1: Shortest path from u to v goes through w which belongs to both Bv(R′) and Lu(offset(u)).

We remark that the above encoding and decoding scheme is efficient for sets of size |S| = Õ(n). For
smaller sets, we will simply use an explicit encoding of all distances in S, requiring O(|S| log n) bits.

3 Exact Distance Labeling in Sparse Graphs

3.1 Graphs of Bounded Maximum Degree
In this subsection, we assume that deg(u) ≤ ∆ for every node u. We consider distance labeling schemes
characterized by a time parameter T . Intuitively, in the construction, R = log T

log ∆ will be a threshold parameter,
distinguishing small distances from large distances in the graph — a node will be able to afford to explicitly
store the distances and identifiers of all nodes up to some distance O(R) from itself in its distance label.
Although this case is of independent interest, we are considering it as a building block for construction of
labeling in graphs of bounded average degree. Thus graphs considered here are weighted with edge weights
from {0, 1}, for the reason explained in Section 3.2.

The rest of this subsection is devoted to the proof of the following Theorem.

Theorem 3.1. Fix any value ∆ ≤ T ≤ n and let R = log∆ T . In bounded-degree graphs, there is a labeling
scheme of size O( nR logR) and decoding time O(T ).

Let us denote R′ = bRc. Since R′ ≥ 1, we can bound R ≥ R′ ≥ 1
2R. Consider a node u. The ball of

radius r centered at u, denoted Bu(r), is the set of nodes which can be reached from u by following at most
r edges. Because the degrees of all nodes are bounded by ∆, |Bu(r)| = O(∆r). The k-th layer centered at u,
denoted Lu(k), consists of all nodes v such that `(u, v) = k (mod R)′. Because the layers are disjoint, there
exists an offset(u) ∈ {0, 1, . . . , R′ − 1} such that |Lu(offset(u))| ≤ n

R′ .

Definition of the Labeling. We define the hub set of node u, to which it stores all its distances, as
S(u) := Bu(R′) ∪ Lu(offset(u)), see Fig. 1. Formally, the label of u consists of the following:

1. n and name(u),

2. name(v) and δ(u, v) for every v ∈ Bu(R′),

3. name(v) and δ(u, v) for every v ∈ Lu(offset(u)).
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Computing δ(u, v). For reasons of efficiency, we will not perform the distance decoding following Eq. (1)
directly, but we will treat the two components of the hub set of each node separately. Given name(u) and
name(v), we can determine δ(u, v) as follows. First we check if v ∈ Bu(R′) and if so return the stored
δ(u, v). Otherwise, we iterate through all nodes w ∈ Bu(R′) and check if w ∈ Lv(offset(v)). If so, we know
δ(u,w) + δ(w, v). We return the smallest such sum.

For the proof of correctness of the distance decoder, it is clear that δ(u,w) + δ(w, v) ≥ δ(u, v) for any w,
so it remains to argue that either v ∈ Bu(R′) or there exists w ∈ Bu(R′) such that w ∈ Lv(offset(v)) and
δ(u,w) + δ(w, v) = δ(u, v). Consider a shortest path (p0, p1, p2, . . . p`) where v = p0 and u = p` such that
` = `(u, v). If ` ≤ R′, v ∈ Bu(R′) and there is nothing to prove, so we can assume that ` > R′. Observe
that for any i = 0, 1, . . . , `, `(v, pi) = i, so in particular pα·R′+offset(v) ∈ Lv(offset(v)) for any integer α ≥ 0.

We choose α =
⌊
`−offset(v)

R′

⌋
and w = pα·R′+offset(v). Then w ∈ Lv(offset(v)), w ∈ Bu(R′) by the choice of α,

and δ(u,w) + δ(w, v) = δ(u, v) because w lies on a shortest path connecting u and v, so indeed we are able
to correctly determine δ(u, v).

Encoding and Size of the Scheme. Encoding n and name(u) takes O(log n) bits. The set Bu(R′) with
corresponding distances is stored explicitly, while set Lu(offset(u)) together with the corresponding distances
is stored using Lemma 2.2, using O(∆R′

log n) = O(T log n) and O( nR′ logR′) bits, respectively. Hence the
total size of the scheme is

O(log n+ T log n+
n

R′
logR′) = O(

n

R
logR),

where we have used the fact that for any T = poly(n) the claimed label size is the same, thus we can assume
T = o(n/polylog(n)).

Complexity of the Decoding. Checking if v ∈ Bu(R′) and retrieving the encoded δ(u, v) takes O(T )
time. Similarly, iterating through all w ∈ Bu(R′), checking if w ∈ Lv(offset(v)) and if so retrieving the
encoded δ(v, w) takes, by Lemma 2.2, O(1) time per single w, thus O(|Bu(R′)|) = O(T ) total time. All in
all, we can compute δ(u, v) in O(T ) total time.

Smaller values of T . For the sake of completeness, we consider the special case of T < ∆. Consider
labeling where the label of a node u consists of n, name(u), and all values δ(u, v) for v ∈ V stored using
Lemma 2.2. This takes O(n) bits, with O(1) decoding time, and matches claimed bounds from Theorem 3.1.

We also observe that our result applies not only to distance labels, but also as a size upper bound of hub
sets for sparse graphs. Indeed, by fixing T = n, and observing that |Bu(R′)|+ |Lu(offset(u))| ≤ n

R′ , we have
the following:

Corollary 3.2. In bounded-degree graphs, there is a hub set construction of size O( n
log∆ n ) vertices per node.

3.2 Graphs of Bounded Average Degree
We now allow for bounded average degree by reduction to the approach from Subsection 3.1. Given a graph
G, let ∆ = m+n

n . We will create a new graph by splitting nodes of high degree. Following the formulation
from [4, Lemma 4.2] (cf. Figure 2), we can obtain a graph G′ on at most 2n nodes and at most m+n edges,
such that the degree of every node is bounded by

⌈
m
n

⌉
+ 2 ≤ ∆ + 2 and the distance between two nodes in

the original graph G is exactly the same as the distance between their corresponding nodes in the new graph
G′. We can now directly apply the scheme from Theorem 3.1 to graph G′, and exactly the same distance
labels will work for the corresponding nodes of graph G. In this way, we obtain a scheme of size:

O(
n

R
logR+

m

n
) = O(

n

R
logR), where R = O(

log T

log ∆
).

which returns δ(u, v) in O(T ) time given the labels of u and v. The correctness of the this reduction is
guaranteed by the fact that Theorem 3.1 allows for edge weights from {0, 1}.
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︸︷︷︸
≤∆+1

︸︷︷︸
≤∆+1

︸ ︷︷ ︸
>∆

Figure 2: Example of subdividing of a large degree node (on the left) into a family of nodes of small degree,
connected by edges of weight 0 (dashed edges).

Theorem 3.3. Fix any T ≤ n and ∆, and let R = log T
log ∆ . There exists an exact distance labeling for graphs

with average degree ∆ using labels of size O( nR logR) and a corresponding decoding scheme requiring time
O(T ).

It is easy to see that this reduction preserves bounds on the size of hub sets, so we have the following:

Corollary 3.4. In graphs with average degree ∆, there is a hub set construction of size O( n
log∆ n ) vertices

per node.

4 2-Additive Distance Labeling in General Graphs
We will apply a similar distance labeling scheme as for sparse graphs, obtaining a 2-additive approximation
of the distance between any pair of with label sizes of o(n) per node. In this approximate scheme, the hub
sets will have the following property. The label of each node u ∈ V will provide an encoding of the node
identifiers of a subset S(u) ⊆ V and of the distances from u to all elements of S(u). The sets S(u) will be
defined so that for any pair u, v, there exists a node w ∈ S(u) ∩ S(v), such that either w or a neighbor of w
lies on the shortest path from u to v in G. We will decode the approximate distance as before, using Eq. (1);
clearly, δ′(u, v) ∈ δ(u, v) + {0, 1, 2}.

The construction of sets S(u) is performed as follows. Let τ < 1
2 log n be an threshold value of vertex

degree, to be chosen later. Let V ′ = {v ∈ V : deg(v) > τ}, and let S′ ⊆ V be a minimal dominating set
for V ′, i.e., a subset of V with the property: ∀w∈V ′Bw(1) ∩ S′ 6= ∅. By a straightforward application of the
probabilistic method (cf. [5, proof of Theorem 1.2.2]), we have that there is S′ such that |S′| ≤ 1+ln(τ+1)

τ+1 n <
2 ln τ
τ n, and it can be easily constructed in polynomial time (a deterministic construction by a folklore greedy

algorithm gives set of size O( ln τ
τ n)). For every u ∈ V , we define B′u(r) as the set of nodes of the ball of

radius r around u in the subgraph G[V \ V ′]. Finally, we define R = τ
log τ and let Lu, R′, and offset(u) be

defined as in Section 3.1, and let S′u be a minimal subset of S′ such that for every w ∈ V ′ adjacent the
boundary of B′u(R′), i.e. Bw(1) ∩ B′u(R′) 6= ∅, we have Bw(1) ∩ S′u 6= ∅. Such S′u can be easily constructed
in polynomial time, and moreover, since there are at most τR

′+1 vertices adjacent to the boundary, we have
|S′u| = 2O(τ).

The approximate distance label of u now consists of the following elements:

1. n and name(u),

2. name(v) and δ(u, v) for every v ∈ B′u(R′),

3. name(v) and δ(u, v) for every v ∈ Lu(offset(u)).

4. name(v) and δ(u, v) for every v ∈ S′u,

5. name(v) and δ(u, v) for every v ∈ S′ \ S′u.

The separation of S′ into S′u and S′ \ S′u in the label is done to allow efficient decoding.
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Computing δ(u, v). To show the correctness of this approximate labeling scheme, fix a pair of vertices
u, v ∈ V . If there exists a vertex w ∈ B′u(R′) lying on a fixed shortest path P between u and v such that
w = v or w ∈ Lv(offset(v)), then the labeling scheme finds the shortest path distance between u and v as in
Section 3.1. Otherwise, let y be the nearest vertex to u lying in P \B′u(R′); it follows from the construction
that y ∈ V ′. Then, there exists w ∈ By(1) such that w ∈ S′u ⊆ S′. In this case, the distance δ(u,w)+ δ(v, w)
is a 2-additive approximation of δ(u, v).

Size of the Scheme. The size of the label of a node u in the scheme can be bounded as follows: |B′u(R′)| ≤
τR

′ ≤ 2τ , |Lu(offset(u))| ≤ n
R , S

′ < 2 ln τ
τ n. Overall, the total size is |B′u(R′)∪Lu(offset(u))∪S′| = O( log τ

τ n),
thus using Lemma 2.2 to store the sets and the corresponding distances we obtain labels of size O(n log2 τ

τ ).

Complexity of the Decoding. To perform the distance decoding, for a given pair u, v ∈ V , it suffices
to minimize δ(u,w) + δ(v, w) over all w belonging to B′u(R′) ∪ S′u which are also encoded in the label of v.
Hence, distance decoding is possible in time 2O(τ). Overall, setting T := 2O(τ), we obtain the following main
result of the section.

Theorem 4.1. There is a 2-additive distance labeling scheme for general graphs, which achieves decoding
time T using labels of size O(n log2 log T

log T ), for any T ≤ n.

Finally, we remark on some implications of our result. By a standard argument, converting a 2-additive
approximate distance labeling into an exact one requires an additional label of size log2 3

2 n bits per node (and
an additional O( n

logn ) overhead in the space, which is negligible), with each node u encoding the difference
between the approximate and real distance value, δ′(u, v) − δ(u, v), for all v ∈ {(u + 1) mod n, . . . , (u +
bn2 c) mod n}. The time overhead of the corresponding decoding is O(1). In an analogous manner, converting
a 2-additive approximate distance labeling into an 1-additive approximate one requires an additional label
of size 1

2n bits per node. Thus we convert our scheme into an exact distance labeling scheme or 1-additive
scheme achieving T decoding time using labels of size respectively log2 3

2 n+O(n log2 log T
log T ) or 1

2n+O(n log2 log T
log T ),

for any T ≤ n.
Thus, setting τ as an arbitrarily small increasing function of n, for any desired decoding time T = ω(1)

we can make use of labels of size o(n), 1
2n + o(n) and log2 3

2 n + o(n) respectively for 2-additive, 1-additive
and exact distances. Moreover, using this scheme, O(1) decoding time can be achieved for labels of size εn,
( 1

2 + ε) · n and ( log2 3
2 + ε) · n, for any absolute constant ε > 0.

While a slightly stronger in terms of decoding time schemes were presented in Alstrup et al. [7] (achieving
O(1) decoding time and labels of size log2 3

2 n + o(n) and 1
2n + o(n) for exact and 1-additive distances), we

believe that presented here schemes are of independent value due to the simplification of the construction.
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